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CHAPITRE 1

Introduction

1.1 Structures cohérentes dans les écoulements atmosphé-
riques et océaniques à grande échelle

Une description rapide des écoulements à grande échelle est ici donnée, en insistant sur
les aspects dynamiques qui sont importants dans le contexte général de cette thèse. Ces
aspects justifient notamment l’approche que nous employons dans la suite, et constituent
le contexte de la formation et de l’existence des structures cohérentes, en particulier des
tourbillons.

1.1.1 Description générale des écoulements à grande échelle – motiva-
tion de la thèse

Les écoulements atmosphériques et océaniques, à grande échelle, ont de nombreuses
caractéristiques en commun. D’un point de vue hydrodynamique, ce sont des écoulements
de fluides stratifiés, en rotation et contenus dans un domaine à faible rapport d’aspect
(i.e. dont l’extension selon une dimension spatiale, en l’occurence la verticale, est petite
par rapport aux deux autres). Ils présentent un gradient vertical de densité, associé à un
gradient de température (et, dans l’océan, de salinité). Cette stratification est – en moyenne
et à grande échelle – stable, ce qui tend à inhiber les mouvements verticaux. Ils sont
également soumis à la pseudo-force de Coriolis associée à la rotation de la Terre. Celle-ci
est responsable, conjointement au chauffage radiatif par le rayonnement solaire, de la mise
en circulation des masses atmosphériques et océaniques. Physiquement, le paramètre de
Coriolis (qui a la dimension d’une fréquence) fait apparaître un taux de rotation typique qui
est comparé au taux de rotation des écoulements considérés pour en mesurer la magnitude.
Le nombre sans dimension ainsi obtenu est le nombre de Rossby :

Ro =
U

fL
,

1
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Figure 1.1 – Analyse du vent à 250 hPa le 13 Mai 2014 à 15h00 UTC. Visualisation
des trajectoires instantannées avec le module du vent en couleurs. Le domaine représenté
s’étend du continent nord américain au Moyen Orient. Résolution : T574/L64. Source :
GFS/NCEP/US National Weather Service (http ://earth.nullschool.net/).

où U et L sont respectivement la vitesse et l’échelle spatiale typiques de l’écoulement,
et f est la valeur du paramètre de Coriolis. La force de Coriolis est à l’origine d’une
bidimensionalisation des écoulements géophysiques à faible nombre de Rossby et d’une
homogénéisation sur la verticale, phénomène théorisé par Taylor et Proudman en 1917 et
connu sous le nom de “théorème de Taylor-Proudman” (la paternité du théorème serait
cependant à attribuer à Hough en 1897). Il résulte de ceci les propriétés communes aux
écoulements atmosphériques et océaniques à grande échelle d’évoluer dans le plan horizon-
tal et de présenter une faible variation sur la verticale, en première approximation.

Le nombre de Reynolds typique de ces écoulements, comparant les termes inertiels et
dissipatifs, est très grand. Si l’on considère, pour l’atmosphère, une estimation basse de la
valeur typique du vent de l’ordre de 1 m/s, sur une échelle spatiale de l’ordre de la centaine
de kilomètres, on obtient une valeur typique du nombre de Reynolds de Reatm ≈ 6 · 109

(la viscosité cinématique de l’air vaut environ 16 · 10−6m2/s). Une même estimation dans
l’océan, avec une vitesse typique de l’ordre de quelques centimètres par seconde sur des
longueurs typiques de quelques dizaines de kilomètres, donne Reoc ≈ 108. Ces valeurs éle-
vées du nombre de Reynolds indiquent que les écoulements sont dans un régime turbulent.
Ainsi, une image de la circulation atmosphérique ou océanique s’organisant en un ensemble
de jets principalement zonaux et plus ou moins intenses (jet stream, jet polaire dans l’at-
mosphere et émanations des courants de bord ouest dans l’océan, comme le gulf stream)
accompagnés de circulations méridiennes lentes (les cellules de Hadley aux tropiques, de
Ferrel aux moyennes latitudes ou les branches de retour des gyres océaniques) – telle que
décrite dans les ouvrages classiques de dynamique des fluides géophysiques (DFG) (e.g.
Gill, 1982; Pedlosky, 1987; Vallis, 2006) – n’est pas à considérer stricto sensu : il s’agit
en réalité d’une vision moyennée des écoulements cachant des propriétés diverses et com-
plexes. Les jets sont instables et forment continuellement des méandres (cf. figs. 1.1 et
1.2, cadre de gauche 1), manifestations des ondes de Rossby circulant sur les gradients de

1. Notons que ces deux figures sont issues de réanalyses (i.e. de simulations numériques corrigées par
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vorticité potentielle qu’ils forment. Les flux (chaleur, quantité de mouvement...) associés
à ces perturbations de forte amplitude sont l’essence du transport méridien observé sur
les moyennes. Dans les océans, un grand nombre de tourbillons cohérents sont présents à
des échelles variées (cf. fig. 1.2, cadre de gauche, et section suivante) et participent acti-
vement au transport de quantités dynamiques et thermodynamiques (ainsi que d’espèces
biologiques). Leur dynamique est complexe : essentiellement non-linéaire, elle implique des
interactions entre des échelles diverses, mais également des composantes du mouvement de
natures différentes (ondes et tourbillons, cf. section 1.3), d’autant plus qu’ils sont intenses.
Cette intensité est caractérisée par un nombre de Rossby élevé, et on parle alors d’écou-
lement agéostrophique, concept qui sera explicité dans la suite de cette introduction. Bon
nombre des caractéristiques des tourbillons, qu’ils soient considérés individuellement ou en
interaction avec leur environnement – ou d’autres structures – demeurent incomprises.

C’est dans cette problématique que s’inscrit le travail de recherche présenté dans cette
thèse : comprendre la dynamique des structures cohérentes agéostrophiques présentes dans
les écoulements géophysiques à grande et moyenne échelle.

1.1.2 Tourbillons océaniques

L’origine, la taille et l’intensité des tourbillons océaniques sont diverses (McWilliams,
1985; Olson, 1991; Carton, 2010; Chelton et al., 2011). Il est maintenant bien connu que
ces structures sont omniprésentes, que ce soit à l’échelle synoptique (∼ 100 km), à la
mésoéchelle ou à la sous-mésoéchelle (∼ 10 km).

Tourbillons synoptiques

La première source historiquement identifiée de ces tourbillons est l’instabilité, barocline
ou barotrope, des courants de bord ouest (Flierl et al., 1999). La reconnection des méandres
caractéristiques de ces instabilités forme des boucles qui se détachent et donnent naissance
à des tourbillons – également appelés anneaux lorsqu’ils sont de grande taille – dérivant
lentement vers l’ouest ou le sud-ouest sous l’action combinée de l’effet beta-planétaire (le
gradient méridien de vorticité planétaire associé à la courbure de celle-ci) et de l’interaction
avec le jet. Ce phénomène est particulièrement actif pour les deux grands courants de bord
ouest de l’hémisphère nord, le Gulf Stream se détachant de la côte Est des Etats-Unis, et
le Kuroshio dans le Pacifique Nord. Il est visible dans le cas du Gulf Stream dans la figure
1.2 (cadre de gauche). Les anomalies de vitesses typiques associées à ces anneaux sont
de l’ordre de 1 à 2 m/s et leur rayon typique est de l’ordre de la centaine de kilomètres.
Le détachement de tourbillons au niveau de la retroflection de courants est également
observé, par exemple au niveau du courant des Aiguilles (au large de l’Afrique du Sud)
ou du courant du Brésil Nord (Carton, 2010). Les anneaux provenant de la retroflection
du Courant des Aiguilles sont des anticyclones de plus grande taille et légèrement moins
intenses que les anneaux du Gulf Stream. Ils dérivent souvent sur de longues périodes
en suivant une trajectoire orientée vers le Nord-Ouest dans le bassin Atlantique Sud (cf.
figure 1.3). La plupart des tourbillons à l’échelle synoptique ont un maximum d’intensité
en surface (surface-intensified) ou quelques centaines de mètres en dessous (structures de
sub-surface). Leur champ de vitesse décroit généralement avec la profondeur, mais certains
sont quasi-barotropes, s’étendant sur l’ensemble de la colonne d’eau.

des observations via une méthode d’assimilation de données) dont la résolution, nécessairement limitée, ne
donne pas accès aux structures d’échelle plus petite.
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Figure 1.2 – Densité d’énergie cinétique en surface simulée par le modèle de circulation
océanique HYCOM avec assimilation de données (résolution 1/10◦ – gauche) et densité
d’énergie à basse fréquence dans une expérience de laboratoire en Rotating Shallow Water
(Afanasyev et Craig, 2013) (droite).

Figure 1.3 – Visualisation des courants par insémination de traceurs dans le modèle de
circulation générale océanique du MIT intégrant des observations. On y voit la trajectoire
du courant des Aiguilles (indiquée par une flèche) et de nombreux tourbillons émis, no-
tamment à l’Ouest et au Nord-Ouest de la zone de rétroflexion. Source : NASA, projet
ECCO.
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Figure 1.4 – Visualisation de l’entraînement de glace de mer (en blanc) par un dipôle de
vorticité formé en mer d’Okhotsk. (Image satellite, source : (Fedorov et Ginsburg, 1989))

Tourbillons de sous-mésoéchelle

Des tourbillons de plus petite échelle existent aussi, principalement générés par l’in-
stabilité de courants côtiers, ou par l’interaction de courants avec la topographie – par
exemple dans le sillage d’îles (ou de monts sous-marins) (Carton, 2010). D’autres scéna-
rios sont envisageables, comme l’interaction entre plusieurs courants et/ou avec un forçage
atmosphérique intense, ou encore la déstabilisation de colonnes de convection profonde.
Beaucoup de ces tourbillons sont intensifiés en surface (ou juste dessous) et tous ont une
décroissance marquée de la vitesse avec la profondeur. La séparation horizontale entre les
tourbillons peut aller de l’isolement complet à l’interaction forte, avec éventuellement la
formation de multipôles (cf. figure 1.4). Certains sont complètement isolés verticalement
et ont une signature en vitesse nulle à la surface. Un exemple désormais classique – et
néanmoins toujours étudié – en est les meddies, tourbillons en forme de lentille se formant
par déstabilisation du courant sous-marin associé à la sortie des eaux de fond du bassin
méditerranéen au niveau de Gibraltar. Ces tourbillons de mésoéchelle sont probablement
parmi les plus isolés qui soient, et leur processus de déclin, s’il est compris qualitativement,
est toujours un sujet actif de recherche.

Impact des tourbillons océaniques

Une caractéristique importante de ces structures est qu’elles renferment une anomalie de
température, de salinité et d’espèces biologiques provenant de la région d’appartenance des
masses d’eau qu’elles contiennent, en plus de constituer une anomalie d’énergie (cinétique
et potentielle). Dans le cas des tourbillons formés par déstabilisation de courant-jets, par
exemple, ceux formés au sud du front de température associé au courant contiennent des
masses d’eau froide provenant du nord – on parle de cold core eddies, et inversement
(warm core eddies). Par exemple, les tourbillons se détachant du Courant des Aiguilles se
propagent en direction du nord-ouest dans l’Atlantique Sud et peuvent parfois atteindre la
côte sud-américaine. L’anomalie d’énergie qu’ils contiennent est importante : on estime par
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exemple que l’énergie associée à chaque anneau détaché du courant des Aiguilles équivaut
à environ 7% du forçage par le vent communiqué à la circulation océanique à grande
échelle (Olson et Evans, 1986). De fait, les tourbillons sont un élément clé dans le bilan
énergétique de la circulation océanique, notamment pour l’identification des puits d’énergie
(Ferrari et Wunsch, 2009), et la compréhension de leur distribution (en termes de taille,
d’intensité, de durée de vie, etc.) est toujours imparfaite. Ces structures sont susceptibles
d’émettre des ondes internes, notamment par interaction avec la topographie (surtout
pour les tourbillons synoptiques, ou près des bords), ou via un mécanisme d’instabilité.
Elles peuvent également redistribuer (partiellement ou intégralement) de la quantité de
mouvement à leur environnement, par exemple en étant absorbées par un jet – ou un
tourbillon de plus grande échelle – ou en se déstabilisant. La compréhension de la stabilité
des tourbillons océaniques – associée à leur temps de vie long –, et la connaissance des
processus d’instabilité qu’elles peuvent – à l’opposé – subir, présentent encore des zones
d’ombre, notamment en ce qui concerne les structures agéostrophiques et/ou de taille
inférieure à l’échelle synoptique.

1.1.3 Tourbillons atmosphériques intenses : dépressions synoptiques et
cyclones tropicaux

Les tourbillons sont aussi fréquemment observés dans les écoulements atmosphériques,
avec des structures différentes. Les perturbations synoptiques des moyennes latitudes se
formant suite au déferlement d’ondes de Rossby sur les courant-jets en sont un exemple
commun. Les phénomènes de blocages atmosphériques sont souvent associés à une structure
dipolaire, piégée dans l’écoulement moyen et presque stationnaire par rapport au sol (e.g.
McWilliams, 1980; Butchart et al., 1989), ou à un monopôle de vorticité formé sur un
côté du courant-jet et occasionant un blocage “en omega”. Des tourbillons cycloniques
se détachent parfois des jets, formant des “cutoff lows” qui peuvent être associés à des
vents forts en surface. Des cyclones intenses mais de courte durée, appelés dépressions
polaires, sont également observés aux hautes latitudes. L’exemple archétype de tourbillons
intenses dans l’atmosphère reste néanmoins celui des cyclones tropicaux (également appelés
ouragans ou typhons selon les régions). Ce sont des tourbillons cycloniques intenses qui
se forment au dessus des océans chauds dans les régions tropicales. Ils sont constitués
d’un coeur chaud, associé à une descente des isentropes et une baisse de la pression de
surface en centre, et d’une circulation azimutale intense et principalement axisymétrique,
surtout près du centre. Le maximum de vitesse – de l’ordre de quelques dizaines de m/s –
entoure l’oeil du cyclone, zone calme et associée à une subsidence lente dont le diamètre
typique peut varier de 20 à presque 100 km. Les systèmes convectifs intenses présents
dans cette région forment le mur du cyclone (eyewall en anglais) où le dégagement de
chaleur latente associé à la formation de masses nuageuses (et à la précipitation) alimente
la circulation. Une circulation secondaire, convergente en surface (et mettant en jeu des
processus complexes dans la couche limite) et divergente en altitude maintient le fort
taux d’humidité spécifique vers l’oeil du cyclone et alimente ainsi, à son tour, ce cycle
thermodynamique (e.g. Emanuel, 2010; Kepert, 2010). Les nombres de Rossby typiques
des cyclones sont très élevés : ils peuvent atteindre des valeurs de l’ordre de 30. Ce sont
donc des structures fortement agéostrophiques et intrinsèquement liées aux processus de
convection humide, eux-mêmes fortement non linéaires. Tous les aspects de la dynamique
de ces structures ne sont pas compris et font l’objet d’une recherche particulièrement active.
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Figure 1.5 – Photo satellite (canal visible) de l’ouragan Isabel prise le 12 Septembre 2003.
L’oeil et la structure axisymétrique du coeur sont clairement visible sur la photo. Le bord
extérieur du mur est associé à la position du maximum de vent azimutal. (Source : NASA
earth science office – http ://weather.msfc.nasa.gov)

1.1.4 Approche de la thèse

Tous les processus en jeu dans la dynamique des tourbillons sont complexes, notamment
parce qu’ils sont susceptibles d’agir en même temps et de se coupler, et qu’il est souvent
difficile de séparer les tourbillons de leur environnement (formé notamment d’autres tour-
billons). Une approche utile consiste à simplifier cette dynamique en l’étudiant dans des
configurations – et des modèles – idéalisés afin d’en étudier l’essence des processus. Les
résultats obtenus n’ont pas pour but la reproduction fidèle de cas réels, mais ils permettent
une meilleure compréhension des phénomènes ; par exemple, quel type d’instabilité est sus-
ceptible d’agir et quel peut-être son impact, quel est le degré d’attractivité et de stabilité
des structures cohérentes susceptibles d’exister, ou encore comment interagissent ces struc-
tures entre elles. C’est cette approche qui a été adoptée dans les différents travaux présentés
dans cette thèse.

1.2 Modélisation mathématique des écoulements à grande
échelle

Nous introduisons dans cette partie les différents modèles utilisés pour décrire les écou-
lements atmosphériques et océaniques. Les différentes hypothèses et approximations qu’ils
incluent sont rappelées, et nous motivons le choix d’utiliser le modèle Rotating Shallow
Water (RSW) pour nos études. On donne alors les propriétés importantes de ces modèles
et une description rapide du code de simulation numérique utilisé pour les traiter.
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1.2.1 Les équations primitives

Les écoulements océaniques et atmosphériques à l’échelle synoptique, c’est à dire lorsque
la taille horizontale typique est de l’ordre du rayon de déformation (introduit dans cette
partie) et inférieure au rayon de la Terre, sont généralement décrits par un système d’équa-
tions appelées équations primitives. Elles comprennent une équation d’état (décrivant la
thermodynamique du système) et les équations de Navier-Stokes (pour la dynamique) ex-
primées sur la sphère, en négligeant certains termes associés à la sphéricité et en utilisant
les approximations d’hydrostatisme, d’incompressibilité et de Boussinesq (e.g. Pedlosky,
1987; Vallis, 2006). L’approximation hydrostatique consiste à négliger les termes d’advec-
tion lagrangienne (∂t+~v · ~∇) ainsi que les termes de courbure devant les forces générées par
le gradient de pression verticale et la gravité dans l’équation pour la quantité de mouve-
ment radiale (i.e. verticale). L’incompressibilité correspond à la conservation du volume des
parcelles fluides au cours de leur mouvement (~∇ ·~v = 0) et réduit l’équation de continuité
à la conservation lagrangienne de la densité, tout en filtrant les ondes acoustiques. L’ap-
proximation de Boussinesq néglige les effets de variablilité de la densité sauf dans le terme
relatif à la flottabilité dans les équations pour la quantité de mouvement. Les termes dits
“non traditionnels” (la composante verticale, et les termes impliquant la vitesse verticale
dans la composante horizontale de la force de Coriolis ; ainsi que les termes de courbure
impliquant la vitesse verticale) sont habituellement negligés 2. L’accélération centrifuge est
absorbée dans la gravité et le fluide est supposé contenu dans une couche mince (devant le
rayon de la terre), ce qui permet de remplacer la coordonnée radiale par R+ z, où R est le
rayon de la Terre et z << R l’altitude, et d’approximer les occurences explicites de cette
variable (en dehors des dérivées) par la valeur du rayon de la Terre R.

L’approximation du plan tangent permet enfin d’assimiler les coordonnées de la lati-
tude et de la longitude à des coordonnées cartésiennes (la variation maximum en latitude
est petite devant le rayon de la Terre) et d’approximer le terme de Coriolis par son dé-
veloppement de Taylor autour de la latitude considérée θ0, à l’ordre zéro (plan f) ou au
premier ordre (plan β) :

f ≈ f0 + βy , f0 = 2Ω sin θ0 , β = (2Ω cos θ0)/R,

où y est la coordonnée méridienne et Ω la vitesse angulaire de rotation de la Terre. Dans
l’ensemble des travaux présentés dans cette thèse, c’est l’approximation du plan f qui est
utilisée.

Le système d’équations, dans le contexte océanique, s’écrit alors :

d~vh
dt

+ f ~ez × ~vh + ~∇hΦ = 0, (1.1)

dρ

dt
= 0, ~∇ ·~v = 0, (1.2)

∂zΦ + g
ρ

ρ0
= 0 (1.3)

où ~v est le vecteur vitesse, ρ est la densité (et ρ0 une valeur constante de référence), et Φ est
le géopotentiel. L’indice h indique que l’on ne considère que les composantes horizontales du
vecteur. Ici, et dans l’ensemble du manuscrit, la dérivée temporelle d(··· )

dt ≡ (∂t+~v · ~∇)(· · · )

2. Leurs effets dynamiques sont néanmoins toujours un sujet d’étude (e.g. Gerkema et al., 2008), no-
tamment pour les écoulements dans les atmosphères profondes.
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est la dérivée lagrangienne. Dans le contexte atmosphérique, ces équations exprimées en
coordonnées pseudo-hauteur (valables pour les altitudes troposphériques) ont exactement
la même forme, mais le géopotentiel est défini différemment et il faut faire le changement
de variable θ ← −ρ, où θ est la température potentielle.

Il est utile d’introduire d’ores et déjà la vorticité potentielle d’Ertel (Ertel, 1942b,a,d,c),
quantité introduite initialement par Rossby dans les années 1930 (cf. e.g. l’article de McIn-
tyre (2012b) pour une discussion détaillée et historique sur la vorticité potentielle). Celle-ci
est définie, dans le cadre des équations primitives océaniques (1.1)-(1.3) par la relation sui-
vante :

q =
~ζa · ~∇ρ
ρ0

, (1.4)

où ~ζa = ~∇× ~vh + f ~ez est la vorticité absolue, et s’écrit dans le contexte atmosphérique :

q =
ζa · ~∇θ
ρ0

. (1.5)

C’est un invariant lagrangien du système, et une grandeur dynamique clé des écoulements
à grande échelle, en lien avec les régimes équilibrés pour lesquels elle contient l’ensemble
de l’information dynamique (cf. section 1.3). La conservation lagrangienne de la vorticité
potentielle est en fait la généralisation à un fluide stratifié et barocline du théorème de
circulation de Kelvin, stipulant que la circulation le long d’une ligne matérielle de fluide
est conservée au cours de son advection par l’écoulement (e.g. Landau et Lifshitz, 1987)
dans le cas d’un fluide barotrope (i.e. dont la densité n’est fonction que de la pression et pas
de la troisième variable d’état indépendante). Pour un fluide barocline cette conservation
est brisée, mais la circulation le long d’un contour infinitésimal contenu sur une surface
isentrope – qui tend vers la composante de la vorticité absolue orienté selon le gradient
de température potentielle – est conservée pour un écoulement adiabatique, parce que ce
contour reste sur cette surface (étant donné dθ/dt = 0).

Les équations primitives modélisent en (très) bonne approximation les écoulements
de fluides géophysiques (au delà de la sous-mésoéchelle notamment). Néanmoins, la com-
plexité de ces dernières rend leur investigation difficile. Les modèles numériques sont lourds
et coûteux en ressources numériques et les sorties peuvent être difficiles à analyser et à com-
prendre. L’utilisation de modèles simplifiés, se basant sur certaines propriétés des écoule-
ments (en l’occurrence, la stratification et la rotation), permettent de palier ces manque-
ments en fournissant un outil dont l’intégration numérique et l’analyse sont facilitées. Les
équations en eau peu profonde en rotation (Rotating Shallow Water) font partie de ces
modèles simplifiés. Elles constituent un modèle archétype de la dynamique des fluides géo-
physiques (e.g. Gill, 1982; Pedlosky, 1987; Vallis, 2006). Des exemples relativement récents
– et en lien avec les mécanismes abordés dans cette thèse – de leur utilisation sont l’étude
de la formation de tourbillons par instabilité de jets (Poulin et Flierl, 2003) ou de courants
côtiers (Gula et al., 2010). Elles permettent également de modéliser avec un bon accord
des expériences réalisées en laboratoire (Griffiths et Linden, 1982; Gula et Zeitlin, 2014).
On peut notamment se reporter à la figure 1.2 où un écoulement turbulent visualisé dans
une expérience en Shallow Water montre clairement des caractéristiques similaires à ce que
l’on observe dans les écoulements à grande échelle.
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Figure 1.6 – Représentation schématique du modèle RSW à deux couches (vue en coupe)
dans le cas d’une topographie plane.

1.2.2 Rotating Shallow Water : dérivation et propriétés

Les équations de Saint-Venant en rotation (une autre dénomination – française – de ce
même modèle) sont obtenues en moyennant verticalement les équations primitives entre
des surfaces matérielles (e.g. Zeitlin, 2007). L’approximation de champ moyen est utilisée
au cours de cette dérivation, consistant à négliger les corrélations entre les fluctuations sur
la verticale. Une simplification supplémentaire permet de considérer la densité du fluide
(moyennée verticalement) comme étant constante par rapport aux coordonnées horizontales
et, par conservation, dans le temps. Cette approximation, bien que courante, n’est pas
intrinsèque aux modèles en eau peu profonde. Si elle n’est pas faite, on obtient le modèle
de Ripa (1993).

Les équations du modèle à n couches s’écrivent :

d~vi
dt

+ f ~ez × ~vi = −
~∇πi
ρi

, (1.6)

∂thi + ~∇(hi~vi) = 0, i = 1, · · · , n (1.7)

avec n− 1 conditions dynamiques aux interfaces :

πi+1 − πi = (ρi+1 − ρi)ηi+1. (1.8)

Ici, πi, hi et ρi sont respectivement la pression, l’épaisseur et la densité dans la couche i,
et ηi dénote la déviation de l’interface entre une couche i − 1 et une couche i. L’indice
i est croissant depuis la surface vers le fond. La dissipation peut être introduite dans ce
modèle, basiquement sous forme d’un terme visqueux dans l’équation pour la quantité
de mouvement, mais également en introduisant des termes d’amortissement – notamment
dans l’équation de conservation de la masse. Ils ne sont pas discutés ici, car l’intégralité
des travaux contenus dans ce manuscrit utilise les équations inviscides. La représentation
schématique de ce modèle est donnée, dans le cas à deux couches, en figure 1.6.

La conjugaison de l’équation de conservation de la masse (1.7) à celle de la vorti-
cité – obtenue en considérant le rotationnel de l’équation pour la quantité de mouvement
~∇× (1.6) :

d(i)(ζi + f)

dt
+ (ζi + f)~∇ ·~vi = 0 ;
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permettent d’obtenir l’équation d’invariance lagrangienne de la vorticité potentielle par
couche qi :

d(i)qi
dt

= (∂t + ~vi · ~∇)qi = 0, (1.9)

où
qi =

ζi + f

hi
.

Comme nous l’avons déjà discuté dans le cadre des équations primitives (section 1.2.1),
cette équation de conservation est particulièrement importante en dynamique des fluides
géophysiques. Tout modèle simplifié de la DFG doit la respecter si l’on veut qu’il constitue
une approximation fiable des équations primitives.

Une autre loi de conservation vérifiée par l’écoulement lorsque le système est isolé – ce
qui est le cas si l’on considère des conditions aux limites périodiques, ou que l’écoulement
est localisé dans l’espace – est l’énergie totale :

E =

∫∫
edxdy =

∫∫ (
h
|~v|2

2
+ g

h2

2

)
dxdy, (1.10)

où la densité d’énergie e obéit à l’équation de conservation suivante :

∂te+ ~∇
(
~vh

(
|~v|2

2
+ gh

))
= 0. (1.11)

Les équations RSW peuvent être vues comme décrivant la dynamique de couches de
fluides de densité uniforme. C’est cette interprétation qui est adoptée lorsque l’on cherche
à modéliser la dynamique océanique avec ce modèle, le saut en densité entre les couches
représentant la pycnocline (souvent associée à la thermocline). Une autre vision, plus for-
melle et plus générale, justifie ce modèle même en l’absence de discontinuité dans le profil
de densité. Cette interprétation s’appuie sur l’analogie formelle entre les équations RSW
et les équations primitives en coordonnées isentropes (isopycnes dans l’océan), dans les-
quelles l’équation pour la quantité de mouvement est bidimensionnelle (pour un écoulement
adiabatique). Les équations Shallow Water peuvent alors être obtenues par discrétisation
verticale des équations primitives (e.g. Vallis, 2006). Inversement, ces dernières peuvent
être vues comme une limite des équations RSW multicouches lorsque le nombre de couches
tend vers l’infini. Plus généralement, les modèles RSW peuvent se réécrire en fonction
de modes propres verticaux : par exemple, pour le modèle à deux couches, on définit les
composantes barotrope et barocline. On peut alors montrer que ces équations décrivent
l’évolution des modes verticaux de plus petits nombres d’onde (les n premiers, où n est le
nombre de couches) des équations primitives, constituant ainsi une troncature consistante
de ces équations (ceci suppose cependant la définition de conditions aux limites sur la co-
ordonnée verticale). Ainsi, le modèle RSW à deux couches modélise l’évolution du mode
barotrope et du premier mode barocline des équations primitives.

1.2.3 Schémas numériques pour les équations RSW

Les systèmes d’équations des modèles RSW (1.6)-(1.7) à une ou plusieurs couches, for-
mulés sous forme conservative, sont des systèmes d’équations hyperboliques (sous certaines
conditions dans le cas multicouche) quasi-linéaires avec un terme source (le terme de Corio-
lis et la topographie – le cas échéant). Ceci présente un avantage fort pour leur modélisation
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numérique, permettant l’utilisation de schémas numériques spécialement adaptés aux sys-
tèmes d’équations hyperboliques (e.g. LeVeque, 2002). En effet, les systèmes hyperboliques
quasi-linéaires peuvent être traités par la méthode des caractéristiques (Whitham, 1974),
dans laquelle les solutions (de nature propagative – ou ondulatoire) sont exprimées comme
étant la propagation de variables de Riemann le long de courbes caractéristiques. Le sys-
tème d’équations aux dérivées partielles est ainsi ramené à un système d’équations aux
dérivées ordinaires. En l’absence de source, les variables de Riemann sont des invariants.
Les variables de Riemann s’obtiennent analytiquement dans le cas où les équations sont
invariantes par rapport à une translation selon l’une des deux dimensions d’espace (modèle
1.5D). Les systèmes d’équations hyperboliques quasi-linéaires peuvent également donner
lieu à la formation de chocs (discontinuités dans les champs), correspondant à l’intersec-
tion des courbes caractéristiques en un temps fini (Zeitlin et al., 2003). Ces chocs sont
la formulation mathématique, dans les équations de Saint-Venant, des fronts pouvant se
former dans les écoulements géophysiques (les perturbations synoptiques sont par exemple
associées à la frontogénèse (e.g. Hoskins et Bretherton, 1972)), et qui consistent en une
variation abrupte dans l’espace de certains champs, généralement la température et/ou la
pression. Les chocs constituent notamment une difficulté pour la simulation numérique des
modèles RSW, qui est bien résolue par les méthodes que nous décrivons ici.

Dans la configuration à une seule couche, le système d’équations (1.6)-(1.7) peut se
mettre sous la forme conservative suivante :

∂t(hu) + ∂x(hu2 + gh2/2) + ∂y(huv)− fhv = 0, (1.12)

∂t(vh) + ∂x(huv) + ∂y(hv
2 + gh2/2) + fhu = 0, (1.13)

∂t(h) + ∂x(hu) + ∂y(hv) = 0. (1.14)

En l’absence de rotation, ce système d’équations est formellement analogue aux équations
d’Euler pour un gaz barotrope compressible bidimensionnel (Landau et Lifshitz, 1987)
avec π ∝ h2 (où π est la pression). Il en découle des propriétés dynamiques communes,
notamment la formation de chocs. Ce système d’équations est inconditionnellement hy-
perbolique : les valeurs des caractéristiques, correspondant à la vitesse de propagation des
variables de Riemann, sont réelles. Ces lois de conservation (1.12)-(1.14) sont associées
aux conditions de Rankine-Hugoniot qui décrivent l’évolution des quantités dynamiques à
travers les chocs. Celles-ci, combinées à la condition d’entropie (définie un peu plus loin),
permettent la définition des solutions faibles décrivant ces structures. Elles sont dérivées à
partir des équations (1.12)-(1.14) (Bouchut et al., 2004, 2009) et sont données ici dans le
cas d’une invariance selon la composante y, pour simplifier (on peut généraliser à n’importe
quel front rectiligne en opérant une rotation des coordonnées pour ramener l’axe y le long
du front) :

− s[hu] + [hu2 + gh2/2] = 0, (1.15)
− s[hv] + [huv] = 0, (1.16)
− s[h] + [hu] = 0, (1.17)

où s est la vitesse de propagation de la discontinuité et [A] désigne le saut de la quantité A
de part et d’autre de la discontinuité. L’implémentation des termes conservatifs des équa-
tions du système avec l’approche des volumes finis les transforme en ces dernières conditions
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et permettent, par construction, un bon traitement des discontinuités. Le schéma numé-
rique reconstruit alors les fronts dans les écoulements sur quelques cellules numériques,
s’approchant de la forme d’un choc pour lequel la variation serait intégralement comprise
entre deux cellules.

Par rapport au modèle à une couche, le cas du modèle à deux couches présente quelques
particularités, qui sont valables également pour les modèles à plusieurs couches. Le Sommer
et al. (2003) ont montré, dans le cas simplifié des équations RSW à deux couches à 1.5
dimension et avec l’approximation du toit rigide, que le discriminant du système sous forme
canonique hyperbolique peut être négatif lorsque :

(u2 − u1)2 > g(ρ2 − ρ1)

√
h1

ρ1
+
h2

ρ2
. (1.18)

Ceci montre que le système quasi-linéaire contient des valeurs propres (les caractéristiques)
imaginaires, qui sont associées au caractère alors elliptique des équations et ne corres-
pondent plus a des solutions propagatives. Ce critère coïncide avec le critère de déclen-
chement de l’instabilité de cisaillement, analogue de l’instabilité de Kelvin-Helmoltz dans
un modèle à couches. Cette instabilité mène à la formation de rouleaux de petite échelle
dont l’axe est à la fois orthogonal à la direction du cisaillement et à celle de l’écoulement,
et créer ainsi du mélange au niveau de l’interface – ce qui ne peut pas se réaliser dans les
modèles à couches. Cette perte d’hyperbolicité présente un problème pour la modélisation
numérique des équations lorsque l’on cherche à utiliser des méthodes basées sur le caractère
hyperbolique des équations.

De plus, les conditions de Rankine-Hugoniot associées aux équations ne forment pas un
système complet permettant la définition de solutions faibles : les équations pour la quantité
de mouvement par couche ne peuvent être mises sous forme conservative à cause des termes
croisés entre les épaisseurs des différentes couches, associés aux termes de gradient de
pression. Seule une condition sur la quantité de mouvement sommée sur toutes les couches
est dérivable. Ainsi, dans le modèle à deux couches, une contrainte supplémentaire est
nécessaire pour permettre la fermeture du système (Bouchut et Zeitlin, 2010; Lambaerts
et al., 2011b).

Le code de simulation numérique directe utilisé dans cette thèse implémente des mé-
thodes spécialement adaptées aux systèmes hyperboliques (e.g. LeVeque, 2002) (méthodes
initialement développées dans le domaine de la dynamique des gaz). Le schéma est décrit
dans le cas à une couche par Bouchut (2007), et dans le cas multicouche par Bouchut et
Zeitlin (2010). Ces méthodes se basent sur la forme conservative des équations (et donc sur
les conditions de Rankine-Hugoniot) et ramènent le problème pour l’estimation des flux
numériques (i.e. la version numérique des flux responsables de la variation dans le temps de
la quantité correspondante), après discrétisation, à un problème de Riemann. Le solveur de
Riemann alors utilisé pour la résolution (approximée) de ces flux est associé à un ensemble
de propriétés dont l’adéquation avec la physique du problème en conditionne le choix. La
difficulté restante, non négligeable, réside dans le traitement des termes sources (c’est à
dire non conservatifs) – à savoir la topographie, le cas échéant, et le terme de Coriolis.

Les propriétés que doivent respecter le modèle numérique sont les suivantes :
— non-négativité de l’épaisseur de(s) couche(s) ;
— conservation des états équilibrés (repos, équilibre géostrophique...) ;
— respect des inégalités d’entropie.
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Certains solveurs de Riemann assurent la positivité de l’épaisseur de couche, et permettent
également de traiter la vacuité (i.e. l’assèchement : h = 0). Ceci est particulièrement
intéressant pour étudier la dynamique de courants côtiers ou de courants de gravité, pour
lesquels une couche de fluide de densité inférieure (supérieure) placée au dessus (en dessous)
est bornée spatialement par des zones d’outcropping (incropping). Le caractère équilibré
du modèle implique qu’une solution stationnaire des équations l’est également dans sa
version discrétisée. Par exemple, l’état au repos doit rester au repos, ce qui n’est pas
évident lorsqu’on introduit une topographie. Les inégalités d’entropie sont des relations de
conservation pour certaines quantités (entropies), additionnelles aux équations de base du
modèle, qui sont notamment respectées par les solutions faibles des équations et imposent
une décroissance de ces quantités à travers les discontinuités. Dans le cas du modèle RSW
(inviscide), l’entropie est simplement l’énergie du système, et la condition d’entropie qui lui
est associée est la seule source de dissipation par le modèle numérique. Le terme de Coriolis
est traité comme une topographie apparente, en figeant la valeur des champs dynamiques
(u, v) à un instant donné, et ces termes (topographie et topographie apparente) sont alors
pris en compte en adaptant correctement la formulation des flux numériques (cf. Bouchut,
2007).

Enfin, dans le cas multicouche, la méthode de séparation est utilisée (Bouchut et Zeitlin,
2010). Elle permet de traiter chaque couche séparément en utilisant l’algorithme développé
pour le modèle à une couche, en formulant les termes non-conservatifs dans le gradient de
pression via une topographie apparente et en utilisant une discrétisation qui permet, en plus
de vérifier la condition de Rankine-Hugoniot pour la quantité de mouvement totale, d’en
définir de nouvelles pour chaque couche et d’obtenir ainsi un ensemble complet nécessaire à
la résolution de la propagation des chocs. Notons que cette méthode de séparation implique
que le modèle multicouche hérite naturellement des propriétés du modèle à une couche, en
particulier la préservation des états stationnaires et la non-négativité de hi.

1.3 Mouvements équilibrés, interactions ondes-tourbillons

Sont rappelées dans cette section des notions sur les régimes équilibrés dans les écou-
lements à grande échelle, et sur la séparation dynamique entre les ondes et les tourbillons.
Ces notions, valables pour les écoulements à faible nombre de Rossby, constituent une base
pour l’interprétation de nos résultats sur la dynamique et les propriétés agéostrophiques
des structures cohérentes.

1.3.1 Spectre des perturbations linéaires en Rotating Shallow Water

Dans cette partie, ainsi que pour l’ensemble des travaux présentés dans ce manuscrit,
on utilise l’approximation du plan f (f = f0 = cste). Cette considération est importante
notamment en ce qui concerne le spectre des perturbations linéaires : en effet, la variation
méridienne de la constante de Coriolis, prise en compte en première approximation dans
le plan β, implique l’existence d’ondes de Rossby. De façon plus générale, la conservation
de la vorticité potentielle conjuguée à l’effet β favorise les écoulements zonaux (e.g. Vallis,
2006).

La linéarisation des équations de Saint-Venant (1.6)-(1.7) pour une seule couche autour
de l’état de repos (u = v = 0, h = H0), valable pour des perturbations de faible amplitude,
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conduit au système d’équations suivant :

∂tu− fv + g∂xh = 0, (1.19)
∂tv + fu+ g∂yh = 0, (1.20)

∂th+H0(∂xu+ ∂yv) = 0. (1.21)

Une analyse en perturbations modales (décomposition des champs en modes de Fourier
∝ ei(

~k · ~x−ωt), où ~k est le vecteur d’onde, ω la pulsation, et i le nombre imaginaire pur de
norme unité) de ce système donne deux types (variétés) de modes propres :

— ω = 0 : mode stationnaire et à l’équilibre géostrophique, caractérisé par :

f ~ez × ~v = g~∇h. (1.22)

Cet équilibre entre la force de Coriolis et le gradient de pression est omniprésent
dans la dynamique à grande échelle (e.g. Pedlosky, 1987; Vallis, 2006). Le mode
correspondant est non divergent, et associé à la partie vorticale de l’écoulement.

— ω = ±
√
gH0|~k|2 + f2 : modes rapides correspondant aux ondes d’inertie-gravité.

La relation de dispersion de ces ondes implique que leur fréquence intrinsèque n’est
jamais nulle. Elle est bornée inférieurement (en valeur absolue) par la fréquence
de Coriolis. Par ailleurs, la relation de polarisation (la structure du mode propre)
montre que ces ondes ne portent pas d’anomalie de vorticité potentielle.

Dans le système à deux couches, le spectre des petites perturbations se décompose de
la même manière et les modes propres se divisent en deux catégories supplémentaires :
barotrope (mouvements identiques dans chaque couche) et barocline (vitesses opposées
par couche et forte déviation de l’interface associée). Les ondes d’inertie-gravité barotropes
sont similaires à celles présentes dans le modèle à une couche, avec H0 la hauteur cumulée
des deux couches de fluide, tandis que les ondes baroclines ont une vitesse de phase plus

lente : ωbc = ±
√
g′Heq|~k|2 + f2, où g′ = 2g(ρ1 − ρ2)/(ρ1 + ρ2) est la gravité réduite

et Heq = H1H2/H0 la hauteur équivalente. Les conclusions sur la valeur minimale de
la fréquence des ondes et le fait qu’elles ne portent pas d’anomalie de vorticité potentielle
persistent, et sont d’ailleurs généralisables aux systèmes à n couches (ainsi qu’aux équations
primitives (e.g. Vallis, 2006)).

Les bornes pour les fréquences de chaque variété induisent un découplage entre par-
ties lente et rapide de l’écoulement (la partie lente étant stationnaire), se résumant ici à
un découplage ondes/tourbillons. Ceci signifie que ces deux variétés n’intéragissent pas
dans l’approximation linéaire. C’est un élément important pour la compréhension des
sources d’émission d’ondes, plus particulièrement dans le cadre de l’émission spontanée
par des écoulements équilibrés (ou quasi-équilibrés) au sens du géostrophisme. Cette sépa-
ration dynamique représente également une simplification potentielle de la représentation
de l’écoulement. En effet, si elle était généralisable aux équations complètes, on pourrait
considérer séparément l’évolution des tourbillons en filtrant les ondes, numériquement et
analytiquement, et toute l’information dynamique serait contenue dans la vorticité poten-
tielle. Cette question de séparation dynamique est en lien avec la notion de variété lente
dans les équations de la DFG (e.g. McIntyre, 2012a; Vanneste, 2013), et d’inversibilité de
la vorticité potentielle (e.g. McIntyre, 2012b) (cf. section 1.3.3).
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1.3.2 Dynamique équilibrée

Une autre approche que la linéarisation formelle pour étudier le découplage dyna-
mique entre ondes et tourbillons est le développement asymptotique, basé sur l’existence
d’un paramètre petit pilotant la dynamique du problème. Dans les modèles décrivant des
écoulements proches de l’équilibre géostrophique, ce paramètre est le nombre de Rossby
Ro = U/fL. Ces modèles asymptotiques permettent de décrire une dynamique équilibrée,
dans laquelle les ondes sont filtrées. Ce genre d’approximation a apporté beaucoup à la
compréhension des écoulements à grande échelle et de la dynamique des structures cohé-
rentes. Néanmoins, les écoulements plus intenses (à grand nombre de Rossby) n’obéissent
plus à ce formalisme, et les divers aspects de la dynamique agéostrophique restent en grande
partie mal compris.

Modèle quasi-géostrophique

En adimensionnant les équations RSW (1.6)-(1.7) par la vitesse typique de l’écoulement
U , sa longueur typique L et en considérant une dynamique lente t→ τ/Rof (τ est le temps
lent) – hypothèse étayée notamment par le fait que les mouvements vorticaux sont, dans
l’approximation linéaire, immobiles –, on obtient le système d’équations adimensionnées
suivant :

Ro
(
∂τ + ~v · ~∇

)
~v + ~ez × ~v +

λBu

Ro
~∇h = 0, (1.23)

∂τh+ ~∇ ((1/λ+ h)~v) = 0, (1.24)

où le nombre de Burger (Bu = Rd2/L2, avec Rd =
√
gH0/f le rayon de déformation) et la

déviation typique des interfaces λ ont été introduits. Les régimes proches du géostrophisme
correspondent à un nombre de Rossby petit et un rapport λBu/Ro ≈ 1. Notamment, le
régime quasi-géostrophique (QG) décrit les écoulements dont l’échelle spatiale est de l’ordre
du rayon de déformation (Bu ≈ 1). Les déviations des interfaces (ou isopycnes dans le cas
continuement stratifié) sont alors caractérisées par la petitesse du paramètre λ ≈ Ro << 1.
Une dérivation rigoureuse des équations QG est possible en effectuant le développement
asymptotique pour Ro→ 0 (Reznik et al., 2001), qui donne à l’ordre 1 :

d(0)qQG

dt
= 0. (1.25)

Cette équation traduit la conservation lagrangienne de la vorticité potentielle quasi-géos-
trophique qQG = ∆Ψ − Ψ/Bu en considérant l’advection par le vent géostrophique :
d(0)···
dt = (∂τ + ~vgeos · ~∇) · · · . Ψ est la fonction de courant, donnée par la pression (via

l’équilibre géostrophique) et donc par la hauteur de la surface dans le modèle barotrope.
Cette équation est généralisable aux modèles à plusieurs couches, auquel cas on obtient un
ensemble d’équations de conservation lagrangienne de la vorticité potentielle par couche ;
ainsi que pour un fluide continuement stratifié (e.g. Pedlosky, 1987). Les équations QG sont
très couramment utilisées en dynamique des fluides géophysiques (e.g. Pedlosky, 1987; Val-
lis, 2006) et ont constitué le cadre des premières prévisions météorologiques au début des
années 1950 par Charney, Fjörtoft et Von Neumann (Charney et al., 1950). Le fait qu’elles
puissent être dérivées de manière systématique à partir des modèles Rotating Shallow Wa-
ter confirme la pertinence de ces derniers (les équations QG sont plus souvent introduites
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de manière heuristique, en regardant les différents ordres de grandeur dans les équations
primitives).

D’autres régimes proches du géostrophisme (i.e. pour Ro → 0) existent (e.g. Zeit-
lin, 2007; Reznik et al., 2001), comme les régimes frontal (Bu << 1, λ ≈ 1) et semi-
geostrophique, bien adaptés à la description des fronts synoptiques, ou des régimes obtenus
à partir de développements asymptotiques à des ordres plus élevés.

Attractivité des états équilibrés – lien avec l’ajustement géostrophique

Une des caractéristiques importantes des modèles asymptotiques est l’absence d’ondes
d’inertie-gravité 3, qui ont été filtrées par l’introduction du temps lent au cours de l’adimen-
sionnement des équations de base (1.6)-(1.7). Plus généralement, le temps lent peut être in-
troduit explicitement dans le développement asymptotique (t→ t0/f+τ/Rof+O(Ro−2)),
auquel cas le système se décompose, à l’ordre 1, en une équation de Klein-Gordon pour la
partie rapide de l’écoulement (les ondes d’inertié-gravité) et l’équation QG pour la partie
lente (i.e. moyennée à l’échelle du temps rapide) (Reznik et al., 2001). Cette séparation
dynamique est à la base de la théorie de l’ajustement géostrophique : une condition initiale
quelconque, qui peut correspondre à un état initialement équilibré et perturbé, s’ajuste vers
un état équilibré (quasi-géostrophique) en émettant des ondes d’inertié-gravité. Celles-ci,
ayant une dynamique rapide, évacuent le surplus d’énergie associé à la partie non-équilibrée
des conditions initiales, jouant ainsi le rôle de puits d’énergie et permettant la relaxation
du système vers un état de plus basse énergie. Cette formulation introduit volontairement
les concepts de la mécanique hamiltonienne en supposant – abusivement – que les états à
l’équilibre géostrophique constituent des minima d’énergie du système vers lequel celui-ci
évolue spontanément, ce qui est le cas dans les équations linéarisées (Vallis, 2006). Si cela
était vrai pour le système d’équations non linéaires (et non approximées), tout écoulement
agéostrophique évoluerait vers un état équilibré en émettant des ondes. De fait, l’ajuste-
ment géostrophique incarne l’un des mécanismes bien identifiés pour l’émission d’ondes
(Blumen, 1972). Cependant, la validité de ce processus pour des écoulements agéostrophi-
ques n’est pas assurée : on ne sait pas si les écoulements agéostrophiques ont un minimum
d’énergie correspondant à un état équilibré, ni quelle peut être la relation d’équilibre qui
le décrit. Il y a donc un intérêt, pour mieux comprendre la dynamique agéostrophique, à
regarder si des analogues de solutions équilibrées (e.g. quasi-géostrophiques) existent dans
un modèle agéostrophique et d’en étudier les propriétés. On sait par ailleurs que le méca-
nisme d’ajustement géostrophique n’est pas systématique : certains phénomènes comme le
piégeage d’ondes (e.g. Zeitlin, 2008) ou l’occurrence d’oscillations quasi-inertielles à décrois-
sance lente (Bouchut et al., 2004) peuvent inhiber cette émission, et certaines structures
agéostrophiques montrent une grande cohérence (en ce sens qu’elles ont un temps de vie
long et sont stables).

Ceci rend difficile la caractérisation des sources d’ondes dans les écoulements géophy-
siques en allant à l’encontre de l’idée relativement simple que l’émission est plus forte là
où l’écoulement est le plus agéostrophique. Cette question, relevant de la dynamique des
fluides géophysiques dans ses aspects les plus fondamentaux, est abordée dans cette thèse
sous plusieurs angles.

3. la fonction de courant est d’ailleurs stationnaire dans l’équation (1.25) linéarisée, indiquant qu’il n’y
a pas de réponse de type ondulatoire à une perturbation de faible amplitude autour de l’état de repos.
Ceci n’est plus vrai dans l’approximation du plan beta, où les ondes de Rossby apparaissent.
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1.3.3 Séparation dynamique et émission spontanée d’ondes

Formellement, un écoulement géophysique est dit équilibré si toute l’information sur
sa dynamique est contenue dans le champ de vorticité potentielle (McIntyre, 2012a). Le
nombre de degrés de liberté est alors considérablement réduit et l’évolution de l’écoulement
se réduit à l’équation de conservation lagrangienne de la vorticité potentielle. L’ensemble
des autres champs dynamiques est alors obtenu par inversion de la vorticité potentielle, ceci
impliquant généralement l’existence d’un équilibre, c’est à dire d’une relation fonctionnelle
diagnostique reliant la distribution du champ de masse au champ de vitesse. L’équilibre
géostrophique est un exemple d’une telle relation, mais elle n’est pas la seule. Dans une
géométrie cylindrique (et pour un écoulement purement azimutal), bien adaptée à l’étude de
tourbillons isolés, l’équilibre à considérer devient l’équilibre cyclogéostrophique – également
appelé relation de vent du gradient – entre la force centrifuge, la (pseudo-)force de Coriolis
et le gradient de pression :

fvθ +
v2
θ

r
= −∂rΦ, (1.26)

en reprenant les notations du système d’équations primitives (1.1)-(1.3) adaptées aux coor-
données polaires (r, θ) :~v = (ur ~er, vθ ~eθ). Une relation d’équilibre plus générale (incluant les
équilibres géostrophiques et cyclogéostrophiques) applicable aux écoulements géophysiques
a été introduite par Bolin et Charney dans les années 1950. Elle est appelée relation de
Bolin-Charney, et est donnée par (e.g. McIntyre, 2012a) :

~∇h · (f ~∇hΨ) = ∆hΦ− 2H(Ψ), (1.27)

ou Ψ est la fonction de courant pour la vitesse horizontale (cet équilibre implique toujours
un vent horizontal non-divergent et donc une vitesse verticale nulle) et H( · ) désigne le
déterminant de la matrice hessienne. Il existe également une version généralisée de la
relation de Bolin-Charney incluant une faible divergence de la vitesse horizontale.

Le degré d’approximation des relations diagnostiques d’équilibre, l’émission spontanée
d’ondes et – plus généralement – l’interaction ondes/écoulement moyen et ondes/tourbillons
(ou à l’inverse la séparation dynamique), peuvent être reliés à la notion de variété lente
des équations du mouvement (en anglais slow manifold) (e.g. Vanneste, 2013, et références
incluses). Une variété lente correspond à un sous-espace des phases isolé, de sorte qu’une
configuration d’un écoulement initialement contenu dans celui-ci y reste au cours de son
évolution ; en l’occurrence une variété lente implique une configuration équilibrée et l’ab-
sence d’interaction (et donc d’émission) avec les ondes (variété rapide). L’existence d’une
telle variété est conditionnée par l’existence d’une relation d’équilibre exacte telle que la va-
riété serait invariante. Les modèles équilibrés (QG, semi-geostrophique, etc.) correspondent
par construction à une variété lente – leur espace des phases complet–, conformément au
fait que les composantes rapides ont été filtrées au cours de la dérivation. En revanche,
l’existence d’une variété lente dans la dynamique complète des écoulements atmosphériques
et océaniques, si elle fut l’objet de débats durant quelques décennies, est aujourd’hui une
hypothèse exclue (Lorenz, 1992; Ford et al., 2000), y compris dans les équations Shallow
Water. Un argument fort pour son exclusion est le mécanisme de Lighthill (1952) pour la
radiation d’ondes, hérité de l’acoustique (Zeitlin, 1991) et intégré depuis les travaux de
Ford en 1994 dans le domaine de la DFG (e.g. Ford et al., 2000). Depuis, motivés notam-
ment par la nécessité de caractériser les sources d’ondes dans les écoulements géophysiques,
de nombreux travaux montrent d’autres mécanismes à leur origine (e.g. Bühler et McIn-
tyre, 2005; Vanneste, 2013), sans oublier les processus d’instabilité telles que l’instabilité



1.4 Structures cohérentes agéostrophiques – objet de la thèse 19

barocline (O’Sullivan et Dunkerton, 1995; Plougonven et Snyder, 2007; Vanneste, 2013)
– instabilité pourtant de nature équilibrée –, ou des instabilités fondamentalement agéos-
trophiques comme l’instabilité centrifuge, abordée en section 2.2. Ainsi, le questionnement
initial sur l’existence ou non d’une variété lente des équations pour décrire les écoulements
de fluides géophysiques a évolué vers un problème d’estimation du degré de précision des
relations diagnostiques d’équilibre selon les configurations. On constate par exemple que
ces relations sont souvent vérifiées pour des nombres de Rossby plus grands qu’attendu, ou
dans des configurations où la vitesse verticale peut être localement forte (par exemple lors
de la formation de fronts), comme reporté en chapitre 3 sur la dynamique de structures
cohérentes agéostrophiques. Ainsi parle-t-on aujourd’hui de quasi-manifold ou fuzzy mani-
fold, prenant en compte la nature intrinsèquement inexacte de l’équilibre (quel qu’il soit)
d’un écoulement et traduisant l’évolution de ce dernier autour d’un sous-espace (oscillations
associées aux mouvements rapides) avec percolation vers les sous-espaces voisins.

1.4 Structures cohérentes agéostrophiques – objet de la thèse

Après avoir introduit, dans les sections précédentes, les modèles utilisés pour décrire
les écoulements à grande échelle et certains processus dynamiques auxquels nous nous
intéressons, nous présentons ici ce qui fait l’objet de la thèse : les structures cohérentes
agéostrophiques, et plus particulièrement les tourbillons.

1.4.1 Structures cohérentes : définitions, propriétés

Il convient de définir ce que l’on entend par cohérent, ce terme apparaissant dans
de multiple contextes – avec des significations diverses – en physique et en géosciences.
les structures cohérentes en dynamique des fluides géophysiques sont des structures qui
conservent leur forme sur une période longue, généralement parce qu’elles constituent des
solutions (supposées, en l’absence de forme analytique exacte) du système d’équations dans
lequel elles évoluent, quasi-stationnaires dans un repère fixe ou comobile. Leur temps de
vie est long devant l’échelle de temps construite à partir de la vitesse d’écoulement du
fluide U et de leur taille typique L : T = L/U . Ces structures sont généralement localisées
dans l’espace.

Les structures cohérentes dans les écoulements géophysiques se décomposent globa-
lement en deux catégories : les jets et les tourbillons (une troisième catégorie peut être
considérée, incluant les ondes fortement non linéaires et les solitons). Nous nous intéres-
sons, dans cette thèse, à la deuxième catégorie.

Les tourbillons sont caractérisés par une anomalie localisée de vorticité potentielle (mo-
nopôle où multipôle) et des lignes de courant fermées associées à la recirculation du fluide.
Ils sont généralement proches de l’équilibre cyclogéostrophique (1.26), voire de l’équilibre
géostrophique, ce qui implique que la vitesse verticale et la divergence de vent horizontale
sont – sinon nulles – très faibles. Nous nous intéressons cependant aux aspects agéostro-
phiques qui sont présents lorsque le nombre de Rossby devient grand (O(1)). Ceci peut
impliquer un écart à l’état d’équilibre, associé généralement à l’apparition de mouvements
verticaux. Ce n’est cependant pas systématique, et caractériser la partie agéostrophique de
l’écoulement lorsque le nombre de Rossby augmente constitue une problématique en soi.
L’augmentation du nombre de Rossby peut aussi entraîner une instabilité agéostrophique
de la structure (des exemples de ce type d’instabilités sont traités dans le chapitre 2). Ces
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questions sont, en outre, reliées à la séparation dynamique des écoulements discutée précé-
demment (section 1.3), car l’augmentation du nombre de Rossby correspond par définition
à une réduction du rapport entre le temps typique associé aux ondes et celui, inertiel,
associé à la partie lente de l’écoulement (e.g. Vanneste, 2013).

Nous avons dit que les structures cohérentes peuvent correspondre à des solutions quasi-
stationnaires de l’écoulement. Il en découle des relations fonctionnelles entre certaines
quantités dynamiques de l’écoulement, qui permettent notamment de déterminer si une
structure observée peut être une solution du système (Carton, 2001; Baey et Carton, 2002;
Ribstein et al., 2010). Ce type de diagnostic est utilisé dans toute la partie 3, ce pourquoi
nous en donnons la dérivation ici (dans l’approximation du plan f). Les équations du
modèle RSW à n couches, pour une solution stationnaire dans un repère en translation
uniforme à la vitesse ~V (cela peut être également dérivé pour un repère en rotation) se
formulent ainsi :

(ζi + f)~ez × ~̂vi = ~∇Bi, (1.28)
~∇(hi~̂vi) = 0, i = 1, · · · , n (1.29)

où l’on a introduit les vitesses dans le repère comobile ~̂vi(x− Ut, y − V t) = ~vi(x, y, t)− ~V
et la fonction de Bernouilli :

Bi =
pi
ρi

+
|~̂vi|2

2
+ f~x · ~ez × ~V .

L’équation pour la vorticité absolue (obtenue en prenant le rotationnel de l’équation pour
la quantité de mouvement) par couche donne :

(~̂vi · ~∇)(ζi + f) + (ζi + f)~∇ · ~̂vi = (~̂vi · ~∇)(ζi + f)− qi(~̂vi · ~∇)hi = 0,

où la première égalité découle de la conservation de la masse par couche (1.29). Alors, en
utilisant cette dernière relation et l’équation (1.28), on obtient la relation suivante :

J (qi, Bi) = 0, (1.30)

qui traduit le fait que la fonction de Bernouilli (par couche) est une fonctionnelle de la
vorticité potentielle dans les modèles RSW : Bi = F (qi) (Malanotte-Rizzoli, 1982). La
non-divergence de la quantité de mouvement permet également d’introduire une fonction
de courant ψi telle que hi~̂vi = ~∇×ψi ~ez, et l’on peut réécrire l’équation pour la conservation
de l’anomalie de vorticité potentielle, dans le repère comobile :

~̂vi · ~∇qi = 0 =⇒ J (ψi, qi) = 0,

d’où il vient :
qi = G(ψi). (1.31)

Ainsi, il existe des relations fonctionnelles entre la vorticité potentielle, la fonction de cou-
rant et la fonction de Bernouilli (par couche), pour une solution stationnaire en translation
(ou rotation) uniforme. Ces relations sont généralisables au plan β si le repère est en trans-
lation le long de l’axe orthogonal au gradient de vorticité planétaire (la rotation est alors
exclue, un théorème de nullité du moment angulaire des solutions devant être vérifié dans



1.4 Structures cohérentes agéostrophiques – objet de la thèse 21

ce contexte (Flierl et al., 1983)), mais aussi aux modèles continuement stratifiés vu l’analo-
gie formelle entre ces dernières en coordonnées isentropes et les équations Shallow Water.
La dernière relation (1.31) est notamment utilisée pour dériver des solutions exactes dans
le cadre des équations QG (cf. sections 3.1 et 3.7.2), grâce à la forme simple (linéaire) de
la vorticité potentielle dans ces modèles. Une telle dérivation analytique de ces solutions
n’est plus possible dans le modèle RSW (et encore moins dans les équations primitives), où
l’expression de la vorticité potentielle est trop complexe et non linéaire. Par ailleurs, cette
même relation (1.31) implique que les lignes de courant sont également les trajectoires
des parcelles fluides, puisque la vorticité potentielle (conservée au sens lagrangien) y est
constante. Ceci est une conséquence du fait que les lignes de courant et les trajectoires
sont identiques pour un écoulement stationnaire. En procédant par analogie, tout traceur
passif A (i.e. toute quantité conservée au sens de l’invariance lagrangienne dA/dt = 0)
est relié fonctionnellement à la fonction de courant. Pour des tourbillons isolés, ces lignes
sont généralement fermées et forment donc une barrière de transport, le dernier contour
délimitant une zone de recirculation dans laquelle le fluide est isolé de l’extérieur. C’est de
cette propriété que découle l’intérêt pour ces structures – en océanographie notamment –,
dans une problématique de transport.

Un autre critère quantitatif pour la cohérence de structures (vortex) 2D est le critère
d’Okubo-Weiss, qui compare le taux d’étirement à la vorticité. Il est donné par

Qow = σ2 − ζ2 (1.32)

où σ =
√
σ2
n + σ2

s est le taux d’étirement dont les deux composantes sont σn = ∂xu− ∂yv
et σs = ∂xv+∂yu, respectivement la déformation normale et le cisaillement. Cette quantité
correspond en fait aux valeurs propres (λ) du tenseur des gradients de vitesse :

τ =

(
∂xu ∂yu
∂xv ∂yv

)
⇒ λ± = −~∇~v ±

√
σ2 − ζ2, (1.33)

dans lesquelles la divergence est nulle pour un écoulement 2D incompressible. Elle est
utilisée notamment pour localiser les zones de filamentation de la vorticité (Qow > 0),
zones où la dissipation d’enstrophie est active dans les écoulements quasi-bidimensionnels
(e.g. Louazel et Hua, 2004), ou à l’inverse pour détecter les tourbillons cohérents (Qow < 0),
comme dans nos simulations d’écoulements turbulents rapportées dans le chapitre 4 (section
4.2.4). Une généralisation aux écoulements stratifiés est obtenue en considérant l’équation
d’évolution du gradient de vorticité potentielle :

d~∇q
dt

= −τ t~∇q, (1.34)

et en supposant une variation lente du tenseur des gradients de vitesse le long d’une trajec-
toire lagrangienne (i.e. une évolution quasi-adiabatique de la vorticité potentielle), auquel
cas les valeurs propres données dans l’équation (1.33) pilotent l’évolution de ~∇q. Notons
que, même pour des écoulements divergents, la simplicité de la quantité d’Okubo-Weiss
(1.32) fait qu’elle est souvent utilisée. De nombreux critères améliorés (plus complexes) ont
été développés dans ce contexte de turbulence pour étudier la filamentation et la dynamique
de traceurs (e.g. Lapeyre et al., 1999; Haller, 2001).

Enfin, dans ce même contexte de turbulence, il faut noter que la formation et l’exis-
tence de tourbillons cohérents dans les écoulements à grande échelle est en lien direct avec
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la nature quasi-bidimensionnelle de ces derniers, par extrapolation de la théorie de la tur-
bulence bidimensionnelle incompressible (cf. section 4.1.1). Celle-ci prédit le transfert de
l’énergie vers les grandes échelles, et l’on observe la formation de structures cohérentes qui
dominent l’écoulement. De nombreux travaux adoptant une approche statistique prédisent
l’existence de ces tourbillons à grande échelle (l’exemple le plus connu étant la tache rouge
de Jupiter) comme étant des états d’équilibre statistique du système (e.g. la revue de Bou-
chet et Venaille (2012), et l’article de Warn (1986) dans le modèle Shallow Water). Ces
indications permettent d’inférer l’existence et la stabilité des tourbillons cohérents dans les
écoulements géophysiques, ce qui s’inscrit pleinement dans le cadre de cette thèse, où l’on
s’intéressera aux aspects agéostrophiques de ces structures.

1.4.2 Contenu et organisation du manuscrit

Le travail présenté dans cette thèse concerne donc les structures cohérentes agéostro-
phiques, en s’intéressant à plusieurs aspects. Il utilise les modèles Rotating Shallow Water
à une et deux couches. L’approche adoptée ici relève de la dynamique des fluides géo-
physiques : dans un cadre déterminé par les propriétés des fluides auxquels nous nous
intéressons, on se propose d’étudier les processus sous-jacents afin de mieux comprendre la
dynamique. Précisément, les aspects dynamiques fondamentaux abordés dans le contexte
des structures cohérentes sont les suivants :

— couplage/découplage dynamique entre ondes et tourbillons à grand nombre de Rossby ;
— extension des solutions QG aux modèles RSW : effets agéostrophiques ;
— stabilité (attractivité) de ces solutions ;
— instabilité de structures cohérentes : saturation, reformation de nouvelles structures ;
— interactions entre structures cohérentes agéostrophiques :

— interactions simples (collisions à deux membres) ;
— evolution collective d’un grand nombre de structures (turbulence).

Ces thématiques, loin d’être exclusives entre elles, se recoupent et sont liées dans bon
nombre de situations.

Dans un premier temps, l’instabilité de tourbillons est étudiée (chapitre 2). Après avoir
rappelé les différents processus d’instabilité connus pour les tourbillons à petit et grand
nombre de Rossby (section 2.1), nous présentons des résultats récents sur l’instabilité de
tourbillons anticycloniques intenses (dans un modèle RSW à 2 couches) en section 2.2.
Une analyse de stabilité linéaire est réalisée et la saturation non linéaire des instabilités
présentes est simulée numériquement. La compétition entre les instabilités centrifuge et
barotrope dans ce modèle est étudiée, et l’impact de la stratification et du cisaillement
vertical est abordé. Les issues de la saturation non linéaire de ces deux types d’instabilité
sont très différentes, notamment en ce qui concerne l’émission d’ondes d’inertie-gravité,
mais également dans la redistribution de la vorticité potentielle. Dans certains cas, le
système évolue en formant des structures qui n’émettent pas d’ondes (étudiées dans le
chapitre 3), alors qu’une émission continue d’ondes est observée dans d’autres cas.

Ensuite, l’instabilité de cyclones tropicaux est abordée dans un modèle à une couche
(section 2.4). La méthodologie est la même (analyse de stabilité linéaire et saturation non
linéaire), et une instabilité de type radiative couplant ondes de Rossby vivant sur le gradient
de vorticité potentielle du vortex et ondes d’inertie-gravité est retrouvée. Les résultats de
simulations numériques directes sont analysés et discutés, en vue de l’inclusion des effets
dynamiques de la convection humide sur l’instabilité du cyclone.
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Dans un second temps (chapitre 3), nous nous intéressons à des structures multipolaires
observées dans les modèles RSW à une et deux couches. Ces résultats sont, en partie, une
généralisation de résultats précédents obtenus sur l’existence de dipôles en RSW une couche
(Kizner et al., 2008; Ribstein et al., 2010) et d’autres dans le cadre des équations QG à
deux couches (e.g. Larichev et Reznik, 1976; Flierl et al., 1980), en incluant de nouvelles
structures (tripôle et modon non linéaire), agéostrophiques et baroclines. Au delà de cette
généralisation, nous nous concentrons sur les effets agéostrophiques, notamment l’asymétrie
cyclone/anticyclone et l’existence de chocs se formant à l’intérieur de ces structures. Nous
montrons que ces structures, en dépit d’un fort degré d’agéostrophisme, se comportent
comme des solutions stables et attractives du système, et des expériences d’interactions
simples entre des dipôles révèlent une forte prédictabilité de l’évolution de l’écoulement.

Finalement, dans le chapitre 4, des simulations numériques d’écoulements turbulents
dans le modèle à une couche sont présentées. Plusieurs types de conditions initiales sont
utilisés : d’un côté, le système est initialisé avec un champ aléatoire d’ondes d’inertie-gravité
(uniquement) et l’évolution turbulente de cet ensemble d’ondes est étudié. De l’autre,
l’ensemble de tourbillons en présence d’ondes est examiné, en utilisant une initialisation
correspondant à une distribution gaussienne de la vorticité, ou avec un ensemble de struc-
tures cohérentes. Toutes deux mènent à la (re)formation de structures cohérentes dont on
étudie les propriétés. La sensibilité aux conditions initiales est ainsi mise en évidence et
l’interaction entre les parties lente et rapide de l’écoulement est discutée.



24 Chapitre 1 : Introduction



CHAPITRE 2

Instabilités de tourbillons intenses

2.1 Instabilités de tourbillons : généralités, théorie

Deux instabilités affectant les tourbillons fortement agéostrophiques sont abordés dans
ce chapitre : l’instabilité centrifuge d’anticyclones intenses, parfois en compétition avec l’in-
stabilité barotrope, et une instabilité mixte barotrope-radiative dans le cas de tourbillons
cycloniques. Une introduction sur les instabilités classiques (quasi-géostrophiques) à pe-
tits nombres d’onde azimutaux affectant les tourbillons est d’abord donnée, puis chaque
instabilité agéostrophique étudiée dans le chapitre est introduite et traitée.

2.1.1 Généralités, instabilités quasi-géostrophiques

Les propriétés de stabilité des tourbillons synoptiques sont étudiées depuis des décen-
nies. Le but initial de ces études était de comprendre la distribution observée des tour-
billons, notamment la disparité entre tourbillons cycloniques et tourbillons anticycloniques
(e.g. Chelton et al., 2011), ainsi que leur structure, correspondant nécessairement à des
configurations stables (à l’inverse, les profils de tourbillons instables ne peuvent pas être
observés, par construction). L’enjeu sous-jacent est également d’avoir une estimation théo-
rique de la durée de vie de ces tourbillons, qui peut être de plusieurs mois dans les océans.

Les tourbillons à faible nombre de Rossby ont été abondamment étudiés, que ce soit ex-
périmentalement (e.g. Griffiths et Linden, 1981; Kloosterziel et van Heijst, 1991), dans les
modèles quasi-géostrophiques (e.g. Ikeda, 1981; Gent et McWilliams, 1986; Paldor, 1999)
ou dans des modèles Shallow Water, en général à nombre de Rossby modéré (Dewar et
Killworth, 1995; Katsman et al., 2003; Thivolle-Cazat et al., 2005). Dans les équations QG,
on peut dériver un critère nécessaire à l’instabilité : pour un tourbillon initialement axisy-
métrique, le gradient radial de la vorticité potentielle doit changer de signe (e.g. Pedlosky,
1987). Dans le cas barotrope, ce critère est l’extension quasi-géostrophique du critère du
point d’inflexion de Rayleigh pour un écoulement plan-parallèle. Une signification phy-
sique de ce critère est que ces instabilités peuvent être interprétées comme des résonances
(e.g. Sakai, 1989) entre des ondes de Rossby se propageant sur les gradients de vorticité

25



26 Chapitre 2 : Instabilités de tourbillons intenses

Figure 2.1 – Destabilisation d’un cyclone et génération d’un tripôle de vorticité dans une
expérience en cuve tournante, visualisée à l’aide d’un colorant. (Source : Kloosterziel et
van Heijst, 1991)

potentielle. Le changement de signe de ce gradient dans l’écoulement permet l’existence
d’ondes se propageant dans des directions opposées, et la différence entre les vitesses de
propagation peut s’annuler par effet Doppler. Sous certaines conditions (e.g. Sakai, 1989),
ce blocage des phases est associé à leur amplification mutuelle et l’instabilité se développe.
Dans un écoulement purement barotrope, le changement de signe se fait nécessairement
dans le plan (r, θ) et l’instabilité en jeu est l’instabilité barotrope. Dans un modèle conti-
nuement stratifié ou un modèle à couches, ce changement de signe peut se faire dans le
plan horizontal (et uniformément sur la verticale, auquel cas l’instabilité est à nouveau
barotrope), mais aussi sur la verticale, ce qui conduit à l’instabilité barocline.

Ce mécanisme est applicable aux tourbillons isolés auxquels on s’intéresse, entre autres.
Un tourbillon est dit isolé lorsque la circulation qui lui est associée s’annule à un rayon
fini. C’est une condition nécessaire pour que l’énergie soit bornée. Par application du
théorème de Stokes, le profil de vorticité relative présente un anneau de signe opposé
autour du coeur du tourbillon. Ceci implique un changement de signe du gradient radial
de vorticité de part et d’autre de cet anneau. Le profil de vorticité potentielle présente les
mêmes caractéristiques, même si le rayon auquel le gradient s’annule n’est pas le même
que pour la vorticité relative. Ceci se justifie par le fait que le tourbillon est à l’équilibre
géostrophique, ou proche de cet équilibre (car la force centrifuge est négligeable), lorsque
le nombre de Rossby est petit. Ainsi, les vortex isolés sont potentiellement sujets à ces
instabilités équilibrées.
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La saturation non linéaire de ces instabilités mène généralement à la destruction du
tourbillon initial et à la formation de multipôles plus ou moins stables (e.g. Kloosterziel
et van Heijst, 1991; Carton et McWilliams, 1989; Baey et Carton, 2002; Thivolle-Cazat
et al., 2005), en générant de façon transitoire des filaments de vorticité qui sont étirés
puis dissipés. Les multipôles sont des structures constituées d’un coeur de vorticité de
même signe que le coeur du tourbillon initial et entouré de satellites de vorticité de signe
opposé. Le nombre de satellites correspond au nombre d’onde angulaire du mode le plus
instable. Le seul multipôle réellement stable observé est le tripôle de vorticité, montré en
figure 2.1, qui se forme lorsque la perturbation initiale du vortex a un nombre d’onde
angulaire l = 2 (Carton et McWilliams, 1989; Carton et al., 1989; Carton et Legras, 1994).
Des quadrupôles stables ont également été observés dans des simulations numériques des
équations d’Euler 2D incompressibles (Morel et Carton, 1994), mais les expériences en
laboratoire – entre autres – montrent que cette structure est moins stable que le tripôle.
Pour une perturbation de nombre d’onde l = 2, lorsque le taux de croissance de l’instabilité
est plus grand que dans le cas donnant lieu à la formation du tripôle, le coeur du tourbillon
se divise en deux et l’on observe la génération de deux dipôles de vorticité se propageant
dans des directions opposées. Dans tous ces cas (formation d’un tripôle ou de dipôles – ou
d’un quadrupôle stable), l’écoulement final est constitué de structures quasi-stationnaires
dans leur repère comobile, en translation ou en rotation. Cependant, la saturation non
linéaire de l’instabilité – surtout pour des perturbations avec l ≥ 3 – peut aussi évoluer
vers une configuration plus désordonnée. Ceci arrive notamment suite à la destabilisation
de multipôles à plus de deux satellites, qui peut se faire via la fusion de satellites voisins.
L’état saturé consiste alors en un ensemble de dipôles et de monopôles plus ou moins
séparés les uns des autres, ou à un tripôle. Dans ces conditions, la dissipation de vorticité
par filamentation au cours de la saturation non linéaire est plus importante et s’étend
sur une durée plus longue, ce qui est associé à une dissipation forte de l’enstrophie et de
l’énergie cinétique de l’écoulement.

2.1.2 Effets agéostrophiques sur les instabilités de tourbillons

Les instabilités de tourbillons ont déjà été étudiées dans des modèles Shallow Wa-
ter, pour des nombres de Rossby modérés (“faiblement agéostrophique”) (e.g. Stegner et
Dritschel, 2000; Baey et Carton, 2002), notamment pour caractériser la différence entre
les instabilités de cyclones et d’anticyclones. Des conditions de stabilité valables pour des
vortex circulaires en RSW multicouche ont été dérivées par Ripa (1989, 1991). Pour un
écoulement donné par la vitesse angulaire V (r), la vorticité potentielle Q(r) et l’épaisseur
de couche H(r), dans un modèle RSW à une couche avec la surface libre, ces conditions
impliquent qu’il existe une constante σ non nulle telle que :

V − σr
dQ/dr

< 0, (2.1)

(V − σr)2

gH
< 1. (2.2)

Dans le cas multicouche, la condition (2.1) doit être vérifiée par couche. Elle est un équi-
valent du critère du point d’inflexion de Rayleigh. La seconde condition (2.2) impose à
l’écoulement d’être sous-critique (la vitesse doit être inférieure à celle des ondes d’inertie-
gravité) (Ripa, 1989, 1992). Ces conditions sont des critères suffisants pour la stabilité de
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l’écoulement, et leur non respect est une condition nécessaire pour l’instabilité. En revanche,
ils n’apportent pas d’information sur le développement de l’instabilité de l’écoulement.

Pour des nombres de Rossby plus importants (correspondant généralement à des struc-
tures de plus petite taille, à la méso ou sous-mésoéchelle – ou, dans l’atmosphère, aux
cyclones tropicaux), de nouveaux types d’instabilités, agéostrophiques, apparaissent. Par
ailleurs, les propriétés des instabilités QG peuvent être modifiées. Ces deux aspects agéos-
trophiques des instabilités de tourbillons, dans les écoulements géophysiques, restent rela-
tivement peu étudiés. Par exemple, l’instabilité centrifuge est bien connue dans les écoule-
ments 3D non stratifiés et sans rotation, mais son implication dans les écoulements océa-
niques à méso et sous-mésoéchelle n’est considérée que depuis peu. Précisément, ce chapitre
présente des résultats sur les instabilités de deux types de vortex agéostrophiques, à savoir
l’anticyclone isolé et l’anneau de vorticité cyclonique, dans les modèles RSW.

2.2 Instabilités d’anticyclones fortement agéostrophiques

Cette section contient une description de l’instabilité centrifuge, dans le contexte d’écou-
lements géophysiques, et introduit l’étude présentée dans la section suivante sur les insta-
bilités centrifuge et barotrope de tourbillons anticycloniques intenses.

2.2.1 Instabilité centrifuge dans le fluide stratifié en rotation : état de
l’art

L’instabilité centrifuge résulte de l’équilibre instable entre le gradient radial de pres-
sion et la force centrifuge. C’est une instabilité tridimensionnelle, qui fut théorisée par
Lord Rayleigh (1917) : il dériva, dans le cadre d’un fluide inviscide non stratifié confiné
entre deux cyclindres coaxiaux en rotation, un critère nécesaire et suffisant pour cette in-
stabilité. Ce critère correspond à une configuration de l’écoulement dans laquelle l’échange
de deux anneaux de fluide de rayons voisins conduit à un gain d’énergie pour le système.
Il est donné par (e.g. Drazin et Reid, 1981) :

Φ(r) < 0 , Φ =
1

r3

d

dr

(
L2
)
,

où Φ est le discrimant de Rayleigh et L le moment angulaire. Le développement de l’in-
stabilité centrifuge présente des anneaux de recirculation dans la zone où Φ est négatif,
qui permettent la redistribution du moment angulaire pour saturer vers un état d’équilibre
marginal (e.g. Kloosterziel et al., 2007).

Un critère d’instabilité étendu aux écoulements de fluide en rotation a été dérivé par
Kloosterziel et van Heijst (1991) et s’énonce comme suit :

Φ(r) < 0 , Φ = (2V/r + f)(ωz + f) =
La ·ωa
r2

, (2.3)

où La est le moment angulaire absolu et ωa la vorticité absolue (selon l’axe vertical). No-
tons que le déclenchement de l’instabilité, dans le système en rotation, est favorisé dans les
tourbillons anticycloniques : le critère d’instabilité est vérifié pour des nombres de Rossby
plus petits dans ces derniers que dans les cyclones, à profil de vorticité potentielle ou de
vitesse équivalent (modulo le changement de signe). Ceci ne veut pas dire que les cyclones
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ne subissent pas l’instabilité centrifuge (à la différence des écoulements plan-parallèles pour
lesquels le cisaillement cyclonique ne déclenche jamais l’instabilité inertielle), mais il faut
que leur nombre de Rossby soit très élevé, atteignant des valeurs peu plausibles dans les
écoulements océaniques (e.g. Orlandi et Carnevale, 1999). Pour un fluide stratifié, un critère
existe et correspond à (2.3) où la vorticité absolue est remplacée par la vorticité poten-
tielle (cf. Kloosterziel et al., 2007, et références incluses). La stratification, dans la limite
inviscide, ne modifie que très peu le seuil de déclenchement de l’instabilité centrifuge, no-
tamment parce que celle-ci subit une ”catastrophe ultraviolette” : le taux de croissance tend
asymptotiquement vers une valeur maximale dans la limite de nombres d’onde verticaux
infinis. Ces petites échelles verticales sont faiblement affectées (et, au contraire, favorisées)
par la barrière d’énergie potentielle que représente la stratification.

A l’instar de l’instabilité symétrique (ou inertielle), qui est l’analogue de l’instabi-
lité centrifuge pour les jets plan-parallèles dans le domaine en rotation, les mouvements
verticaux associés à la saturation de cette instabilité sont agéostrophiques et engendrent
l’émission d’ondes internes (Kloosterziel et al., 2007; Plougonven et Zeitlin, 2009). Les
mouvements de recirculation à petite échelle et la génération d’ondes entraînent également
la dissipation d’énergie cinétique.

Les critères dérivés ci-dessus sont valables pour un écoulement axisymétrique, et bon
nombre d’études sur le sujet imposent cette condition d’invariance par rotation. Un critère
généralisé pour les perturbations non-axisymétriques a été dérivé par Billant et Gallaire
(2005) en utilisant un développement WKBJ pour de grands nombres d’onde verticaux, et
montre que le taux de croissance associé aux perturbations non-axisymétriques est toujours
plus petit que celui des perturbations symétriques. La même conclusion pour un fluide
stratifié et en rotation a été obtenue par Lazar et al. (2013b). Cependant, des résultats
d’analyse de stabilité linéaire (Smyth et McWilliams, 1998) et d’expériences (Billant et al.,
2004) montrent que les modes non-axisymétriques de l’instabilité centrifuge (notamment
le mode l = 1, où l est le nombre d’onde angulaire) peuvent être prédominants dans
certains cas. Ceci est causé par l’action conjuguée de la stratification et de la viscosité.
Cette dernière sélectionne les modes de nombre d’onde vertical fini en amortissant les très
petites longueurs d’onde. Le taux de croissance de ces modes verticaux est réduit par la
stratification, davantage pour le mode angulaire axisymétrique que pour les modes non-
axisymétriques (Billant et Gallaire, 2005; Lazar et al., 2013b).

Dans le contexte du jet rectiligne, des études sur l’instabilité inertielle montrent que le
mode symétrique n’est pas toujours le plus instable (Stevens et Ciesielski, 1986; Bouchut
et al., 2011; Ribstein et al., 2014). Certaines expériences en laboratoire (Kloosterziel et
van Heijst, 1991), confirmées par des simulations numériques (Orlandi et Carnevale, 1999)
reportent une destabilisation d’anticyclones par instabilité barotrope après saturation de
l’instabilité centrifuge, ce qui met en avant la coexistence possible entre ces instabilités, et
le caractère trop restrictif de l’hypothèse d’axisymétrie. La complexité du développement
de ces instabilités, notamment les petites échelles sollicitées, rendent leur integration numé-
rique difficile et coûteuse. Enfin, les effets de la stratification non triviale et du cisaillement
vertical sur ces instabilités n’ont jamais été étudiés.

2.2.2 Introduction à l’article

Dans la section suivante, nous présentons nos résultats obtenus sur les instabilités
centrifuge et barotrope d’anticyclones intenses et isolés, en particulier sur les aspects que
nous venons d’énoncer, en utilisant un modèle Rotating Shallow Water à deux couches.
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Malgré les simplifications contenues dans ce modèle, il capture l’instabilité centrifuge et
constitue donc un outil efficace pour étudier les processus fondamentaux en jeu, notamment
avec des codes à haute résolution et un coût numérique raisonnable.

Dans un premier temps, une analyse de stabilité linéaire est réalisée et les modes in-
stables sont identifiés. L’impact sur ces modes des différents paramètres de l’écoulement
(intensité, taille du vortex, rapport des densités et cisaillement vertical) est étudié et les
différents régimes d’instabilité sont délimités. Dans un second temps, la saturation non-
linéaire de l’instabilité centrifuge (axisymétrique et non-axisymétrique) est étudiée à l’aide
de simulations numériques, et les mécanismes impliqués sont discutés en détail. Enfin, les
saturations non linéaires de l’instabilité centrifuge et de l’instabilité barotrope sont com-
parées, dans un régime où leur taux de croissance linéaire est comparable. Ces résultats
ont été soumis pour publication dans la revue Journal of Fluid Mechanics, et le contenu
de l’article est inclus ci-après, en anglais.
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2.3 Article : Centrifugal, barotropic and baroclinic instabili-
ties of isolated ageostrophic anticyclones in the two-layer
rotating shallow water model and their nonlinear satura-
tion

Abstract Instabilities of isolated anticyclonic vortices in the 2-layer rotating shallow wa-
ter model are studied at Rossby numbers up to 2, with the main goal to understand the
interplay between the classical centrifugal instability and other ageostrophic instabilities.
We find that different types of instabilities with low azimuthal wavenumbers exist, and may
compete. In a wide range of parameters an asymmetric version of the standard centrifugal
instability has larger growth rate than the latter. The dependence of the instabilities on
the parameters of the flow : Rossby and Burger numbers, vertical shear, and the ratios of
the layers’ thicknesses and densities is investigated. The zones of dominance of each insta-
bility are determined in the parameter space. Nonlinear saturation of these instabilities is
then studied with the help of a high-resolution finite-volume numerical scheme, by using
the unstable modes identified from the linear stability analysis as initial conditions. Diffe-
rences in nonlinear development of the competing centrifugal and ageostrophic barotropic
instabilities are evidenced. A nonlinear mechanism of axial symmetry breaking during the
saturation of the centrifugal instability is displayed.

2.3.1 Introduction

Mesoscale and submesoscale eddies (i.e. eddies with typical scales of the order of the
Rossby deformation radius and below) are ubiquitous in the ocean (e.g. McWilliams, 1985;
Munk et al., 2000), and much effort is dedicated to the analysis of such structures, especially
in what concerns their stability. Basically, two different types of vortex configurations have
been considered since the early 1980’s, namely columnar barotropic or vertically confined
ones (the latter modeling surface-intensified eddies and subsurface lenses). Vortices of both
types can be studied by means of laboratory experiments or numerical simulations and al-
low for analytical treatment under some simplifying assumptions. Mesoscale vortices at low
Rossby numbers can be unstable with respect to the geostrophically balanced perturba-
tions giving rise to classical barotropic and baroclinic instabilities, as proved by means of
numerical linear stability analysis – often in two-layer models (Dewar et Killworth, 1995;
Baey et Carton, 2002; Katsman et al., 2003; Benilov, 2003, 2004) – or by analytical stability
arguments for specific radial profiles of the vorticity (Ripa, 1992; Ford, 1994). Non-linear
saturation of such instabilities is well documented in the framework of quasi-geostrophic
(Gent et McWilliams, 1986; Ikeda, 1981) or full two-layer rotating shallow water (RSW)
models (Baey et Carton, 2002; Thivolle-Cazat et al., 2005). It has been found that desta-
bilization of barotropic isolated eddies concerns primarily the smaller ones (i.e. with high
Burger numbers), while baroclinic instability switches on at low Burger numbers (and for
baroclinic vortices). Both generally lead either to the formation of vortex tripoles, or to
the vortex breakdown into dipoles.

Besides the geostrophic instabilities, the vortices can experience ageostrophic instabi-
lities when their azimuthal velocity is sufficiently large. These instabilities are much less
documented, except for the widely known centrifugal instability of columnar vortices. The
first analysis of the centrifugal instability is due to Lord Rayleigh (1917), who found that
the angular momentum in a revolving homogeneous fluid must decrease with the radius so-
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mewhere in the flow in order for instability to exist. Vortices in the ocean or the atmosphere
are subject to stratification and background rotation, which modify this condition (Billant
et Gallaire, 2005; Kloosterziel et van Heijst, 1991; Park et Billant, 2013). The influence
of stratification on the linear stability of vortices on the f -plane (i.e. at constant Coriolis
parameter) was investigated by Gent et McWilliams (1986); Smyth et McWilliams (1998);
Potylitsin et Peltier (1998); Lazar et al. (2013b), with a general result that the growth
rate of the centrifugal instability is reduced when the stratification strengthens, but still
remains higher than that of the barotropic or baroclinic instabilities. The studies of the
impact of developing centrifugal instability upon intense vortices are relatively rare (Smyth
et McWilliams, 1998; Orlandi et Carnevale, 1999; Kloosterziel et al., 2007; Lazar et al.,
2013a). A detailed numerical investigation of the nonlinear saturation of this instability in
geophysical context was reported only in Kloosterziel et al. (2007), as to our knowledge,
in the case of a continuously stratified, barotropic and strictly axisymmetric vortex on
the f -plane. The reasons for such sparseness in the literature, besides the fact that the
importance of the centrifugal instability for geophysical flows was fully realized relatively
recently, reside in the numerical cost of the simulations due to the complexity of the flow
resulting from the developing instability. It is well known that the centrifugal instability
(as well as the inertial one, which is its analog for the plane-parallel flows) exhibits the
ultraviolet catastrophe (Smyth et Peltier, 1994; Smyth et McWilliams, 1998), hence the
necessity to resolve very fine scales.

Yet, the centrifugal instability does not need a fully three-dimensional flow to be rea-
lized, and manifests itself already in the two-layer rotating shallow-water model, like the
inertial one (e.g. Zeitlin, 2008). Multi-layer rotating shallow-water models (RSW) are stan-
dard conceptual models in geophysical fluid dynamics (Pedlosky, 1987; Vallis, 2006). The
technical advantages of these models (which retain, nevertheless, all pertinent features of
the full "primitive" equations) are that vertical structure is very coarse and easily control-
led, which makes the linear stability analysis relatively simple 1 , and that the model admits
powerful high-resolution finite-volume numerical schemes (Bouchut et Zeitlin, 2010) allo-
wing for numerical simulations of nonlinear saturation of the instabilities for long evolution
times and at a low computational cost (Bouchut et al., 2011). Because of these advantages,
and following previous studies (Dewar et Killworth, 1995; Baey et Carton, 2002; Katsman
et al., 2003), we undertake below a detailed analysis of the ageostrophic instabilities of
localized vortices and of their nonlinear saturation in the 2-layer RSW model.

It should be emphasized that the two-layer model is a mean-field model obtained from
continuously stratified primitive equations by vertical averaging between pairs of material
lines - cf. e.g. Zeitlin (2007). In this sense it may be considered as a consistent truncation of
the full equations by two lowest vertical eigenmodes : the barotropic and the first baroclinic
ones. The model will be used below as the simplest conceptual model where barotropic,
baroclinic and centrifugal instabilities of vortices are realized. The recent work on inertial
instability, which is a close relative of the centrifugal one, respectively in the 2-layer RSW
(Bouchut et al., 2011), and in continuously stratified primitive equations (Ribstein et al.,
2014), showed the pertinence of the 2-layer results both in what concerns linear stability
analysis and nonlinear saturation. Needless to repeat that the two-layer modeling of the
baroclinic instability is routine in geophysical fluid dynamics.

1. The variations of stratification are difficult to include in the linear stability analysis of vortices in
continuously stratified fluid, where the strong assumptions of constant stratification and barotropicity are
needed to make the mathematical problem separable. We are not aware of such results.
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Our main goal is to understand the interplay between the centrifugal instability and
other ageostrophic instabilities, as well as their possible competition in different parameter
regimes of the flow. Our main motivations are as follows. On the one hand, it is known
that non-axisymmetric instabilities co-exist with the axisymmetric centrifugal instability,
but it is not known for sure whether the symmetric mode is always the most unstable,
as suggested by asymptotic calculations (Billant et Gallaire, 2005), or non-axisymmetric
perturbations can be dominant for some configurations of the flow (Smyth et McWilliams,
1998), as it was shown to be the case for the inertial instability (Bouchut et al., 2011;
Ribstein et al., 2014). On the other hand, at small Rossby numbers the isolated vortices
are subject to the standard barotropic and baroclinic instabilities (Dewar et Killworth,
1995; Baey et Carton, 2002; Katsman et al., 2003; Benilov, 2003, 2004), while the unstable
centrifugal modes disappear. So it seems plausible that by increasing the Rossby number
the threshold of the centrifugal instability would be reached and the instabilities of different
nature would start to compete. Such scenario has been already shown to realize for the
inertial instability in Bouchut et al. (2011). Besides, the impact of the vertical structure
(velocity shear, non-trivial density stratification) upon the ageostrophic instabilities in
general, and the centrifugal instability in particular, remains under-investigated. As already
said, the 2-layer model is a conceptual model of the instabilities in question allowing their
intercomparison in the simplest possible framework, as well as studying their impact on
the evolution of the flow at large scales.

The paper is organized as follows : in section 2.3.2 we describe the model, introduce
the relevant parameters, present the class of vortex solutions we are working with, and for-
mulate the linear stability problem and its discretized version. In section 2.3.3 we give the
results of the linear stability analysis and discuss them. We selected certain unstable modes
obtained from the linear stability analysis, which we considered of special interest, and per-
formed numerical simulations of their nonlinear evolution, which are presented in section
2.3.4. We display the evolution of essentially ageostrophic and vertically sheared centri-
fugal unstable modes (section 2.3.4), and compare it to the saturation of the barotropic
instability (section 2.3.4) for a basic flow which is unstable with respect to both instabili-
ties. Discussion and conclusions are presented in section 2.3.5. Appendix 2.3.5 contains the
details of the application of the pseudospectral collocation method in cylindrical geometry,
which we use for solving the linear stability problem.

2.3.2 The two-layer RSWmodel, the background flow and the linearized
problem

We work with the two-layer rotating shallow water model, which describes the evolution
of two layers of fluid of uniform but different densities, under the influence of gravity and
background rotation (Coriolis force). The latter is assumed to be uniform (the f -plane
approximation), and we use the free-surface upper boundary condition and the flat bottom.
The equations of the model in cylindrical coordinates, well-adapted to the study of initially
axisymmetric vortices, read :

d~vi
dt

+
(
f +

vi
r

)
~ez × ~vi = −g~∇(di−1h1 + h2), (2.4)

∂hi
∂t

+ ~∇(hi~vi) = 0, i = 1, 2, (2.5)
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where ~vi = (ui, vi) is the velocity in layer i (counted from the top), hi is the thickness of
the layer i, g and f are, respectively, the gravity and the Coriolis parameter, and d is the
density ratio, d = ρ1/ρ2 < 1. The Lagrangian derivative is denoted by d···

dt = ∂···
∂t +~v · ~∇ · · · .

We also introduce the thickness ratio δ = H1/H2 (where Hi denotes the thickness of the
ith layer at rest), to be used later on.

A useful for diagnostics quantity is potential vorticity (PV) in each layer

Qi =
f + ~ez ·

(
~∇× ~vi

)
hi

, (2.6)

which is a Lagrangian invariant.
From now on we scale the time by f−1, the space coordinates by the barotropic defor-

mation radius Rd =
√
gH0/f , where H0 = H1 +H2 is the total depth of the fluid, and the

velocity by the barotropic gravity-wave velocity
√
gH0. The non-dimensional departures of

thickness from the basic state ηi are introduced, such that hi = H0(Hi + ηi), where Hi is
the non-dimensional layer thickness corresponding to the background flow. Note that such
scaling assumes that Rossby, Burger and Froude numbers are of the order 1, otherwise
one should introduce typical lengthscale, velocity and thickness deviation, which will make
explicitely appear the Rossby and the Burger number and the magnitude of the thickness
deviation in the non-dimensional versions of equations (2.4) - (2.5).

Let us comment on the viscous dissipation which may be be introduced in the momen-
tum equations (2.4). It would be controlled by the Ekman number (e.g. Pedlosky, 1987)
Ek = Ro/Re = ν/(fL2). For large-scale flows we aim, the Reynolds numbers are huge, and
even in the regimes with Ro = O(1) studied below, these terms are negligeable. Bottom
friction is of often use in oceanographic modeling, either linear or quadratic in velocity. The
phenomenological values of the corresponding coefficients are very small (corresponding to
a vortex decay time of the order of months) and, again, are negligeable for our purposes,
although such terms may be easily introduced in the equations of motion, as well as surface
(wind) forcing.

We linearize the equations (2.4), (2.5) about a stationary axisymmetric state, which
is an exact solution, provided it is in cyclogeostrophic balance (i.e. a balance between
centrifugal, Coriolis and pressure forces). This implies that the radial velocities in both
layers are zero and the non-dimensional azimuthal velocities and thicknesses satisfy the
relation

Vi

(
1 +

Vi
r

)
= −∂r(di−1H1 +H2) , i = 1, 2. (2.7)

In this study we consider a class of isolated vortices (i.e. vortices with the circulation
vanishing fast enough away from the center) with non-dimensional velocity profiles given
by :

Vi = ± Ro√
Bu

κi−1r?
α/2e−

rα?
2

+ 1
2 , i = 1, 2, (2.8)

where the positive sign corresponds to cyclones and the negative one to anticyclones. We
call such vortices "α-Gaussian". In (2.8) κ is the ratio of velocities in the deep and surface
layers and α is the parameter controlling the horizontal shear. Ro is the upper-layer Rossby
number (the maximal absolute velocity in the layer over fL). We call barotropic a vortex
with no velocity shear between the layers, i.e. a vortex with κ = 1. We also introduced r? =
r
√
Bu, where Bu = gH0/(f

2L2) is the barotropic Burger number based on the barotropic
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Figure 2.2 – Vortex profiles (2.8) with α = 3, δ = 1, d = 0.9 and Ro = 1.4. Left and right
panels : layer thicknesses (black continuous) with indicated values at rest (black dashed).
Absolute value of the velocity is superimposed in grey. Middle panel : PV anomaly in both
layers (black) and absolute angular momentum divided by r2 (grey). Vertical black and
grey lines indicate, respectively, the position of maximum velocity and the zone of negative
Rayleigh discriminant. Upper layer : continuous ; Lower layer : dashed (except for the
thicknesses).

deformation radius and the location of the velocity peak L. The baroclinic Burger number,
which is defined as Bu′ = R′2d /L

2 = g′Heq/f
2L2, depends on the density and aspect ratios

through the reduced gravity g′ = g∆ρ/ρ = g · 2(1 − d)/(1 + d) and the equivalent depth
Heq = H1H2/H0 = δH0/(1 + δ)2. The profiles of the thicknesses corresponding to (2.8)
are recovered from (2.7). The velocity profile (2.8) (with a single value of κ) was used in
a preceding study (Kloosterziel et al., 2007) of the centrifugal instability of a barotropic
vortex with constant stratification. This profile is slightly different from the one often
used in the literature (Baey et Carton, 2002; Orlandi et Carnevale, 1999), unless α = 2 2

Examples of vortex profiles with the parameters to be used below are presented in Figure
2.2.

The non-dimensional linearized equations for the perturbation (ui, vi, ηi) read :

(
∂t +

Vi
r
∂θ

)
ui −

(
1 + 2

Vi
r

)
vi + ∂r(d

i−1η1 + η2) = 0, (2.9)(
∂t +

Vi
r
∂θ

)
vi −

(
1 +

Vi
r

+ ∂rVi

)
ui +

1

r
∂θ(d

i−1η1 + η2) = 0, (2.10)(
∂t +

Vi
r
∂θ

)
ηi +

[
H i∂r +

∂r(rH i)

r

]
ui +

H i

r
∂θvi = 0, i = 1, 2. (2.11)

Looking for normal modes, we apply Fourier transformations in time and azimuthal co-
ordinate : (ui, vi, ηi)(r, θ, t) = (iũi, ṽi, η̃i)(r)e

i(lθ−ωt), where l is the discrete azimuthal wa-
venumber, and ω is the frequency. The system (2.9) - (2.11) can be written, omitting the

2. We should point out here that analyticity of the vorticity profile requires α = 2 or α ≥ 4, otherwise
the vorticity has a singular derivative at r = 0 (and associated infinite gradient would normally be damped
by viscosity, if introduced). In practice, it does not affect the results in what concerns the instability, and
numerical simulations of the evolution of such vortices show that they quickly adjust towards a regular
shape at the center without altering the dynamics elsewhere.



36 Chapitre 2 : Instabilités de tourbillons intenses

tildes, in the form :

ω



u1

v1

η1

u2

v2

η2

 =



lV1r 1 + 2V1r −DN 0 0 −DN
1 + V1

r +DNV1 lV1r l/r 0 0 l/r
DN (rH1)

r +H1DN lH1
r lV1r 0 0 0

0 0 −dDN lV2r 1 + 2V2r −DN
0 0 dl/r 1 + V2

r +DNV2 lV2r l/r

0 0 0 DN (rH2)
r +H2DN lH2

r lV2r





u1

v1

η1

u2

v2

η2


(2.12)

where DN is the operator of differentiation in r which becomes the differentiation matrix
when the system is discretized in r over a N-point grid, which is anticipated in the notation.
The details of the discretization procedure and setup are given in Appendix 2.3.5.

Boundary condition at r → 0 is vanishing of all of the six variables, except for the
axisymmetric perturbation with l = 0 for which the condition ηi → 0 is replaced by
∂rηi → 0 ; and for l=1 where the proper dynamical condition is ui = −vi. There is no
specific condition imposed at infinity, but the numerical method we use implies that the
solutions are decaying there, see Appendix 2.3.5. We are not introducing dissipation in
the linear stability analysis because, as it will be shown below, the modes we are mostly
interesting in have typical growth rates of the order unity and will be not substantially
affected by a weak dissipation. These unstable modes correspond to the gravest modes in
continuously stratified fluid, and are usually not significantly affected by viscosity (see, e.g.
Ribstein et al., 2014). The Ekman damping is not sensible to the spatial structure of the
modes, and thus not selective. It will be not considered, for simplicity.

We will be solving the system (2.12) by the collocation method in order to determine
the eigenfrequencies ω = ωr + iωi and corresponding eigenvectors. The imaginary part of
the eigenvalue ωi ≡ σ gives the growth rate of the unstable modes.

In the symmetric case, and for a purely barotropic vortex (κ = 1 ⇒ V 1 = V 2 = V )
the linear system of equations (2.12) can be reduced, by straightforward elimination of
variables, to the following one :

(−ω2 + Φ)

(
u1

u2

)
= ∂r

(
∂r
r

(
rH1u1 + rH2u2

rdH1u1 + rH2u2

))
, (2.13)

where Φ = 2Laζa/r
2, La = r2/2 + rV is the absolute angular momentum, and ζa =

1 + ∂r(rV )/r the absolute vorticity of the background vortex. From this system one can
deduce, following the similar analysis in the case of inertial instability in Bouchut et al.
(2011), a relation between the frequency ω and the baroclinic and barotropic components
of the normal modes, defined as ub = u1 − u2 and uB = (H1u1 +H2u2)/H0, respectively.
By multiplying (2.13) by Hequ

∗
b (Heq = H1H2/(H1 +H2)) and integrating over the whole

domain, supposing that the velocity field vanishes at infinity, i.e. that we are looking for
trapped modes, we get :

ω2 =

∫
Φ ·Heq|ub|2dr∫
Heq|ub|2dr

+(1−d)

∫ [
|∂r(Hequb)|2 +

|Hequb|2
4r2

]
dr∫

Heq|ub|2dr
−(1−d)

∫
Hequ

∗
b∂r

(
∂r(rH1uB)

r

)
dr∫

Heq|ub|2dr
.

(2.14)
The first term in the r.h.s. of this relation has the same sign as Φ, and the second term is
positive-definite. The third term is not sign-definite, but it is the only one containing the
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barotropic velocity uB, and thus vanishes for purely baroclinic modes. Hence we infer, like
in the case of inertial instability (Plougonven et Zeitlin, 2005), that there exist trapped
baroclinic modes, such that their frequencies may become imaginary, for sufficiently large
negative values of Φ. We thus recover the classical Rayleigh condition for the centrifugal
instability : Φ ∝ Laζa < 0, where the last product is the Rayleigh discriminant in our
model (cf. Kloosterziel et van Heijst (1991) for the continuously stratified rotating fluid).
The estimate (2.14) for the eigenfrequencies will be used below to control the numerical
results for the eigenproblem (2.12) at l = 0.

2.3.3 Results of the linear stability analysis

We start with a detailed stability analysis of the linearized problem in the longwave
sector, i.e. for perturbations with low l. The main motivation for this analysis is to find out
which instability is dominant as a function of the vortex parameters. Of particular interest
is eventual competition between the barotropic and the centrifugal instability, and the
existence of non-axisymmetric unstable modes with similar properties as the centrifugal
one, as suggested by previous studies (Billant et Gallaire, 2005; Smyth et McWilliams,
1998; Bouchut et al., 2011). We pay particular attention to the impact of the vertical
structure (stratification and vertical shear) on the results. As follows from eq. (2.14), these
are the anticyclonic vortices which are prone to centrifugal instability, so we will work with
anticyclonic background profiles.

The algebraic system (2.12) is solved with the help of the collocation method, specially
adapted for cylindrical geometry and described in Appendix 2.3.5. Similar technique was
used previously in Katsman et al. (2003) in a study of the linear stability of large-scale
ocean vortices. Most of the results of the linear stability analysis below were obtained with
N = 160 collocation points. Numerical convergence has been checked for selected modes
by doubling this resolution. Before giving the details in the subsequent subsections we
summarize the main results of the linear stability analysis.

For barotropic vortices :
— The standard centrifugal instability is dominant at high Rossby (& 0.8) and low

Burger (. 10) numbers and for sufficiently weak stratification and/or depth ratio.
— For stronger stratification, the centrifugal mode is not the most unstable anymore,

irrespectively of the values of Rossby and Burger numbers. Non-axisymmetric mode
with the azimuthal wavenumber l = 1 is the most unstable at high Rossby and low
Burger numbers. It has a structure very close to the symmetric centrifugal instability
mode.

— Regardless of the stratification strength, at least in the range we investigated, the
dominant instability mode at high Burger (& 10) and/or low Rossby (. 0.7) num-
bers is barotropic, with azimuthal wavenumber l = 2.

— In between these two domains (high Ro-low Bu and low Ro-large Bu) the non-
axisymmetric l=1 or l=2 unstable modes have the highest growth rates.

For baroclinic vortices the vertical shear tends to inhibit both axisymmetric and non-
axisymmetric centrifugal instabilities and render the barotropic one dominant.

Barotropic vortices : weakly stratified case : d = 0.99

We show in Fig. 2.3 the growth rate of the dominant instabilities in the (Ro,Bu) plane
for a barotropic vortex (κ = 1) with moderate horizonthal shear : α = 3. The anticyclonic
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Figure 2.3 – Growth rate σ of the most unstable modes of the barotropic vortex with
α = 3, d = 0.99, and δ = 1 as a function of Rossby and barotropic Burger numbers. The
baroclinic Burger number is Bu′ ≈ Bu/400. Values of Bu′ = 0.01, 0.1 are marked by
black dashed vertical lines. Left : most unstable modes in the interval l ∈ [0, 4] (colour
is saturated at 1), with separation lines in white between the regimes with different most
unstable mode. O : symmetric centrifugal, l=0 ; I : first asymmetric centrifugal, l=1 ; II.a :
second asymmetric centrifugal, l=2 ; II.b : barotropic, l=2. Right : Maximum value of σ
for the unstable modes with l = 0 (colour), and isopleths (black continuous) of −Φ for the
background vortex at 0.1 (lowermost curve) and from 0.5 to 3 (uppermost left curve) at
the interval 0.5.

vortex is found to be unstable almost everywhere in the plane. The calculations were
performed at d = 0.99, δ = 1 and the azimuthal wavenumber l in the range [0, 4].

Qualitative agreement is found with the value given by the Rayleigh criterion, as the
zone of dominant symmetric centrifugal instability on the right panel of Fig. 2.3 coincides
with the zone of strongest negative Φ. As follows from the left panel of Fig. 2.3, the overall
highest growth rates correspond to the axisymmetric centrifugal instability. The structure
of the corresponding most unstable mode at given values of the vortex parameters is
presented in the left panel of Fig. 2.4. As expected, its amplitude is radially confined
in the zone where the Rayleigh discriminant is negative (Kloosterziel et al., 2007). The
mode is trapped, and it is essentially baroclinic (i.e. with opposite velocities layerwise and
strong deviation of the interface), and ageostrophic. This structure is in perfect agreement
with what follows from the analysis of the general expression (2.14). We also show in
Figure 2.4 the structure of the second most unstable mode which has an azimuthal wave
number l = 1 for the same vortex parameters. Strong similarities between the two modes
appear : the asymmetric l=1 mode is clearly trapped in the same zone given by the Rayleigh
criterion, and is baroclinic and ageostrophic. We may, thus, infer that the two modes
correspond to symmetric and asymmetric versions of the same centrifugal instability. For
this reason and by further arguments to come up below, this mode will be referred to as
an asymmetric centrifugal instability from now on. We should emphasize that, unlike its
symmetric counterpart, the l=1 centrifugal mode is propagating in the azimuthal direction.
It has a critical radius (the radius rc at which the phase speed is equal to the background
flow velocity) which does not coincide with the location where PV gradient of the vortex
vanishes (even when the growth rate goes to zero), see Fig. 2.4. The standard mechanism
of the classical baroclinic instability is the resonance between Rossby waves, which implies
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Figure 2.4 – Structure (amplitude as a function of the radius) of the l=0 and l=1 modes
of the centrifugal instability at Ro = 1.2, Bu = 2, δ = 1, κ = 1 and d = 0.99. The growth
rates of the modes are 0.76 and 0.73, respectively. First row : radial velocity u, with two
vertical lines indicating the boundaries of the area where the Rayleigh discriminant is
negative. Second row : azimuthal velocity v, with vertical lines indicating the radius where
PV gradient vanishes (black/grey continuous in the upper/lower layer) and the location
of the critical radius rc (black dashed, if appropriate). Third row : thickness deviation η.
Continuous : real part, dashed : imaginary part, black : upper layer, grey : lower layer.
Bullets on the x-axes indicate the location of the velocity maximum in the background
flow : rmax = Bu−1/2.
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Figure 2.5 – Structure of the most unstable (left) and unstable barotropic (right) modes
with azimuthal wavenumber l = 2 of a vortex with Ro = 1.2, Bu = 2, δ = κ = 1, α = 3,
and d = 0.99. The growth rates are 0.6 and 0.1, respectively. Same legend as in Figure 2.4.

that the potential vorticity gradient must vanish at the critical radius in the limit of
vanishing growth rate (i.e. for the neutral waves undergoing phase locking, see Iga (1999);
Lin (1945)). Thus, the asymmetric centrifugal mode can not be directly related to the
classical baroclinic instability, being apparently its ageostrophic generalization.

For larger Burger and/or lower Rossby numbers, the second azimuthal mode corres-
ponding to another instability becomes dominant, cf. Fig. 2.3. Its structure is presented on
the right panel of Fig. 2.5. Note that the velocity field of this mode is quasi-barotropic (i.e.
the velocies in the upper and the lower layer are very close). Growth rates associated with
this instability are weaker and increase with the Burger number, opposite to the centrifugal
modes. This mode is almost geostrophically balanced beyond the radius corresponding to
the maximum velocity of the background vortex, and has a critical level located at a radius
where the potential vorticity gradient vanishes, see Fig. 2.5. This allows us to interpret this
unstable mode as a resonance between two non-singular Rossby waves, the condition of
existence of a neutral wave Q′(rc) = 0 (Lin, 1945) being fulfilled, and hence we identify this
mode as an ageostrophic version of the classical barotropic instability. Furthermore, when
the Rossby number decreases, this mode clearly evolves toward the well known pattern
of the quasi-geostrophic barotropic instability (the velocity field verifies the geostrophic
balance almost everywhere, not shown). For baroclinic Burger numbers greater than one
(and thus out of the range covered here), the standard baroclinic instability arises.

On the lower Burger/higher Rossby side of the zone of the dominant barotropic insta-
bility we find a strip where the most unstable mode has also the azimuthal wavenumber
l = 2 (cf. Fig. 2.3, left panel), but a different structure. As visible in the left panel of Fig.
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Figure 2.6 – Left panel : same as in Figure 2.3 but for d = 0.9. Vertical black dashed lines
stand for Bu′ = 0.1 and 1, from left to right. Right panel : evolution of the growth rate
of the most unstable modes as a function of 1 − d. Black continuous : l = 0, grey : l = 1,
black dashed : l = 2. l=3 and weakly unstable l=2 modes are not shown. The number of
nodes in the radial profile of the eigenvector decreases as the growth rate increases at fixed
value of d.

2.5 where this mode is displayed, its radial and vertical structure (trapped in the same
zone, baroclinic) is similar to that of the centrifugal instability modes with l = 0 and
l = 1. We thus identify this unstable mode as a second asymmetric centrifugal one with
azimuthal wave number l = 2. The phase speeds of all these modes are roughly equal and
lie in the range : −1.2 < ω/l < −0.6 for the parameters of Fig. 2.3, left panel, while the
phase speed of the barotropic instability mode is roughly proportional to the (negative)
Rossby number and ranges between −1 and 0.

Barotropic vortices : increasing stratification

In order to study the impact of stratification on the results obtained in the previous
subsection we repeat the analysis with decreasing d. We show in the left panel of Fig.
2.6 the growth rates of the dominant instabilities in the (Ro,Bu) plane for a barotropic
vortex with α = 3, δ = 1 and d = 0.9. In sharp contrast with the weakly stratified
case, the symmetric centrifugal mode is never the most unstable, albeit its growth rate is
close to the one of the leading first azimuthal mode (not shown). This result parallels the
recent findings on inertial instability of a Bickley jet in the two-layer shallow water model
(Bouchut et al., 2011), where it was shown that asymmetric inertial instability dominates
the symmetric one. Similar results hold in a large range of vertical wavenumbers in the
full three-dimensional primitive equations (Stevens et Ciesielski, 1986; Arobone et Sarkar,
2012; Ribstein et al., 2014). For strongly stratified vortices analogous result was found in
Smyth et McWilliams (1998).

As follows from the right panel of Fig. 2.6, the growth rates of the centrifugal instabi-
lity modes decrease as the stratification increases. The symmetric mode is more strongly
affected by the density ratio, with its growth rate decreasing faster, hence there is a specific
value of the density ratio for which the asymmetric centrifugal mode with l=1 becomes
dominant. The above-mentioned dependence is consistent with previous results obtained
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in the framework of continuously stratified fluid (Smyth et McWilliams, 1998; Billant et
Gallaire, 2005; Kloosterziel et al., 2007), where it was found that the classical centrifugal
instability is more active at weak stratifications. It can be explained by the fact that the
centrifugal instability generates overturning motions in the vertical (r, z)-plane which are
inhibited by stratification. The barotropic instability mode is not sensitive to stratification,
which implies that the area in the (Ro,Bu) plane where centrifugal modes are dominant
is reduced. This is confirmed by comparison of the left panels of Figs. 2.3 and 2.6.

As follows from Fig. 2.6, right panel, the number of unstable modes increases with de-
creasing stratification. The extra axisymmetric modes with l = 0 are higher radial modes
of the centrifugal instability with an increasing number of nodes, as expected from the
analytic treatment of the symmetric centrifugal instability 3. We checked that these modes
satisfy the integral relation for the growth rate (2.14). The interesting fact is that asym-
metric modes of centrifugal instability with more nodes also arise.

It is worth mentioning that the radial extent of the centrifugal modes extends as the
stratification strengthens, especially for the larger azimuthal wave numbers (not shown).

Barotropic vortices : the impact of the thickness ratio

In this subsection we investigate the impact of the ratio of the layer thicknesses. We
show in Figure 2.7 the variation of the growth rates of different azimuthal modes with
δ = H1/H2 for fixed values of Rossby and Burger numbers, at d = 0.9 and α = 3.

One sees in the Figure that the growth rate of the centrifugal modes increases as δ
decreases, the lower the azimuthal wavenumber the stronger increase. Thus, for very low
values of the thickness ratio the symmetric mode becomes dominant. In the two-layer
model, the fact that symmetric modes are more unstable for lower δ may be considered
as selection of higher vertical wavenumber by the instability, well-known for centrifugal
and inertial instabilities. The vertical structure of the centrifugal modes is clearly surface-
intensified as the surface layer thins down, which supports this hypothesis. We observe
that the barotropic component of such modes remains very weak, with H1u1 ≈ −H2u2.
Contrary to the centrifugally unstable modes, the growth rate of the unstable mode of the
barotropic instability is not very sensitive to the thickness ratio.

Impact of the vertical shear : baroclinic vortices

Although the barotropic background vortex flows of the previous subsections are most
natural for studying the centrifugal instability, which is our primary goal, the model allows
for easy incorporation of the baroclinicity of the background flow. We sketch in this subsec-
tion the dependence of the stability results on the vertical shear of the background vortex
(2.8), which is controlled by the ratio of the maximal velocities in the layers κ = V2/V1.
The evolution of the growth rates of different unstable modes with κ is shown in Fig. 2.8.
Note that κ = 1 corresponds to the barotropic vortex studied in the previous subsections.
The results are presented for a larger value of the Burger number Bu = 7, because of
drying of the upper layer at low Burger numbers.

3. This may be done, following Le Sommer et al. (2003) by imposing, for simplicity, a rigid lid in the
two-layer model and reducing the system to a Schrödinger equation where the anticyclonic shear plays
the role of the potential. It follows that unstable trapped modes with more nodes and lower growth rates
emerge as the potential well deepens.
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Figure 2.7 – Evolution of the growth rate of the unstable modes of a barotropic vortex
with Ro = 1.4 and Bu = 2 as a function of δ. Black continuous : l=0 centrifugal mode.
Grey continuous : l=1 centrifugal mode. Black dashed : l=2 centrifugal mode. Black dash-
dotted : l=2 barotropic mode. Grey dashed : l=3 centrifugal mode.
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Figure 2.8 – Evolution of the growth rate of the unstable modes of a vortex with Ro = 1.4,
Bu = 7, δ = 1 and d = 0.9 as a function of κ. Same legend as in Fig. 2.7.
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For the parameters of the Figure, the vortex is stable with respect to symmetric cen-
trifugal instability. We see that the growth rates of all unstable modes decrease with the
vertical shear, and that both centrifugal ones with l = 1 and l = 2 are more sensitive to the
vertical shear than the barotropic mode with l=2. A swap between dominant instabilities
takes place around κ = 0.91, with barotropic instability becoming the leading one. This
fact confirms that the centrifugal instability is most relevant for the barotropic vortices.
We should emphasize that the barotropic mode develops a weak vertical shear for κ < 1
(not shown), thus it would be more appropriate to call it mixed (barotropic-baroclinic).
However, the velocities remain mainly colinear layerwise and the background vortex is far
from the standard baroclinic configuration – generally, confined in one layer – in which the
baroclinic instability is usually studied, hence we keep the name “barotropic".

These results show the sensibility of the stability properties to the vertical structure
of the background vortex, and give a rather complicated picture of interchanges between
different instabilities, already in the simplest two-layer configuration. Although the growth
rates of the centrifugal instability are the highest among all we observed, we found that
depending on the vertical structure, they may correspond to symmetric or to asymmetric
variants of the instability. Moreover, for vortices with sufficient vertical shear the centrifugal
instability may be overcome by the ageostrophic barotropic instability. In practice, this
means that a good knowledge of the vertical structure of the flow, besides its Rossby and
Burger numbers, is needed in order to understand what processes account for its instability.

2.3.4 Nonlinear saturation of the instabilities of anticyclonic vortices

In this section we describe the nonlinear development of the above-identified linearly
unstable modes. We have established in the previous section that in the long-wave sector,
the ageostrophic α-Gaussian vortices are unstable with respect to symmetric and asymme-
tric centrifugal and barotropic instabilities. Each of them can be dominant, depending on
the vertical structure of the vortex. Because of differences in the structure of the unstable
modes, one can expect different patterns of nonlinear development of these instabilities.
Moreover, even if it is the standard symmetric centrifugal instability which is dominant,
the vortex can remain unstable with respect to the barotropic instability after the satura-
tion of this latter, and thus undergo a secondary saturation stage, like what was observed
for inertially unstable jets (Ribstein et al., 2014). We check these expectations in the nu-
merical experiments presented below. We use a high-resolution well-balanced finite-volume
scheme (Bouchut et Zeitlin, 2010) initialized with an α-Gaussian vortex with superimpo-
sed unstable mode found from the linear stability analysis with a rather weak amplitude :
the maximum of thickness perturbation about 10% of the deviation of layer thicknesses in
the vortex with respect to the state of rest. In this way, the vortex is forced to destabi-
lize through the chosen mode, even if it is more unstable with respect to other ones. We
introduce sponges, which are represented by Neuman boundary conditions, at the bounda-
ries of the computational domain, in order to prevent the inertia-gravity waves emitted in
course of evolution to come back. The correspondence of the linear stability and numerical
simulations results serves to benchmark the numerical scheme. It is checked by comparing
the growth rate of the perturbation at initial stages of simulations, measured by the mean
absolute value of the upper-layer pressure anomaly (or by the energy of the perturbation),
with the growth rate obtained from the linear stability analysis. We were always finding
a good agreement between the two, for all of the instabilities in question which means
that the differences in boundary conditions in linear stability analysis and direct numerical



2.3 Article : Centrifugal, barotropic and baroclinic instabilities of isolated ageostrophic
anticyclones in the two-layer rotating shallow water model 45

simulation are inessential for strongly localized unstable modes we are interested in.

Saturation of symmetric and asymmetric centrifugal instabilities

We first present the results of the nonlinear development of the centrifugal instability
for the two values of the azimuthal wavenumber corresponding to the highest growth
rates, l = 0 and l = 1. As is known, in three-dimensional continuously stratified fluid
the evolving centrifugal instability gives rise to overturning motions in the vertical plane,
redistributing the angular momentum, enhancing dissipation, and leading to emission of
inertia-gravity waves. These processes lead to homogenization of the flow in the zone of
initial instability (i.e. where the Rayleigh discriminant is negative), and to a marginally
stable vortex profile, as was shown in Kloosterziel et al. (2007) for strictly axisymmetric
configurations. The mean flow stayed a fortiori monopolar in course of its destabilization
in this study. It remains unknown how this behavior changes if the strict axisymmetry
constraint is relaxed.

Although, by construction of the the two-layer model by vertical averaging, the over-
turning motions are not accessible, the intense vertical shears and related strong baroclinic
divergence are well detectable. As was checked on multiple examples with our numerical
code (e.g. Bouchut et al., 2011), the Kelvin-Helmholtz-like instabilities associated with
strong vertical shear and, in fine with overturning, are accounted for by the hyperbolicity
loss of the flow in the corresponding locations. The numerical scheme has a very satisfac-
tory behaviour under such conditions (Bouchut et Zeitlin, 2010) : non-hyperbolic regions,
once appeared, remain spatially confined and eventually vanish, and the related strong
gradients are wiped out by enhanced numerical dissipation in these locations, as it should
be for the authentic Kelvin-Helmholtz instability.

The hyperbolicity loss, thus, can be regarded as a proxy for overturning motions and
vertical mixing. The corresponding regions of the flow are the main zones of energy dissi-
pation (see below). Furthermore, the numerical scheme is based on the conservative form
of the equations (2.4), (2.5) and is conserving exactly the mass layerwise, together with the
total momentum. Good conservation of the potential vorticity is always observed, albeit
it is not explicitly built in the code. The total mass conservation has been checked in all
numerical simulations we present. The relative departure of the mass averaged over all nu-
merical cells is about 10−4 at t = 100 f−1 and is mainly due to the imperfect sponges when
high amplitude waves reache the boundaries. If periodic boundary conditions are used, this
value falls to 10−14. We should also emphasize that, in spite of its two-dimensional charac-
ter, the model does give access to vertical velocity, which is propotional to the horizontal
convergence, by construction.

The simulations described below have been performed with the following vortex para-
meters : δ = 1, κ = 1, d = 0.9 and α = 3. The Rossby and Burger numbers are respectively
1.5 and 2, and the growth rates of the unstable modes used for initializations are 0.55 for
the l=0, and 0.7 for the l=1 mode, for this choice of parameters. In all simulations, we did
not observe a formation of a new stable vortex, as a result of the nonlinear saturation. For
initializations with both l=0 and l=1 modes of the centrifugal instability the initial vortex
totally breaks down. It rapidly develops strong vertical shears (the baroclinic component
of velocity grows and rapidly exceeds the phase velocity of the baroclinic waves), while the
barotropic velocity weakens.
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Figure 2.9 – Saturation of the axisymmetric centrifugal instability. Upper frame : the
kinetic (black, right axis) and the anomaly of potential (grey, left axis) energy ; lower
frame : total energy anomaly (black, left axis) and dissipation calculated cell-wise and
summed over all cells – grey, right axis.

Nonlinear saturation of the symmetric centrifugal instability The classical sym-
metric centrifugal instability is the one for which high-resolution numerical simulations of
the saturation exist in the full three-dimensional configuration, yet under the constraint of
strict axisymmetry (Kloosterziel et al., 2007) or neutral stratification (Orlandi et Carne-
vale, 1999). They predict the flow to become marginally stable with La.ζa ≥ 0 everywhere.
The evolution of initially symmetric perturbation with l = 0 which we observe in the 2-
layer model confirms this scenario at initial stages. The flow remains globally axisymmetric
until t ≈ 5. As follows from Fig. 2.9, where we present the evolution of the energy, the
dissipation is already active at this stage of the saturation. Fig. 2.10, where we present the
distributions of the divergence and of both components of the baroclinic velocity, shows
that the zone of hyperbolicity loss is axisymmetric. Typical small-scale structures, cha-
racteristic for the saturation of the centrifugal and inertial instabilities, are visible in the
figure and are associated with major part of the energy dissipation. One can nevertheless
infer a weak l=4 modulation (e.g. in the magnitude of the ripples visible in the baroclinic
divergence field), which can be traced back to the very beginning of the simulation and is,
most probably, due to discretization errors.

It is to be emphasized that the evolution of the flow at this stage, which corresponds
to the first significant drop of energy at t ≈ 5, cf. the upper panel of Fig. 2.9, follows the
scenario of (Kloosterziel et al., 2007), as the flow re-stabilizes with respect to the Rayleigh
criterion, as follows from Fig. 2.11. This can be considered as a benchmark of our numerical
code.

Yet, the quasi-axisymmetric evolution does not last. A sharp front (shock) with corres-
ponding jump of radial velocity is formed close to the inner boundary of the non-hyperbolic
zone, as shown in Fig. 2.12. This front propagates inwards while losing its axial symmetry,
as can be seen from Fig. 2.13

Although the quadrupolar perturbation with l = 4 of this inner front in the present
simulation is probably triggered by the above-mentioned discretization errors 4, the insta-

4. we should emphasize that discretization errors of representing a circle with a Cartesian grid are
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Figure 2.10 – Snapshots of the radial (left) and azimuthal (middle) baroclinic velocities,
and of the baroclinic divergence during the nonlinear saturation of the axisymmetric in-
stability at t = 3.5 f−1. Non-hyperbolic zones are confined in the annulus between thin
contours.
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Figure 2.14 – Same as in Fig. 2.10 but at the beginning of the second hyperbolicity loss
episode, at t = 11.5 f−1

bility of axisymmetric concentric shocks propagating towards the center with respect to
non-axisymmetric perturbation is universal, cf. Whitham (1974). So, subject to any non-
axisymmetric noise, the front will loose its axial symmetry, and hence the phenomenon we
observe is generic.

The second significant drop of energy at t ≈ 11 is related to the reappearance of a
non-hyperbolic zone and generation of a new sharp front close to its inner boundary, as
shown in Fig. 2.14.

As follows from the Figure, the flow evolves on the background of the l=4 structure
in the inner core inherited from the preceding stage. It is worth mentioning that non-
stationary perturbation due to this inner quadrupolar strature is instantaneously trans-
mitted to the outer boundary of the non-hyperbolic zone, where it leads to emission of the
inertia-gravity waves with the same azimuthal structure. Such behavior is fully consistent
with the elliptic nature of the non-hyperbolic zone, where the speed of a signal is infinite,
and thus confirms that the numerical scheme is consisistent with underlying physics. The
origin of the second dissipation burst is due to the fact that the structure of the centrifu-
gally unstable mode, cf. Fig. 2.4, with its strong shear in radial velocity, is not wiped out
during the first dissipation burst, and recreates the conditions of the hyperbolicity loss.

The loss of axisymmetry of the vortex in course of evolution of the axisymmetric centri-
fugal instability is clearly seen in Figure 2.15, where we present the results of the Fourier-
analysis of pressure and velocity perturbation in the upper layer. The growth of l=4 mode
eventually leads to the formation of four cyclonic satellites of the main anticyclonic vortex,
which subsequently merge pairwise (see the dominance of the l=2 mode in the Fourier
analysis in Figure 2.15, starting at t ≈ 25). Thus, after the stage of strong local mixing,
wave emission and energy dissipation, the flow reorganizes itself, with a weak conversion
from kinetic to potential energy, cf. Fig. 2.9, right panel, into a barotropic tripolar vortex
with anticyclonic core which persists from about t = 40 for several tens of inertial periods.
This tripole is shown in Figure 2.16. It is not steady : the whole structure rotates rather
steadily about the center, but the distance between the core and the satellites oscillates in
time, the core being alternatively closer to one or another satellite. It finally splits into a
barotropic dipole that slowly goes away from a remaining cyclonic monopole. The flow is
still highly energetic, with strong baroclinic shear and associated transient hyberbolicity-

universal, unless polar coordinates are used, which would complexify substantially the numerical scheme
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Figure 2.15 – Logarithm of the normalized amplitude of the first seven Fourier modes of
the upper-layer pressure (left panel) and velocity ( right panel) perturbations in the course
of the evolution of the l=0-centrifugal instability. The thin black dashed line represents the
growth predicted by the linear stability analysis. The burst of l=4 mode is clearly seen.
Its initial amplitude is very small and consistent with the values of discretization errors,
and its growth is delayed in time which confirms its relation to the secondary structures
appearing in course of evolution.

loss patches. Emission of high-amplitude baroclinic waves continues until the end of the
simulation (t = 100), and kinetic energy is being steadily dissipated (cf. Fig. 2.9). The
evacuation of the waves from the numerical domain by the Neumann boundary conditions
is not perfect and produces spurious oscillations of the potential energy which are reflected
in the total energy evolution. However, the numerical dissipation cellwise summed over
all cells inside the numerical domain is negative, as visible in the lower frame of the right
panel of Fig. 2.9.

One has to be careful in interpreting these results. Indeed, it is obvious that, because
of hyperbolicity loss, the results should be sensitive to the resolution. We checked the nu-
merical convergence by making three different numerical experiments with grid-cell sizes
varying between 0.01 Rd and 0.0275 Rd. The saturation process does not change signifi-
cantly with resolution, only the smallest-scale patterns being modified, as expected. Yet,
the rate of the process changes (the formation of the cyclonic satellites occurs slightly la-
ter with the coarser resolution), so we do not achieve the numerical convergence, strictly
speaking. Nevertheless, the impact of the small-scale processes is sufficiently well resolved
to trust the global evolution of the flow we observe. As we explained above, the mecha-
nism of the observed loss of axial symmetry during the simulation is due to the universal
property of destabilization of the concentric inward propagating front. Although its l=4
structure is, most probably, due to discretization errors, the mechanism of axial symmetry
loss is generic. We should mention that appearance of l=4 noise is inherent to projection
of circular structures onto rectangular grid and, thus, will appear in any numerical scheme
which uses the latter.

Nonlinear saturation of the asymmetric centrifugal instability The nonlinear
development of the asymmetric l=1 centrifugal instability exhibits some similarity with
the saturation of the symmetric mode, although the end result of the evolution is different.
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Figure 2.16 – Barotropic tripole formed after nonlinear saturation of the symmetric centri-
fugal instability at t = 60 f−1. Left panel : Pressure in layer 1 and superimposed barotropic
velocity field. Middle panel : potential vorticity anomaly in layer 1. Colours are satura-
ted at ±5 (maximum values reach 8). These two fields are similar in the lower layer (not
shown). Right panel : baroclinic divergence (colours saturated at ±6) with PV anomaly
±1 isolines in grey superimposed in order to visualise the vortex tripole.

We show snapshots of the evolution of PV in the upper layer (it evolves qualitatively in the
same way in the lower layer) in Fig. 2.17. The zone of high shear, associated hyperbolicity
loss and strong mixing and dissipation also forms, but is now clearly non-axisymmetric,
enhanced at either side of the vortex and rotating with it, as shown in Fig. 2.18. It is
reflected by a mixing zone in the PV anomaly pattern which roughly coincides with a zone
of very low value of the thickness of the corresponding layer, close to incropping. This is
visible at t = 10 in Fig. 2.17, on the lower-left side of the anticyclonic core and in Fig.
2.18, where the high values of the thickness of the lower layer (i.e. the deviation of the
interface) are associated with very low values of the upper-layer thickness (the deviation
of the free-surface being weak). Unlike the l=0 destabilization (see the inset in Fig. 2.9),
there are no "bursts" of dissipation (not shown). The original vortex deforms more and
more, and finally splits into a well-formed barotropic dipole (upper right corner of the right
panel of Fig. 2.17), plus a cyclone with a weak anticyclonic satellite (lower left corner ; the
anticyclone is even weaker in the lower layer). This vortex breaking occurs slightly earlier
than the satellite formation in case of saturating symmetric instability. After t = 50, the
cyclone of the asymmetric dipole remains close to the other dipole, and the anticyclonic
monopole stays in the vicinity of this tripolar-like structure. The simulation stops before
we can say whether such structure is robust or not. For both l = 0 and l = 1 saturations
the energy balance is comparable : total amount of kinetic energy dissipated at the end of
the simulation (t = 100 f−1) accounts for about 70% of the initial value, which is obviously
considerable. This amount is almost insensitive to the numerical resolution (it varies from
67% to 70% for the range of cell sizes we used). We note however that the dissipated kinetic
energy is larger for the l=1 destabilization at the intermediate time t = 50 (∼ 60% versus
∼ 50%), in agreement with the fact that the vortex breaking occurs earlier than in the l=0
case and that the growth rate of the initial perturbation is larger.

In addition, we simulated the nonlinear development of the asymmetric centrifugal
instability with the unstable l=1 mode for a vortex with smoother horizontal profile :
α = 2. It corresponds to the classical Gaussian vortex profile, which has been extensively
used in the literature on oceanic vortex modeling (e.g. Baey et Carton, 2002; Smyth et



52 Chapitre 2 : Instabilités de tourbillons intenses

2 3 4 5 6 7
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

(a) t=10
2 3 4 5 6 7

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

(b) t=20

 

 

2 3 4 5 6 7
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

−5

−4

−3

−2

−1

0

1

2

3

4

5

(c) t=40

Figure 2.17 – Snapshots of PV anomaly in the upper layer during the nonlinear saturation
of the l=1 centrifugal instability. Colours are saturated at the maximal values indicated
on the color-bar for better visibility.
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panel) during the nonlinear saturation of the l=1 centrifugal instability, at t = 10. Colours
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McWilliams, 1998; Benilov, 2003, 2004). As follows from the linear stability analysis above,
the instabilities are weaker when the horizontal shear decreases, and the vortex is no longer
unstable with respect to symmetric perturbations at the same values of the parameters δ, κ
and d, whereas the l=1 mode is still unstable with the growth rate σ = 0.52. The nonlinear
evolution of such vortex (not shown) is different with respect to what is observed for the
α = 3 vortex. Instead of rapidly splitting into a dipole and a monopole, the ring of positive
vorticity surrounding the anticyclonic core steadily reorganizes into two cyclonic satellites
(although the hyperbolicity loss, wave emission and local thinning of the layers are still
observed) , the final state consisting of a barotropic tripole with an anticyclonic core –
which is similar to the nonlinear saturation of the l=0 mode for α = 3. However, baroclinic
wave emission is weaker in this case, hyperbolicity-loss events are rare and less intense,
and only 25% of the kinetic energy is dissipated at t = 100 (20% at t = 50), that is less
than half of the corresponding amount in the simulations with α = 3 presented above.

Comparison of the saturation of centrifugal and barotropic instabilities

As shown by the linear stability analysis, centrifugal instabilities rapidly disappear
when the Burger number increases at fixed Rossby numbers Ro ∈ [0, 2], or when the Rossby
number decreases. On the other hand, ageostrophic barotropic and baroclinic (which ap-
pears for even larger Burger numbers than those presented) instabilities arise. Our linear
stability analysis revealed that l=2 barotropic instability is dominant in the major part
of the explored Ro,Bu, δ, κ domain in this case. As is known, nonlinear saturation of the
barotropic instability, for moderate Rossby numbers, leads to formation of either a vortex
tripole, or a pair of vortex dipoles, without production of significant vertical shear, and
weak emission of inertia-gravity waves (see, e.g. Baey et Carton, 2002). On the other hand,
as we have seen in subsection 2.3.4, the centrifugal instability is associated with strong
vertical shears and wave emission.

We thus seek to quantify the differencies between the nonlinear saturation of the two
instabilities. For this purpose, we selected the unstable modes of a vortex with Ro =
1.4, Bu = 7, α = 3, d = 0.9 and δ = κ = 1. For these values of parameters the most
unstable mode is the l=2 centrifugal (σ = 0.33), the second one is the l=2 barotropic
(σ = 0.29) and the less unstable one of the three is the l=1 centrifugal (σ = 0.24). So the
asymmetric centrifugal and the barotropic unstable modes have the same azimuthal struc-
ture and close growth rates, and their respective saturations are interesting to compare.

First of all, we found that the end results of the nonlinear development of the two
instabilities are different. The most unstable centrifugal mode evolves into a stable tripole,
while the barotropically unstable one gives dipoles (at first barotropic, and then baroclinic
ones, see below). However, during the formation of the tripole by the evolving asymmetric
centrifugal instability a saddle point almost forms in the anticyclonic core, which is thus
close to splitting (probably into two dipoles – see Arai et Yamagata (1994)), but the vortex
finally comes back to a tripolar form, as shown in Fig. 2.19. Such event induces a strong
stretching of the anticyclone associated with the vorticity shear which continues once the
tripole has formed. The final structure seems to be stable (the simulation ends at t = 140)
but the magnitude of the vortex, as mesured by the integral of the absolute value of the
PV anomaly, decreases significantly (see Fig. 2.20, left panel). This contrasts the case of
the development of the barotropic instability, which is shown in Fig. 2.21 : in this case the
splitting of the initial vortex in two barotropic dipoles occurs around t = 20 and we observe
a small rise in the integral of the negative PV anomaly (see Fig. 2.20, middle panel) while
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Figure 2.19 – Evolution of the PV anomaly in the upper layer during the nonlinear satu-
ration of the l=2 centrifugal instability with Ro = 1.4 and Bu = 7, at t = 24 (left panel),
48 (middle panel) and 100 f−1 (right panel). Lower layer PV anomaly is qualitatively si-
milar. Black circle with the radius ≈ 1.9Rd indicates the zone of confinement of the PV
anomaly and is used for the diagnostic of wave emission – see below.
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Figure 2.20 – Normalized integral of the positive (black) and negative (grey) potential vor-
ticity anomalies (summed over the two layers) as a function of time for the l=2 centrifugal
(left panel) and l=2 barotropic (middle panel) instabilities. Curves from the simulations
of the initial destabilization and the subsequent evolution calculated in a refreshed nu-
merical domain, in order to eliminate spurious reflexions of high-amplitude waves by the
boundaries, are superimposed for the centrifugal instability. Right panel : Comparison of
the magnitude of the baroclinic divergence inside (black, right axis) and outside (grey,
left axis) a circle of radius ≈ 1.9 Rd for the l=2 centrifugal (continuous) and barotropic
(dashed) instabilities.
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Figure 2.21 – Evolution of the PV anomaly during nonlinear saturation of the barotropic
instability for the anticyclone with Ro = 1.4 and Bu = 7. Left and middle panels : upper
layer PV anomaly at t = 18 and 30. Up to t ≈ 30 the lower-layer PV anomaly is similar.
Right panel : PV anomaly in the upper (continuous) and lower (dotted) layers at t = 70,
with negative values in grey and positive ones in black, at the interval 1 starting from 0.5
in non-dimensional terms. Previous positions of one of the the upper-layer dipoles at time
interval 3 are indicated by circles. Black circle indicates the zone of confinement of the PV
anomaly in the centrifugal instability case, cf. Fig. 2.19.

the overall dissipation of the anticyclonic PV anomaly is weaker than in the case of the
centrifugal instabilities. The positive (cyclonic) PV anomaly is approximately conserved.
The barotropic dipoles are not stable : after ejection of the lower anticyclonic vortex,
the dipoles become essentially baroclinic (two-layer cyclone plus upper-layer anticyclone).
Such “rider” modon was reported in the 2-layer shallow water model by Lahaye et Zeitlin
(2012b). The first-stage barotropic and subsequent baroclinic dipoles do not dissipate PV,
while the tripole does (through weak but continuous filamentation of the patches). The
kinetic energy of the flow exhibits roughly the same behaviour (not shown)

There is, thus, a net difference between the nonlinear development of the l=2 centrifugal
and barotropic instabilities, as regards the redistribution of PV. The latter instability
acts to drive away the initial PV anomalies, while the former leads to the formation of a
barotropic tripole which stays at the initial location.

The evolution of the baroclinic divergence field also exhibits striking differences, as
shown in the right panel of Fig. 2.20 where we compute the square root of the square of di-

vergence integrated over the domain
√∫∫

(~∇ ·~v)2dxdy inside and outside a circle delimiting
the initial vortex (and the resulting tripole in the centrifugal case, see Fig. 2.19). As the
initial vortex is essentially ageostrophic, the associated divergence field may correspond to
emission of outgoing inertia-gravity waves, or may be proper to the vortex. The two cases
may be distinguished by comparing the signal inside and outside the vortex boundary. A
persistent emission of large-amplitude inertia gravity waves is observed during nonlinear
saturation of the centrifugal instability, as in the cases with Bu = 2 shown previously. As
is clear from Figure 2.20, the waves emitted in the zone of confinement of the PV anomaly
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propagate outside in this case. As concerns the barotropic instability, the intensity of the
divergence is clearly weaker than for the centrifugal instability. The radiation of waves is
triggered at t ≈ 20 and lasts up to t ≈ 28, when the waves go out of the vortex boundary,
which corresponds to the increase (decrease) of the signal in the outer (inner) zone starting
at t ≈ 24. The secondary peak in the signal in the outer zone (t ≈ 32) is associated with the
boundary crossing by the secondary dipoles (see Fig. 2.21). Once the dipoles have formed,
they have an attached divergence field, without wave radiation (not shown). Thus the ge-
neration of vertical motions and waves is more important and persisting in the case of the
centrifugal instability, whereas it is localised in time for the barotropic one. This is natural,
since the former is known to generate overturning motions and waves, whereas the latter
is rather bidimensional (as is clearly visible in the radial structure of the modes, see Fig.
2.5). We should stress that the above-established differences in the saturation of the insta-
bilities, which can compete, render predictions of the end states of vortex destabilization
highly sensitive to initial conditions and parameters.

2.3.5 Summary and discussion

We performed a detailed linear stability analysis of essentially ageostrophic anticyclonic
two-layer vortices with respect to long-wave azimuthal perturbations, and fully nonlinear
numerical simulations of the saturation of thus identified instabilities.

The linear stability analysis shows that for sufficiently weak stratification the symme-
tric centrifugal instability is dominant for high Rossby and low Burger numbers. At lower
Rossby or larger Burger numbers the unstable modes with higher wavenumbers (l = 1, 2
with our parameters) become dominant. They are non-axisymmetric forms of the classical
axisymmetric centrifugal instability. For even higher Burger numbers and/or lower Rossby
numbers there is a swap in the instabilities and the (ageostrophic) barotropic instability
with azimuthal wave number l = 2 becomes dominant. We found that increasing stratifi-
cation tends to weaken the centrifugal instabilities, especially the symmetric one ; which
eventually disappears, while the whole domain of centrifugal instability diminishes in favor
of the barotropic one in the Ro−Bu plane. Vertical shear (= baroclinicity) of the vortex
has roughly the same effect.

Our main findings, thus, are that in a wide range of parameters the classical symmetric
centrifugal instability is dominated by its asymmetric counterpart, that both symmetric
and asymmetric instabilities are dominated by the (ageostrophic) barotropic one for suf-
ficiently stratified and/or vertically sheared vortices, and that the details of the vertical
structure are crucial to determine which instability is the leading one.

The asymmetric extension of the classical centrifugal instability may seem counter-
intuitive : indeed the initial physical argument invoked to explain the centrifugal insta-
bility (conservation of the total angular momentum through exchange of rings of fluids,
e.g. Lord Rayleigh (1917); Drazin et Reid (1981)) is not directly transposable to asym-
metric perturbations. Yet, we show that the modes that we identified as corresponding to
asymmetric centrifugal instability are very close, both in structure and in the way of their
nonlinear saturation, to the classical modes of centrifugal instability. We should stress that
the results obtained by the WKBJ method for continuously stratified vortices (Billant et
Gallaire, 2005) have already provided a link between asymmetric and symmetric modes,
and that similar results (Bouchut et al., 2011; Stevens et Ciesielski, 1986) were obtained on
inertial instability, which is the counterpart of the centrifugal instability for plane-parallel
flows.
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Our simulations of the nonlinear saturation of centrifugal instability revealed both
expected and new features. Indeed, while the classical picture of kinetic energy dissipation
through overturning motions (albeit not explicitely resolved in this model) was reproduced,
as well as the recovery of the marginal stability according to the Rayleigh criterion, at some
intermediate stage of the evolution, as was predicted by Kloosterziel et al. (2007), the end
state was never axisymmetric, unlike Kloosterziel et al. (2007) and Lazar et al. (2013a).
We observed that in course of nonlinear evolution of the symmetric centrifugal instability
the axial symmetry is broken, leading to the formation of either a barotropic tripole or a
dipole plus an isolated monopole. We identified an essentially nonlinear mechanism of such
symmetry breaking, related to the instability of the front forming at the inner boundary
of the mixing zone and propagating inwards.

The asymmetric centrifugal and barotropic instability modes with the same azimuthal
wavenumber and vortex parameters evolve differently, the latter leading to the formation
of a pair of counter-propagating dipoles while the former gives rise to a quasi-stationary
barotropic tripole. Saturation of the barotropic instability leads to weaker energy and
potential vorticity dissipation and inertia-gravity wave emission, and smaller amplitudes
of the baroclinic divergence field for the resulting structures. We should stress the difference
between the two scenarios of saturation which is important for applications : while in the
first one the potential vorticity anomalies stay at the same location, they are evacuated
by propagating dipoles in the second one. Thus, a small change of the background vortex
parameters can produce a switch from one scenario to another, with an obvious impact
upon predictability.

Thus, our main conclusion is that two-layer ageostrophic anticyclonic vortices are sub-
ject to both barotropic and centrifugal instabilities, the latter not necessarily symmetric.
These instabilities may compete, each of them leading to its proper saturation pattern. The
symmetric instability generally loses symmetry in course of nonlinear saturation. Both the
character of the dominant instability and the scenario of its nonlinear saturation crucially
depend on the vertical structure (shear and stratification) of the flow.

Let us finally comment on the relation of our results to the development of the insta-
bilities in a configuration with step-wise profile of stratification in fully three-dimensional
rotating continuously stratified primitive equations model. As we already mentioned in the
Introduction, the problem becomes unseparable, and thus very complex in what concerns
the linear stability analysis. We are not aware of such results, nor of corresponding high-
resolution direct numerical simulations, which are also difficult to realize due to coexistence
of very different vertical scales in the problem from the very beginning. Laboratory experi-
ments with quasi-two layer flows at high Rossby numbers, e.g. Flór et al. (2011) may give a
key, but the results there are contaminated by ageostrophic instabilities due to the presence
of boundaries and related Kelvin waves. Yet, in what concerns the baroclinic ageostrophic
Rossby-Kelvin instabilities, the 2-layer model gives a reliable description of what is ob-
served in laboratory experiments (Flór et al., 2011; Gula et Zeitlin, 2014). We can argue
that the results presented above are relevant for the development of gravest modes of the
instability, while small-scale modes will be damped by viscosity, like it was observed for
the inertial instability in (Ribstein et al., 2014), but such scenario is to be confirmed by
further studies.
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Appendix : Collocation method in cyclindrical geometry

For solving the linear stability problem we use the pseudo-spectral collocation method.
Collocation methods rely on interpolation at selected points using an ad-hoc orthogonal
set of basis functions, with the remainder of the interpolation being strictly zero at the
grid points. Chebyshev polynomials are routinely used in order to avoid the Runge pheno-
menon (spurious oscillations growing in amplitude with the resolution) when interpolating
non periodic functions on a finite non-dimensional interval [−1, 1] (e.g. Trefethen, 2000;
Boyd, 2001). However, the cylindrical geometry of the problem treated in the present pa-
per suggests the use of a basis on the interval [0,∞]. We choose the orthogonal rational
functions on a semi-infinite interval TLn introduced in Boyd (1987). They are obtained by
applying an algebraic mapping from [−1, 1] to [0,∞] to Chebyshev polynomials (we recall
that Chebyshev polynomials themselves are the images of the terms of a Fourier cosine
series under the mapping x = cos(t)), and are defined by :

TLn(r) = Tn(x) = cos(nt), (2.15)

where t ∈ [0, π] is the argument of the cosines, x ∈ [−1, 1] the argument of the ordinary
Chebyshev polynomials Tn and r ∈ [0,+∞] the argument of the new basis functions. The
three arguments are related by :

r ≡ L1 + x

1− x
≡ L cot2(t/2), (2.16)

where L is a constant map parameter. In practice, half of the grid points are within the
interval [0, L], and the grid is being refined at r → 0, while the intervals increase for large
r. This is appropriate, considering that we expect our solutions to decay at infinity. An
advantage of this method, as discussed in Boyd (2001), is that the boundary condition at
the upper endpoint of the domain (i.e. infinity) becomes “natural”, or “behavioral”. This
means that the series (the numerical solution) will automatically be bounded at infinity
with no need to prescibe any value, following the boundedness of the basis functions there.
This is true, in particular, when the differential equation(s) is singular at infinity, although
a general theorem is lacking. A drawback of this choice of basis functions is that oscillating
functions decaying slowly (not exponentially) at infinity, although not excluded, are poorly
resolved : the error becomes large at r → ∞ because the interval between a pair of grid
points becomes larger than the wavelength. Solutions to this problem would be either to
use the radiation conditions or a modified basis (Boyd, 1987, 2001). Taking into account
that we are mostly interested in the modes trapped in the vortex, which are responsible for
the centrifugal instability and have order-one growth rates, we do not seek to accurately
resolve the modes corresponding to radiative-type instabilities (Le Dizès et Billant, 2009),
which usually have lower growth rates.

The differentiation matrix used in (2.12) is obtained from the classical Chebyshev
differentiation matrix (e.g. Trefethen, 2000) through the relation :

D(r)
N =

(1− x)2

2L
· D(x)

N . (2.17)
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Numerical resolution of the eigenproblem (2.12) gives rise to proper eigenmodes but also
to numerical spurious modes and to singular modes (due to the presence of critical levels)
with discontinuities. We thus apply a gradient limiter to the solution obtained, requiring
the physically relevant eigenvectors to belong to the C1 class. Practically, we check that
jumps in the eigenfunction (or in its derivative) are not larger than the amplitude itself
in the neighbouring points by introducing a truncation parameter, the same for the de-
rivatives of the eigenvectors. Most of the spurious modes are thus removed through this
procedure, although some of them persist. When such singular modes accumulate with
increasing resolution (generally with the location of the critical level slightly varying), they
are considered as belonging to the continuous spectrum (cf. Iga, 1999) and are not taken
into account. Otherwise, numerical convergence is checked and the mode is considered as
being physically relevant. In addition, modes with amplitudes growing far away from the
center, or at r → 0 (in which case they are generally discontinuous at r = 0 because of the
boundary condition) are removed.
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2.4 Instabilités dans les cyclones tropicaux

Une instabilité affectant les cyclones tropicaux est abordée dans cette partie. En raison
de nombres de Rossby typiques très élevés, cette instabilité est couplée à des ondes d’inertie-
gravité. Son impact est de participer à un cycle de (ré)intensification du cyclone.

2.4.1 Instabilité du coeur du cyclone : motivations et approche

Les nombres de Rossby typiques des cyclones tropicaux sont très élevés, en raison
d’une augmentation rapide des vents avec le rayon au niveau du coeur du cyclone. Pour
des cyclones intenses (de catégorie 3 ou 4), le rayon du maximum de vent (RMW) est
de l’ordre de 20 à 50 km et la vitesse angulaire maximum peut atteindre 40 à 60 m/s.
Le nombre de Rossby ainsi dérivé, pour une valeur du paramètre de Coriolis f = 5 · 10−5

(correspondant à une latitude d’environ 20̊ ), varie alors de 10 à 40. Cette valeur élevée
est également associée à de très fortes valeurs de la vorticité relative, qui peut atteindre
≈ 100f . La distribution verticale du vent dans un cyclone est principalement barotrope, et
le nombre de Froude calculé par rapport à la vitesse des ondes d’inertie-gravité barotropes
Fr = Vmax/

√
gH0 = Ro/

√
Bu (avec H0 la hauteur de la troposphère) est de l’ordre de

10−1, et reste donc petit. A partir de ces paramètres, on comprend que le mécanisme de
Lighthill pour l’émission d’ondes par un vortex (Lighthill, 1952; Zeitlin, 1991; Ford, 1994)
peut avoir lieu.

Le profil de vent, au niveau du coeur du cyclone, varie de la rotation solide (V ∝
r, ζ = const.) à un profil en forme de “U”. La décroissance au-delà du coeur du cyclone
est lente (en 1/r, avec ζ ≈ 0). La structure d’un cyclone est donc fortement localisée en
un sens, notamment parce que la vorticité relative atteint des valeurs très importantes
proche du centre, mais l’anomalie de vent qu’il engendre est étendue. Différents profils
paramétriques permettant d’approximer avec un minimum de paramètres les profils de
vent (et de pression) des cyclones ont été proposés (e.g. Holland, 1980; Willoughby et al.,
2006; Wood et al., 2013). Ils incluent notamment cette disparité entre variation rapide au
centre et décroissance lente au loin, et les différents profils de vent possibles au centre du
cyclone.

Cette dernière propriété nous intéresse en particulier. En effet, un profil de vent en
rotation solide est associé à une valeur constante de la vorticité relative. La décroissance en
1/r au delà du rayon de maximum de vent entraîne une vorticité relative nulle. Le profil de
vorticité est alors monotone décroissant (et, si le profil n’est pas lissé au niveau du RMW
correspondant à la transition V ∝ r → V ∝ 1/r, il équivaut à un profil de Rankine).
Par extension, le profil de vorticité potentielle est également monotone décroissant. En
revanche, si le profil de vitesse est “en forme de U”, alors la distribution de vorticité relative
(et par extension, de vorticité potentielle) consiste en un anneau de forte valeur de vorticité
relative entourant un monopole de plus faible valeur. Le profil n’est alors plus monotone
mais présente un changement de signe du gradient radial de vorticité. Il vient que ce type
de profil peut être instable, par le biais du mécanisme classique d’instabilité barotrope
(cf. 2.1). Cette instabilité va conduire à une redistribution de la vorticité potentielle et
à une modification du champ de vent : en particulier, si le système évolue de manière à
reformer un profil monotone de vorticité (avec le maximum au centre), l’anomalie de vent
va augmenter vers le centre du cyclone. Ceci, associé à un creusement de la dépression au
centre, peut constituer un mécanisme de réintensification des cyclones (e.g. Kepert, 2010).
Cette instabilité est également responsable de la formation de motifs en forme d’étoile de
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mer parfois observés dans l’oeil de cyclones (cf. Figure 1.5).
L’une des premières études théoriques sur ce mécanisme a été réalisée par Schubert

et al. (1999) (voir également Kossin et Schubert, 2001; Hendricks et al., 2009), dans un
modèle barotrope non-divergent. D’autres études sur ce type d’instabilités ont été réalisées
depuis, notamment par modélisation numérique dans des modèles plus complexes (3D, non-
hydrostatiques, avec une paramétrisation de la couche limite et de la précipitation) (e.g.
Kwon et Frank, 2005, 2008; Hodyss et Nolan, 2008; Hendricks et al., 2009). La littérature
sur les instabilités radiatives, par couplage d’ondes de Rossby et d’ondes d’inertie-gravité
est vaste (e.g. Ford, 1994; Plougonven et Zeitlin, 2002; Schecter et Montgomery, 2006;
Hodyss et Nolan, 2008; Le Dizès et Billant, 2009), mais concerne presque exclusivement
les profils de vorticité monotones (ne mettant en jeu qu’un seul mode de Rossby). La
connaissance du mécanisme de déstabilisation de l’anneau de vorticité en présence d’ondes
d’inertie-gravité (formant une instabilité dite “mixte”), dans le cadre linéaire et non linéaire,
reste imparfaite, et l’impact de la convection humide sur la saturation non linéaire de cette
instabilité n’a jamais été étudiée en soi (i.e. séparément des autres effets non-adiabatiques),
notamment dans un modèle simplifié permettant une analyse détaillée des processus en
jeu. La seule étude – à notre connaissance – se focalisant sur l’impact de l’humidité sur ces
instabilités a été menée par Schecter et Montgomery (2007), dans un modèle continuement
stratifié avec une paramétrisation de l’effet de l’humidité via une réduction de la stabilité
statique, et dans la limite de faibles perturbations.

Dans cette partie, nous étudions donc l’instabilité de l’anneau de vorticité pour des
profils typiques de cyclones tropicaux dans un modèle RSW une couche. Nous nous foca-
lisons sur les ondes d’inertie-gravité associées à cette instabilité. L’instabilité “purement”
radiative (concernant le profil de PV monotone) est ici écartée. Ces résultats sont pré-
liminaires, confirmant en partie et enrichissant des résultats de travaux précédents, dans
l’optique d’une étude plus complète (et innovante) à venir. Une analyse de stabilité linéaire
est réalisée dans un premier temps. La saturation non linéaire des modes instables trouvés
est ensuite étudiée à l’aide de simulations numériques directes.

2.4.2 Analyse de stabilité linéaire

Formulation du problème

On part des équations RSW à une couche en coordonnées polaires (r, θ) :
d~v

dt
+
(
f +

v

r

)
~ez × ~v + g~∇h = 0, (2.18)

∂th+
1

r
[∂r(rhu) + ∂θ(hv)] = 0, (2.19)

où ~v = (u~er, v ~eθ) est le vecteur vitesse et la dérivée lagrangienne est donnée, dans ce système
de coordonnées, par : d(··· )

dt = (∂t + u∂r + v
r∂θ)(· · · ). On adimensionne ces équations en

introduisant le temps typique de rotation du vortex L/Vmax, la longueur (correspondant
au RMW) L = r|Vmax et la vitesse Vmax correspondant à sa valeur maximum au sein du
cyclone. On introduit provisoirement la valeur typique de déviation de la surface libre telle
que h→ H0(1 + λh).

Pour la solution axisymétrique que nous étudions, donnée par (U = 0, V (r), H(r)),
l’équilibre cyclogéostrophique s’écrit, en variables adimensionnées :(

Ro−1 +
V

r

)
V =

λ

Fr2

dH(r)

dr
,
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où le nombre de Rossby introduit est défini globalement, Ro ≡ Roglob = Vmax/fL. Vu les
paramètres typiques pour un cyclone tropical (Ro & 10, Bu & 104), le terme centrifuge
dans cette équation est dominant et on a λ ∼ Fr2. Le système d’équations (2.18)-(2.19)
se réécrit alors :

d~v

dt
+
(
Ro−1 +

v

r

)
~ez × ~v + ~∇h = 0, (2.20)

∂th+ ~∇[(Fr−2 + h)~v] = 0. (2.21)

On procède alors à la linéarisation autour du profil de vorticité de base (à l’équilibre
cyclogéostrophique), comme pour l’instabilité de l’anticyclone (section 2.3.2), et on réalise
une décomposition des perturbations en modes de Fourier de nombre d’onde angulaire l et
de pulsation ω :

(ũ, ṽ, h̃)(r, θ, t) = (iu0, v0, h0)(r)e−i(lθ−ωt).

La dépendance radiale est conservée explicitement (vu la dépendance en r du système
d’équations et du profil de vorticité). Le système d’équations aux valeurs propres obtenu
est alors écrit, sous forme matricielle :

ω

u0

v0

h0

 =

 lΩ (Ro−1 + 2V /r) −DN
∂rV + V /r +Ro−1 lΩ l/r

Fr−2+d(rH)/dr
r + (Fr−2 +H)DN Fr−2+H

r l lΩ

 ·
u0

v0

h0

 (2.22)

On a introduit ici le taux de rotation du vortex de base Ω = V /r, et l’opérateur de
différentiation radiale DN .

Nous résolvons ce système à l’aide de la méthode de collocation adaptée aux coordon-
nées polaires expliquée en section 2.3.5. Les conditions aux limites sont les mêmes que
pour le problème précédent (section 2.3.2) : elles sont imposées par la non-singularité des
solutions en r = 0, et par la méthode de résolution qui implique leur décroissance à l’infini
(cf. section 2.3.5).

Clairement, le problème (2.22) est contrôlé par le profil de vorticité (et les nombres de
Burger – ou Froude – et de Rossby qui lui correspondent), ce que nous discutons ci-dessous.

Choix du profil de vorticité

On choisit d’utiliser un profile de vorticité constant “par morceaux” et lissé, qui contient
peu de paramètres. On définit deux zones de vorticité relative : une au centre et l’autre
formant un anneau autour de la première. Entre ces zones, on utilise un polynome de
Hermite du troisième degré, donné par :

P (x) = 1− 3x2 + 2x3 , P (0) = 1, P (1) = 0

pour éliminer la discontinuité de la dérivée entre les différentes zones. Enfin, la circulation
est bornée par l’ajout d’une troisième zone étendue dans laquelle la vorticité relative est
négative et de faible amplitude. En pratique, on définit un rayon maximal auquel la cir-
culation doit s’annuler, puis on calcule la valeur de la vorticité dans cette troisième zone
en fonction de la circulation engendrée par les deux zones de vorticité positive. Ce rayon
maximum sera donné par la taille du domaine numérique dans lequel on souhaite simuler
la saturation non linéaire des modes obtenus. Au cours de l’analyse de stabilité linéaire, il
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Figure 2.22 – Profil typique pour un cyclone de catégorie 3, avec les paramètres donnés
dans le tableau 2.1. La vitesse et la vorticité relative (cadre de gauche) sont données dans
l’adimensionnement utilisé pour le système d’équations (2.20)-(2.21), tandis que la hauteur
de fluide et l’anomalie de vorticité potentielle (cadre de droite) sont adimensionnés par leur
valeur au repos (H0 et f/H0).

peut être augmenté pour vérifier que la convergence numérique n’est pas affectée par cet
artifice – ce qui est fait, et concluant.

Les paramètres associés à ce type de profil sont les suivants :

— Nombre de Rossby : on définit un nombre de Rossby local Roloc, donné par le maxi-
mum de vorticité relative (c’est à dire la valeur choisie dans l’anneau de vorticité)
divisé par le paramètre de Coriolis.

— Nombre de Burger, qui définit le rapport entre le rayon de déformation et le rayon
extérieur Rext du maximum de vorticité (le tout au carré). Ce dernier rayon corres-
pond également au rayon du maximum de vent. Il est choisi grand (104), en accord
avec les profils typiques des cyclones tropicaux, et ne varie pas.

— Le rayon du bord intérieur Rint de l’anneau de vorticité. Il est donné en fonction du
rayon du bord extérieur et varie donc entre 0 et 1. Ce rayon détermine la largeur
de l’anneau de vorticité.

— La pente des zones de transition, mesurées par leur demi-largeur d. Pour diminuer
le nombre de paramètres, la pente est la même de part et d’autre de l’anneau de
vorticité. La zone extérieure de vorticité négative a une transition très lente (de
demi-largeur d3, localisée en r = R3) à son bord extérieur.

Les nombres de Froude et de Rossby (global), apparaissant explicitement dans notre sys-
tème d’équations adimensionnées, sont alors calculés a posteriori à partir du champ de
vitesse résultant de l’intégration du profil de vorticité. Enfin, le champ de hauteur de la
couche h est calculé en appliquant l’équilibre cyclogéostrophique à partir de ce champ de
vitesse. Un exemple typique de profil de vorticité et de vitesse est donné en figure 2.22.

On effectue l’analyse de stabilité linéaire pour deux types de profil, correspondant
respectivement à des cyclones de catégorie 1 et 3. Les paramètres correspondant à ces
profils sont donnés dans le tableau 2.1. La dépendance par rapport aux paramètres est
étudiée en faisant varier un seul des paramètres à la fois à partir d’un profil donné.
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Type ζ1/ζ2 ζ2/f = Roloc Rint d Roglob Fr R3 d3

Cat. 1 7/66 66 0.65 0.13 18 ≈ 0.2 5 4.5
Cat. 3 7/105 105 0.6 0.15 32 ≈ 0.3 5 4.5

Table 2.1 – Valeurs des paramètres utilisés pour la définition des profils de vorticité

Figure 2.23 – Représentation de la structure du mode le plus instable pour le cyclone de
catégorie 3. A gauche : champ de pression (couleurs) et de vitesse (vecteurs). A droite :
champ de vorticité relative. Les cercles tiretés représentent les niveaux critiques. Les am-
plitudes sont normalisées par le maximum d’amplitude des champs du mode considéré.
(Ici, max(|V |) ' 0.8.)

Structure et taux de croissance des modes instables

Les modes les plus instables, pour les deux types de profil de cyclone que nous étudions,
sont les modes de nombre d’onde angulaire l = 3 et l = 4. La structure du mode le plus
instable pour le cyclone de catégorie 3 avec les paramètres donnés dans le tableau 2.1 est
donnée en figure 2.23. On reconnait une structure équilibrée (au sens du géostrophisme),
avec une circulation cyclonique autour des anomalies de pression négatives et anticyclo-
niques autour des anomalies positives. Ces anomalies sont associées à un motif de vorticité
de forte amplitude. Les zones de vorticité sont localisées au niveau des rayons extérieur
(r = 1) et intérieur (r = 0.6) de l’anneau de vorticité, ce qui confirme que ce mode instable
correspond à la résonance entre deux ondes de Rossby se propageant sur les gradients de
vorticité potentielle.

Le taux de croissance adimensionné de ces modes est σ = 0.23, ce qui correspond à un
temps typique de croissance de l’ordre de quelques heures. Le mode le plus instable trouvé
dans l’analyse du cyclone de catégorie 1 possède fondamentalement la même structure
et le taux de croissance adimensionné est très proche (σ = 0.3). Par ailleurs, en faisant
varier le nombre de Rossby à partir du profil du cyclone de catégorie 3, de Roloc = 105 à
Roloc = 20, nous avons trouvé une variation relative des taux de croissance des deux modes
les plus instables de l’ordre de 10−2. Ceci signifie que le taux de croissance dimensionnel
est directement proportionnel au nombre de Rossby du cyclone.

La figure 2.24 montre l’évolution des taux de croissance des deux modes les plus in-
stables en fonction de la pente du profil de vorticité aux niveaux des rayons intérieur et
extérieur de l’anneau, et de la largeur de ce dernier. Notons que le nombre de Rossby glo-
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Figure 2.24 – Evolution du taux de croissance des 2 modes les plus instables en fonction de
la demi-largeur d des transitions dans le profil de vorticité (cadre de gauche) et de la valeur
du rayon intérieur de l’anneau de vorticité (Rint – cadre de droite). Les autres paramètres
du vortex correspondent au cyclone de catégorie 3 et sont donnés dans le tableau 2.1, sauf
pour le cadre de droite où le paramètre de la pente des transitions est fixé à 0.1 au lieu
de 0.15. Noir : partie réelle de la pulsation. Rouge : taux de croissance. Bleu : taux de
croissance “corrigé” par le nombre de Rossby.

bal varie (puisque l’on fixe le nombre de Rossby local pour initialiser le profil), notamment
lorsque le rayon de l’anneau de vorticité varie. Pour pouvoir discuter la valeur du taux de
croissance indépendamment du nombre de Rossby, on ajoute (en bleu) l’évolution des taux
de croissance multipliés par le ratio Roglob/Roglob

pmax, où Roglob
pmax est la valeur du nombre de

Rossby global pour le profil correspondant à la valeur maximale du paramètre en abcisse.
L’effet global de l’augmentation de la largeur de l’anneau, en partie compensée par

l’augmentation du nombre de Rossby, est de diminuer la valeur du taux de croissance
des modes instables. (On a vérifié l’absence d’autres modes pouvant aparaître et devenir
dominant.) Ceci s’explique par le fait que les perturbations associées aux ondes de Rossby,
localisées sur les gradients de vorticité (et donc d’extension radiale limitée), sont de plus
en plus séparées lorsque la largeur de l’anneau augmente. Leur interaction mutuelle décroit
en conséquence. L’impact de la pente est plus complexe : alors que l’augmentation de la
pente (i.e. la diminution de d) annule le taux de croissance du mode instable l = 4 (après
avoir atteint un maximum précédé d’une croissance), le taux du croissance du mode l = 3
augmente continuement.

Caractérisation des ondes dans les modes

Les modes obtenus par analyse de stabilité linéaire correspondent aux modes instables
présents dans un modèle barotrope incompressible (i.e. dans les équations d’Euler 2D
incompressibles) (Schubert et al., 1999). Cependant, ils contiennent une signature en di-
vergence. Celle-ci atteint des valeurs normalisées de l’ordre de 10−1 dans la zone interne
au rayon critique extérieur (cf. fig. 2.23) dans certains cas, en fonction du profil du cyclone
et du nombre d’onde angulaire. A l’extérieur de ce rayon critique et du motif de vorticité
associé au mode instable, un signal typique d’ondes d’inertie-gravité est visible, avec une
amplitude faible. Ce motif est montré dans la figure 2.25 dans le cas du mode le plus
instable (l = 3) du cyclone de catégorie 3.

Le champ de divergence, au coeur du cyclone, est erratique : il présente des disconti-
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Figure 2.25 – Représentation du champ de divergence pour le mode le plus instable
l = 3 du cyclone de catégorie 3. Cadre de gauche : Représentation 2D (couleurs saturées
à 10−3). On voit notamment la structure en spirale due à l’advection de ces ondes par
l’écoulement cyclonique du vortex, et la différence de motif très marquée près du centre,
dans la zone d’instabilité barotrope. Cadre de droite : représentation de la divergence des
modes propres (partie réelle, partie imaginaire et valeur absolue) en fonction du rayon,
avec différents zooms.

nuités. Les deux principaux pics visibles coincident avec la position des niveaux critiques.
Il faut préciser que les détails de la structure du champ de divergence dans cette zone
convergent lentement avec la résolution : le motif observé n’est stable qu’à partir d’un grand
nombre de points de collocationN ≥ 300. Ceci reflète en partie seulement la convergence de
la résolution numérique du problème. En effet, les valeurs propres convergent rapidement
(N ≥ 100). Nous associons cette sensibilité de la structures des modes au caractère mal
conditionné de la matrice du problème (2.22), mais la différentiation supplémentaire pour
obtenir le champ de divergence constitue évidemment une source supplémentaire d’erreur :
la structure des champs h, u et v change peu avec la résolution. L’amplitude du champ de
divergence montre une décroissance régulière à partir d’un certain rayon, en accord avec
la structure des ondes d’inertie-gravité : leur expression est donnée, à l’état de repos et en
coordonnées polaires, par les fonctions de Bessel du premier type (e.g. Landau et Lifshitz,
1987; Montgomery et Lu, 1997) dont la décroissance est en 1/

√
r. La structure de cette

partie extérieure du champ de divergence – notamment son amplitude – ne varie pas avec
la résolution. Une comparaison de l’amplitude des modes d’inertie-gravité entre les diffé-
rents profils montre qu’elle augmente avec le nombre de Rossby : typiquement d’un ordre
de grandeur lorsque le nombre de Rossby global double (de 15 à 35).

2.4.3 Saturation non linéaire des instabilités

La saturation non linéaire de l’instabilité de l’anneau de vorticité est étudiée à l’aide
de simulations numériques directes. La méthode est la même que dans l’étude sur l’insta-
bilité d’anticyclones isolés (section 2.3.4). On utilise comme conditions initiales le profil de
vorticité utilisé pour l’analyse de stabilité linéaire, auquel on superpose une perturbation
correspondant au mode instable calculé. D’autres simulations partant de perturbations
aléatoires (à l’équilibre géostrophique) de l’anneau de vorticité sont également réalisées
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pour confirmer les processus observés dans cette première classe de simulations.

Figure 2.26 – Evolution de l’anomalie de vorticité potentielle au cours de la saturation non
linéaire de l’instabilité du cyclone tropical de catégorie. Mode le plus instable : l = 3. De
gauche à droite et de haut en bas : t = 0, 0.5, 1, 1.5, 2 et 4 f−1. Une petite portion seulement
du domaine numérique est montrée. Les coordonnées spatiales sont adimensionnée par la
taille typique du vortex, et la vorticité potentielle est adimensionnée par f/H0.

La taille du domaine de calcul (adimensionné par la taille typique du cyclone) est de
20 × 20 et la résolution utilisée est 801 × 801. Les forts gradients de PV nous intiment
d’utiliser une résolution très grande pour simuler correctement l’évolution de l’anneau de
vorticité. Si la structure était localisée et les instabilités non radiatives, nous pourrions
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utiliser un domaine numérique relativement petit, qui serait valable tant que les champs
resteraient non perturbés au niveau des bords du domaine. Mais les instabilités présentes
émettent des ondes et la décroissance de la circulation associée au cyclone est lente, ce
qui implique l’utilisation d’un domaine suffisamment grand. Les conditions aux limites de
Neumann sont imposées pour absorber – dans une certaine mesure – les ondes émises.

L’évolution de l’anomalie de vorticité potentielle au cours de la saturation non linéaire
de l’instabilité est montrée dans la figure 2.26. L’amplitude de la perturbation initiale est
faible : la valeur maximale du rapport des maxima d’amplitude de la perturbation et du
profil de base, pour le module de la vitesse, est de l’ordre de 10−1. La perturbation est
néanmoins visible sur le champ de PV à t = 0. Des disques de forte anomalie de vorticité
positive se forment le long de l’anneau et sont séparés les uns des autres par des zones
de vorticité moins forte. Ces disques vont par la suite fusionner (vers t = 200 f−1) et
conduire à la redistribution de la vorticité potentielle vers un profil monotone (monopôle).
Un enroulement de filaments de vorticité potentielle est visible à t = 0.5 f−1 et t = 1 f−1

au voisinage du rayon critique extérieur associé au profil initial non perturbé (r ≈ 1.3).

(a) t = 0 f−1 (b) t = 0.4 f−1

Figure 2.27 – Comparaison du champ de divergence initial et au cours du développe-
ment de l’instabilité (à t ' π/σ), pour une perturbation initiale très petite. La barre de
couleur est valable pour les deux cadres, pour faciliter la comparaison. Les lignes vertes
sont des isocontours de vorticité potentielle (adimensionnées par f/H0) à la valeur Roloc,
permettant de visualiser les bords de l’anneau de vorticité.

Le motif de divergence associé au développement de l’instabilité est donné en figure
2.27 et est comparé aux conditions initiales. Il est clair que la saturation de l’instabilité
mène à une amplification des ondes d’inertie-gravité. Cette valeur de l’amplification at-
teint rapidement une saturation (sur une durée de l’ordre du temps typique de croissance
de l’instabilité) avec une amplitude de la divergence de l’ordre de 10−2 au voisinage du
rayon critique extérieur. Par la suite, l’amplitude du champ de divergence fluctue et s’atté-
nue lentement. Cette saturation a été testée en réalisant une simulation non-linéaire dans
laquelle l’amplitude de la perturbation initiale est plus faible (d’un facteur 5). L’ampli-
tude maximum des ondes, à saturation, n’est pas modifiée par ce changement d’amplitude
de la perturbation initiale. Il apparait également des oscillations à petite échelle, dont
l’origine est inconnue. On note cependant que le motif de divergence proche de l’anneau
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du cyclone montre des oscillations, probablement numériques, de petite longueurs d’onde
(de l’ordre de quelques points de grille). Ces oscillations sont cependant alignées avec la
grille et ont donc une géométrie carrée, par projection de l’écoulement axisymétrique sur la
grille numérique cartésienne. Les oscillations observées dans le champ lointain sont, elles,
axisymétriques, et des tests doivent être effectués pour déterminer si elles sont d’origine
physique ou numérique.

Figure 2.28 – Evolution de la moyenne angulaire de la hauteur de la couche de fluide
(géopotentiel) (gauche) et de la vitesse azimutale (droite) au cours de la destabilisation
du cyclone de catégorie 3. Chaque courbe correspond à un instant différent, donné dans la
légende (en unités f−1).

La redistribution de la vorticité potentielle est associée à une redistribution du champ
de vent et un creusement de la dépression au centre du cyclone, comme illustré dans
la figure 2.28. C’est ce processus qui est susceptible de jouer un rôle dans le cycle de
réintensification des cyclones. La valeur du maximum de vitesse est diminuée au niveau
du RMW mais augmentée à l’intérieur de celui-ci (dans le coeur du cyclone). Les effets
non-adiabatiques associés à la circulation secondaire et à la convection humide, vont alors
permettre une réintensification des vents au niveau du mur, ce qui conduira finalement à
une augmentation de la circulation.

2.4.4 Résumé de l’instabilité de cyclones tropicaux – Perspectives

Nous avons trouvé les modes (linéairement) instables de l’anneau de vorticité consti-
tuant certains coeurs de cyclones tropicaux, dans un modèle en eau peu profonde. La
nature de l’instabilité associée est une instabilité barotrope couplée à des ondes d’inertie-
gravité se propageant vers l’extérieur. L’amplitude de ces ondes est faible. La saturation
non-linéaire de l’instabilité de l’anneau de vorticité conduit à une redistribution de celui-ci
en un monopôle de vorticité monotone (décroissant avec le rayon), redistribution associée
à une modification de la distribution de vent azimutal et une amplification du minimum
de pression au centre du cyclone. Les valeurs de la divergence au sein du coeur du cyclone
sont petites, mais non négligeables (de l’ordre de 10−1 f).

Ces résultats posent une base pour étudier l’impact dynamique des processus humides
(via le dépôt de chaleur latente associé à la convection précipitante). La vitesse verticale
associée à la divergence du vent horizontal au niveau du coeur du cyclone va modifier la
distribution des cellules de convection (initialement réparties selon un anneau, constituant
le mur du cyclone), et cette convection va en retour modifier le développement de l’instabi-
lité. L’émission d’ondes d’inertie-gravité sera également affectée par la convection humide.
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Une étude de ces mécanismes utilisant un modèle simplifié de la dynamique atmosphérique
incluant les effets de la convection humide (Bouchut et al., 2009; Lambaerts et al., 2011a)
devrait être réalisée dans un futur proche.
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2.5 Conclusions

Dans ce chapitre, nous avons étudié les instabilités de tourbillons anticycloniques isolés
et de tourbillons cycloniques (avec un profil de vorticité en anneau), toutes deux dans un
contexte agéostrophique, associé à des nombres de Rossby très grands. Une analyse de sta-
bilité linéaire nous a permis de dégager les différents modes instables et leur sensibilité aux
paramètres de l’écoulement. La saturation non linéaire des instabilités correspondant à ces
modes a ensuite été simulée numériquement à haute résolution. Le caractère agéostrophi-
que de ces instabilités consiste en la génération de mouvements non-équilibrés, typiquement
associés à de fortes valeurs de la divergence horizontale – qui est un proxy pour la vitesse
verticale dans les modèles RSW – à la génération d’ondes d’inertie-gravité, et à la formation
éventuelle de fronts.

L’instabilité centrifuge de tourbillons anticycloniques isolés apparaît pour les grands
nombres de Rossby. Elle est également favorisée par la grandeur de la taille du tour-
billon. Cette instabilité est typiquement agéostrophique, et sa saturation entraîne l’émis-
sion d’ondes de gravité de forte amplitude et la formation de fronts dans l’écoulement. En
particulier, nous avons mis en évidence un mécanisme de brisure de la symétrie initiale de
l’écoulement, par la destabilisation d’un front concentrique se propageant vers l’intérieur du
vortex. Les ondes et les fronts sont responsables d’une forte dissipation d’énergie cinétique.
La saturation de cette instabilité entraîne, dans un premier temps, une redistribution du
moment angulaire et de la vorticité potentielle vers un profil marginalement stable selon le
critère de Rayleigh pour l’instabilité centrifuge. Cependant, cette structure transitoire se
destabilise systématiquement et conduit à une réorganisation de la structure initialement
monopolaire en un ensemble de multipôles et de monopôles séparés.

L’instabilité centrifuge peut également être non axisymétrique. Nous avons montré que
ces modes (typiquement avec des nombres d’onde angulaires l = 1 et l = 2) peuvent être
les modes les plus instables, notamment lorsque le nombre de Rossby diminue ou que le
nombre de Burger augmente par rapport au domaine de l’instabilité centrifuge axisymé-
trique. Le taux de croissance des instabilités centrifuges diminue lorsque la stratification
ou le cisaillement vertical de l’anticyclone augmentent, d’autant plus que le nombre d’onde
considéré est petit, favorisant ainsi la prédominance des modes centrifuges asymétriques.
La saturation non linéaire des instabilités centrifuges non axisymétriques a des propriétés
similaires à celles de l’instabilité centrifuge classique, si ce n’est que la symétrie initiale de
la perturbation est conservée.

Enfin, nous avons mis en évidence la compétition possible entre l’instabilité barotrope
(agéostrophique) et l’instabilité centrifuge asymétrique, pour des valeurs intermédiaires
des nombres de Rossby et de Burger. Les saturations non linéaires de ces deux instabilités
sont très différentes : l’émission d’ondes dans le cas de l’instabilité centrifuge est intense
et persistante, tandis que celle associée à l’instabilité barotrope est d’amplitude moindre
et localisée dans le temps. De plus, le développement de l’instabilité barotrope relaxe vers
des structures dipolaires stables et non radiatives, tandis que le mode centrifuge donne lieu
à un tripôle (stable également) émettant continuellement des ondes d’inertie-gravité. Ces
différences émergent à partir d’un même anticyclone où seule la perturbation change, ce
qui témoigne d’une grande sensibilité de l’écoulement aux conditions initiales.
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Dans le cadre de cyclones tropicaux, une analyse de stabilité linéaire nous a permis
de dégager les modes instables, consistant en une instabilité barotrope de l’anneau de
vorticité couplée à des ondes d’inertie-gravité de faible amplitude. L’impact de l’intensité
du gradient de vorticité sur les bords de l’anneau, d’une part, et de la largeur de cet anneau,
d’autre part, a été étudié. Les simulations numériques de la saturation non linéaire de cette
instabilité ont montré un processus de redistribution des profils de vorticité, de vent et de
pression, qui est possiblement associé à un mécanisme de réintensification présent dans les
cyclones tropicaux. Elles ont également permis de quantifier l’émission d’ondes par cette
instabilité, qui est présente mais d’amplitude faible.



CHAPITRE 3

Structures agéostrophiques multipolaires

3.1 Dipôles et tripôles agéostrophiques dans le modèle RSW
à une couche

On peut considérer que l’origine des études sur les dipôles de vorticité dans les écoule-
ments (quasi) bidimensionnels remonte au dipôle de Lamb-Chaplygin (Lamb, 1932). Cette
structure est une solution exacte des équations d’Euler bidimensionnelles pour un fluide
incompressible et consiste en un dipôle de vorticité contenu dans un cercle de rayon fini.
La solution est en mouvement de translation rectiligne et uniforme sous l’effet de l’in-
teraction des deux pôles de vorticité (de signes opposés), et elle est stationnaire dans le
repère comobile. Il est connu que le dipôle de vorticité est robuste et peut se former au
sein d’écoulements bidimensionnels turbulents (e.g. Couder et Basdevant, 1986).

3.1.1 Modon QG : dérivation succinte

Du fait de l’analogie formelle entre les équations d’Euler 2D incompressibles et quasi-
géostrophiques (barotropes), la dérivation de la solution exacte dipolaire dans ces dernières
est évidente et existe dans la littérature depuis le milieu des années 70, dans le cadre des
approximations du plan f (Kamenkovich et Reznik, 1978) ou β (Stern, 1975; Larichev et
Reznik, 1976). On redonne ici la dérivation de cette solution.

L’équation de base à considérer est donc l’équation QG barotrope (1.25) que l’on peut
réécrire pour une solution stationnaire se propageant à vitesse uniforme c selon l’axe ~ex :

J (Ψ + cy,∆Ψ− Λ2Ψ) = 0. (3.1)

Cette équation traduit une relation fonctionnelle entre la fonction de courant considérée
dans le repère comobile et la vorticité potentielle linéarisée. La solution de type "modon"
est obtenue en considérant une relation linéaire entre ces deux quantités, qui diffère selon
que l’on se place à l’intérieur d’un cercle de rayon unité (appelé séparatrice) ou à l’extérieur.
Dans le dernier cas, puisque l’on cherche une solution localisée, la vorticité potentielle est

73
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Figure 3.1 – Comparaison du champ d’anomalie de pression (Ψ en QG, h−H0 en RSW,
grandeurs adimensionnées) avec le champ de vitesse superposé, et d’anomalie de vorticité
potentielle entre la solution dipolaire QG et la solution agéostrophique dans le modèle
RSW obtenue par simulations numériques. Isolignes données à intervalle ±0.04 pour la
pression/hauteur (adimensionnées respectivement par gH0 et H0) et ±0.5 pour l’anomalie
de PV (adimensionnée par f/H0). Rouge : cyclone, bleu : anticyclone, noir : anomalie
nulle. Paramètres du modon : Ro = 0.2, Bu = Λ−2 = 1.

imposée nulle. La solution dipolaire est alors obtenue, après séparation des variables en
coordonnées polaires (r, θ) :

Ψ =

−
K1(Λr)
K1(Λ) sin θ , r ≥ 1[

Λ2

Π2
J1(Πr)
J1(Π) − r

(
1 + Λ2

Π2

)]
sin θ , r < 1.

(3.2)

Ici, J1 et K1 désignent les fonctions de Bessel et Bessel modifiée, Π =
√
A2 − Λ2 où −A2

est le coefficient de proportionalité entre la PV est la fonction de courant dans le repère
comobile à l’interieur de la séparatrice, déterminé par les conditions de raccordement à la
séparatrice qui assurent la continuité de la solution et de sa première dérivée.

3.1.2 Modon RSW : preuves d’existence, propriétés

Si la connaissance de la solution dipolaire dans les équations QG découlait naturelle-
ment de la solution de Lamb-Chaplygin, l’existence de ce type de solution dans le modèle
RSW restait incertaine. En effet, la compressibilité de l’écoulement dans ce dernier et
l’existence d’ondes d’inertie-gravité qui y est associée peuvent avoir un impact fort sur
les solutions possibles dans ce domaine, les ondes représentant un moyen d’évacuer de
l’énergie pour une perturbation localisée (ce qui est observé dans le cas de l’ajustement
géostrophique, cf. section 1.3). Si un équivalent du modon QG existe dans les équations
RSW, en connaître les propriétés et surtout les différences par rapport à la solution QG
représente un gain dans la connaissance des écoulements géophysiques agéostrophiques.
Ainsi, une solution semi-analytique a été proposée par Kizner et al. (2008) et une solu-
tion stable a été observée dans des simulations numériques par Ribstein et al. (2010). Le
modon agéostrophique obtenu par ajustement de la solution QG dans les équations RSW
présente une forte asymétrie cyclone/anticyclone, les champs de pression et d’anomalie de
vorticité potentielle associés à l’anticyclone étant plus étendus dans l’espace (cf. Fig. 3.1),
et la trajectoire du modon étant curviligne – inclinée du côté du pôle anticyclonique.
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Le modon obtenu porte un quadrupôle de divergence stationnaire dans le repère co-
mobile. Cependant, et malgré un nombre de Rossby relativement élevé (avec un maximum
de valeur absolue de la vorticité relative et de l’anomalie de vorticité potentielle de l’ordre
de 4 f/H0), le dipôle est une structure cohérente : la fonction de Bernouilli dans le repère
comobile est fonction de la vorticité potentielle, caractéristique d’un écoulement station-
naire (cf. section 1.4), et évolue sur une longue durée (devant le temps "de retournement"
typique qui lui est associé L/U où L est la taille typique du modon et U la vitesse typique
sur son axe). Il n’y a pas d’émission d’ondes d’inertie-gravité observée durant son évolution,
signe d’une séparation dynamique entre ondes et tourbillons dans un contexte pourtant
agéostrophique.

Pour tester la stabilité du modon et les effets de la compressibilité du modèle sur
sa dynamique, des expériences numériques mettant en jeu des collisions frontales ont été
réalisées. L’issue de ces collisions est la formation de nouveaux dipôles après échange de
partenaires (Ribstein et al., 2010), sans destruction des structures. Il n’y a pas d’émission
d’ondes associée à cette collision et l’énergie est conservée (la seule modification du bilan
énergétique est un transfert transitoire d’énergie potentielle en énergie cinétique), de sorte
que la collision peut-être qualifiée de quasi-élastique.

3.1.3 Multipôles agéostrophiques barotropes

Dans un second temps, des simulations numériques de collisions frontales et orthogo-
nales avec différents paramètres d’impact (la distance entre les axes de propagation propres
à chaque modon au moment de la collision) ont été réalisées. Ce travail, publié dans le jour-
nal Physics of Fluids (Lahaye et Zeitlin, 2011), est inclu dans la section suivante (texte
original en anglais et remis en forme conformément au présent manuscrit). Les résultats
principaux sont résumés ici.

Dans le cadre des collisions frontales, et selon la valeur du paramètre d’impact, trois
types de situations ont été observées :

— La collision élastique, avec échange de partenaire,
— La fusion d’anticyclones donnant lieu à un tripôle de vorticité,
— La collision inélastique avec destruction partielle des pôles de vorticité.

La fusion d’anticyclone (qui se produit lorsque les modons se rencontrent par leur pôle
anticyclonique) donne lieu à une nouvelle structure cohérente et agéostrophique du modèle
RSW. Elle est constituée d’un coeur anticyclonique et de deux satellites cycloniques, et
possède une rotation d’ensemble dans le sens anticyclonique. Dans la configuration opposée
où les structures se rencontrent par leur pôle cyclonique, aucune formation de tripôle n’a
été observée. Ainsi, la structure tripolaire formée d’un coeur cyclonique et de deux satellites
anticycloniques n’a pas été trouvée dans ces simulations numériques, ce qui constitue une
manifestation évidente de l’asymétrie cyclone/anticyclone qui existe dans le modèle RSW.

Dans de nombreux cas de collisions perpendiculaires, la formation d’un nouveau type
de dipôle, appelé “modon non linéaire”, a été observé. Cette structure se caractérise par une
distance accrue entre les deux pôles de vorticité, engendrant une réduction de sa vitesse de
propagation. Il est à noter qu’elle est l’équivalent agéostrophique du modon non linéaire
proposé dans les équations d’Euler 2D incompressibles (e.g. Kizner et Khvoles, 2004c)
lorsque l’on considère une relation entre vorticité et fonction de courant qui n’est plus
linéaire, à l’intérieur d’une séparatrice elliptique – d’où son nom.
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3.2 Article : Collisions of ageostrophic modons and formation
of new types of coherent structures in rotating shallow
water model

[ N. Lahaye and V. Zeitlin, Phys. Fluids, 23 :061703 :1–4, 2011 ]

Abstract :

We study collisions of recently discovered ageostrophic modons in rotating shallow
water model at different values of impact parameter and find that two new types of coherent
vortex structures may be formed during this process : "nonlinear" modons, i.e. coherent
dipoles with essentially nonlinear scatter plot, and coherent tripoles. Both are known for
incompressible 2D Euler equations, but were not reported in the "compressible" shallow
water model. Inelastic scattering with strong filamentation and shearing is also possible.
Surprisingly, the strongly nonlinear process of coherent structure formation leads to almost
no emission of inertia-gravity waves.

The modon (dipolar steady-moving vortex) solutions of the quasi-geostrophic equation
on the f - plane are known in geophysical fluid dynamics for decades (Kamenkovich et
Reznik, 1978). Quasi-geostrophic equation being an asymptotic limit of rotating shallow
water (RSW) equations at vanishing Rossby numbers, a natural question arises about exis-
tence of modons in the full model at finite Rossby numbers. Such ageostrophic modons
will be called AGM, and quasigeostrophic modons will be called QGM below. Recently,
a theoretical AGM solution of RSW equations was proposed by Kizner et al. (2008), and
numerical AGM, with slightly different properties, was obtained by Ribstein et al. (2010)
by adjustment of the QGM initial configuration in the full RSW. Let us remind that for
steady moving structures the Bernoulli function and potential vorticity (PV) are functio-
nally dependent (Malanotte-Rizzoli, 1982), which should be reflected by the corresponding
scatter plot. The scatter plot for AGM was obtained by Ribstein et al. (2010), and is almost
linear. It was also found by Ribstein et al. (2010) that frontal collision of two AGM was
quasi-elastic, with an exchange of anticyclonic partners.

In the present work we present results of a thorough investigation of the AGM collisions
at different impact parameters. Several hundreds of numerical experiments with frontal and
lateral collisions were performed. The main result is a discovery of coherent ageostrophic
tripoles (T) and dipoles of a new kind ("nonlinear" AGM, NAGM). Three main classes of
head-on collisions were observed, depending on the impact parameter :

— 2 AGM → 2 AGM , quasi-elastic with partner exchange,
— 2 AGM → 2 NAGM, quasi -elastic
— 2 AGM → 1 T, inelastic with fusion of anticyclones

The last two were observed only when the anticyclonic partners of the AGMs hit each
other - see below.

Lateral collisions typically produce strong filamentation and shearing, and result mostly
in non-stationary states. In certain cases one AGM and one NAGM result from such col-
lisions.

The simulations were initialized as follows : 1) AGM were obtained by "ageostrophic"
adjustment of QGM in the full RSW model, as in (Ribstein et al., 2010) ; 2) a portion
of the computational domain containing AGM was cut-off and pasted twice into initial
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configuration at different positions/orientations. Typical Rossby numbers of thus obtained
AGM were 0.2÷ 0.4. The numerical scheme was the same as in (Ribstein et al., 2010), i.e.
high-resolution finite-volume and well-balanced (Bouchut, 2007). It is to be stressed that
in all simulations presented below the colliding AGM are identical, the only change is in
the impact parameter.

We will present below only the typical cases of nonlinear dipole and tripole formation,
a description of 2 AGM → 2 AGM scattering with partner exchange, may be found in
(Ribstein et al., 2010).

2 AGM → 2 NAGM collisions :

The initial and the late stages of a typical AGM → NAGM collision are presented
in Fig. 3.2. One can see the formation of dipoles, which keep their coherence, with much
larger distance between the centers of cyclonic and anticyclonic vorticity, as compared to
AGM.
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Figure 3.2 – Evolution of the PV anomaly during the 2 AGM → 2 NAGM collision.
From left to right : t = 18, 34, 40 100. Time is mesured in units of f−1, where f is the
Coriolis parameter, and PV contours are represented at the interval 0.5, starting from the
values ±0.1 (resp., black (+) and grey (-)) in non-dimensional units of f

H0
, where H0 is

the non-perturbed fluid depth.

Evolution of the energy of the system during the collision is presented in Fig. 3.3, as well
as the evolution of the energy dissipation. (We remind that the numerical scheme integrates
the RSW equations in the conservative form, (cf. Bouchut, 2007), and has no explicit
dissipation. The numerical dissipation is calculated as the departure of the discrete energy
balance in each grid cell summed over all cells. The built-in property of the code is that
dissipation is positive cell-wise). Both the peak of dissipation and the strong transfer from
kinetic to potential energy correspond to the period of temporal fusion of the anticyclonic
vortices, cf. Fig. 3.2, second panel.
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Figure 3.3 – Upper panel : kinetic (da-
shed) and potential (continuous) energy
during the 2 AGM → 2 NAGM collision ;
lower panel : total energy (continuous)
and the dissipation (crosses).

The distribution of the pressure, with superimposed velocity field, and of the PV in
the resulting NAGM are presented in Fig. 3.4.
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Figure 3.4 – Isobars with superimposed
velocity field (left) and PV anomaly (right)
of the NAGM of Fig. 3.2 at t = 80. Iso-
bars at the interval 0.04, PV from ±0.1
at the interval 0.5. Thin dotted line on the
left panel indicates the zero of the pressure
anomaly.

Figure 3.5 – Left panel : Bernoulli function vs
PV for the NAGM : the curve is far from li-
nearity, which explains the name. Right panel :
typical scatter plot for AGM.

Scatter plot for NAGM is given in Fig. 3.5, as compared to the typical scatter plot for
an AGM. A surprising fact observed during the simulations was the absence of inertia-
gravity wave (IGW) emission during the collision and formation of NAGM. We should
remind that the colliding AGM themselves were obtained by (a)geostrophic adjustment
of QG modons accompanied by a net IGW emission clearly seen in the divergence field
(Ribstein et al., 2010). In Fig. 3.6 we present the divergence field associated to the NAGM
shortly (10 inertial periods) after its formation. It is weak, and has a quadrupolar structure
with a very weak signs of IGW at its extremities. IGW are quasi-inexistent on the earlier
snapshots either (not shown). The weakness of the divergence pattern associated to NAGM
is consistent with its almost balanced velocity field, cf. the left panel of Fig. 3.4. Yet its
global Rossby number calculated with the peak velocity gives 0.2, and the local Rossby
number calculated with the peak relative vorticity is 1.6, which is somewhat lower than
the values for original AGM (0.4 and 2, respectively), but still non-negligeable.
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Figure 3.6 – Divergence field of the
NAGM : contours of ± 0.01, resp. grey
(+) and black (-), are shown, the maxi-
mum value being close to this one. An
isoline of PV anomaly of |0.1| is super-
imposed to visualize the vortex.

2 AGM → T collisions :

The initial and late stages of a typical 2 AGM → T collision are presented in Fig. 3.7.
The behavior of energy and dissipation during the 2 AGM → T collision is given in Fig.
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Figure 3.7 – Evolution of the PV anomaly during the 2 AGM → T collision. From left to
right : t = 18, 34, 50 and 100. Same conventions as in Fig. 3.2

3.8. Again, the maximum of dissipation and a significant transfer from kinetic to potential
energy correspond to the moment of initial fusion of anticyclonic vortices.

The pressure, velocity and the PV fields of the resulting vortex are presented in Fig.
3.9. The tripole keeps its coherence, which is confirmed by the scatter plot of Fig. 3.10, for
several hundreds of inertial periods and slowly rotates (not shown).

As in the NAGM case the tripole is almost balanced, although its Rossby number is
not negligeable (0.25 for the global, and 1.9 for the local one, respectively, as estimated
just after the tripole formation). It is also accompanied by a divergence pattern, presented
in Fig. 3.11, with a very weak IGW emission.
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Figure 3.8 – Upper panel : kinetic (da-
shed) and potential (continuous) energy
during the 2 AGM → T collision ; lower
panel : total energy (continuous) and the
dissipation (crosses).
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Figure 3.9 – Isobars with superimposed velocity field (left) and PV anomaly (right) of
the tripole. Isobars at the interval 0.04, PV from ±0.1 at the interval 0.5. Thin dotted line
on the left panel indicates the zero of the pressure anomaly.
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|0.1| is superimposed to visualize the vortex.
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Discussion

Thus, we have shown that collisions of AGM produce nonlinear ageostrophic dipoles
and tripoles. Both are known in the context of 2D Euler equations (Hesthaven et al.,
1995), (Kizner et Khvoles, 2004b) and, by extension, are expected in the QG equation.
Yet, we observe them in full "compressible" RSW simulations, starting from definitely
ageostrophic initial conditions. The degree of ageostrophy of these coherent structures is
less than that of initial ones. For example, the peak absolute value of divergence in AGM
before collisions is ≈ 0.1, while it is ten times less for the NAGM. So one may speak
of a "strange" geostrophic adjustment without IGW emission, which is one of the most
striking features of our simulations. It should be mentioned that both nonlinear dipoles and
tripoles maintain their coherence for hundreds of inertial periods, slowly becoming more
and more geostrophic, mostly due to dissipation, but also by a very weak IGW emission,
not shown. For example, the peak local Rossby number (peak relative vorticity divided by
f) of NAGM after 200 inertial periods is ≈ 0.7, the same as that of the tripole after 1000
inertial periods.

Acknowledgements : This work was supported by the French ANR grant SVEMO. We
are grateful to B. Ribstein for his help at the initial stage of this work.
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3.3 Shock Modon : Introduction à l’article

Les solutions multipolaires obtenues dans les études précédentes sont des exemples de
structures cohérentes agéostrophiques stables du modèle RSW. La séparation dynamique
entre ondes et tourbillons dans ce contexte est étonnament robuste et joue en faveur de
la longévité des structures, puisque celles-ci évoluent ainsi dans un environnement sans
puit d’énergie. La séparation dynamique étant une caractéristique des écoulements à faible
nombre de Rossby, il est intuitif de penser que le comportement de ces structures serait
fortement affecté si l’on augmente le nombre de Rossby. Notamment, en augmentant le
nombre de Rossby à nombre de Burger fixe, on augmente le nombre de Froude (équivalent
au nombre de Mach dans ce modèle) Fr = Ro/

√
Bu = U/

√
gH0. Lorsque celui-ci at-

teint l’unité, l’écoulement change de régime et devient supersonique (la vitesse typique de
l’écoulement est supérieure à la vitesse de propagation des ondes).

L’ajustement de la solution QG tel que réalisé dans les travaux de Ribstein et al.
(2010) et présenté dans la section 3.1.2 est donc épétée à plus grand nombre de Rossby,
et la structure obtenue est étudiée. Curieusement, le découplage entre ondes et tourbillons
est persistant, malgré l’apparition d’un ressaut hydraulique sur l’axe du dipôle. Suivant
les expériences numériques de collisions avec différents paramètres d’impact présentées
dans la section précédente (3.2 et article associé (Lahaye et Zeitlin, 2011)), la stabilité du
dipôle avec un choc (“shock-modon”) est confirmée et un tripôle contenant deux ressauts
hydrauliques – sur chaque jet contenu entre le coeur et un satellite – est obtenu. Ces
résultats ont été publiés dans Physical Review Letters (Lahaye et Zeitlin, 2012c), et le
contenu de l’article correspondant est inclu ci-après, en anglais.
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3.4 Article : Shock Modon : a new type of coherent structure
in rotating shallow water

[ N. Lahaye and V. Zeitlin, Phys. Rev. Lett., 108 :044502, 2012 ]

Abstract : We show that a new type of coherent structure, a shock-modon, exists in
rotating shallow water model at large Rossby numbers. It is a combination of an asymmetric
vortex dipole with a stationary hydraulic jump. The structure is long-living, despite the
energy dissipation by the hydraulic jump, and moving along a circular path. Collisions of
shock-modons can be elastic, or lead to formation of shock-tripoles.

Rotating shallow water (RSW) is a standard conceptual model in geophysical fluid dy-
namics (Pedlosky, 1987). It is also relevant for various astrophysical applications, such
as dynamics of the solar tachocline (Gilman, 2000) and dynamics of the accretion disks
(Umurhan, 2008). It should be also reminded that the well-known quasigeostrophic (QG)
model for large-scale oceanic and atmospheric motions (Pedlosky, 1987), which follows
from the RSW equations in the limit of small Rossby numbers (Ro = U

fL , where U and
L are respectively typical velocity and length scales and f is the Coriolis parameter), is
equivalent to the Hasegawa-Mima equation (Mima et Hasegawa, 1978) for drift waves in
plasma.

The famous modon (dipolar steady-moving localized vortex) solutions of the QG equa-
tion are long-known (Larichev et Reznik, 1976). (Note that so-called beta-plane version of
the QG equation - where the meridional gradient of the Coriolis force is taken into account
- was used in this paper, although the so-called f -plane constant Coriolis parameter version
of the modon is also known (Kamenkovich et Reznik, 1978).) Quasigeostrophic equation
being an asymptotic limit of RSW equations, a natural question arises about existence of
modons in the full model at finite Rossby numbers. Recently, such ageostrophic modon
solution of the RSW equations was obtained theoretically (Kizner et al., 2008), and found
numerically (Ribstein et al., 2010) by relaxation of the QG modon which was taken as ini-
tial configuration in the full RSW model. For initial configurations with sufficiently small
Rossby numbers the QG modon did not change, while for large Rossby numbers (typically
0.2) it evolved towards cyclone - anticyclone asymmetric ageostrophic coherent structure
(let us recall that QG modon is a perfectly symmetric dipole).

In the present work we report a discovery of an essentially ageostrophic modon (Ro =
0.4) which is bound to a hydraulic jump (shock) situated at its center. This structure
is essentially asymmetric, preserves coherence for a long time (compared to the turnover
period of each vortex component), and moves along a circular path. Such "shock-modon"
appears as a result of relaxation of the QG modon with large Ro. As in our previous
papers on ageostrophic modons (Ribstein et al., 2010), (Lahaye et Zeitlin, 2011) we work
with a new-generation finite-volume code for RSW equations, which is well-balanced (i.e.
preserves equilibrium solutions) and entropy-satisfying (i.e. guarantees the energy decrease
across shocks) (Bouchut, 2007). The spatial resolution is 0.025 in units of the deformation
radius Rd =

√
gH0/f (g is gravity and H0 is unperturbed thickness), which is sufficient to

perform a correct investigation of fine-scale structures, like shocks.
It should be kept in mind that RSW equations are equivalent to the equations of

dynamics of a barotropic gas in the presence of Coriolis force in two dimensions with two
components of velocity v = (u, v) and thickness h as dynamical variables. The invariant
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characteristic of the vortex is potential vorticity (PV) q = ẑ · (∇∧v)+f
h , or its anomaly with

respect to the background value q − f/H0.

The initial stages of the adjustment of a QG modon with large Ro are presented in Fig.
3.12 (pressure), and Fig. 3.13 (potential vorticity). Only a part of the computational domain
is shown, the full size being 20× 20 Rd2, and Neumann (sponge) boundary conditions are
used. Unlike more "gentle" relaxation observed for smaller Rossby numbers (Ribstein et al.,
2010), where the initial dipole was adjusting to the new equilibrium shape by emitting
inertia-gravity waves and ejecting weak cyclonic PV filaments, one sees here a massive
initial ejection of cyclonic PV advected by the anticyclone (see Fig. 3.13 at t = 6), and
emission of large-amplitude waves (visible in Fig. 3.12 at t = 6), mostly absorbed by the
sponges. This transient process leads to an asymmetric dipole, together with an isolated
cyclone, which keep their coherence. At t = 40, the monopolar cyclone is removed from
the computational domain and boundary conditions are replaced with energetically neutral
periodic ones, in order to follow the proper evolution of the dipole.
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Figure 3.12 – Evolution of thickness during relaxation of the QG modon with Ro = 0.4.
From left to right and top to bottom : t = 0, 6, 12 and 24 (units of f−1). Thickness
anomaly is given at the interval 0.06 in units of H0. Black : cyclone (depression), gray :
anticyclone. Thin dotted line indicates zero thickness anomaly.

The distributions of thickness/velocity, PV and divergence for the resulting dipolar
vortex at t = 46 are given in Fig. 3.14. One clearly sees the hydraulic jump both in
the thickness distribution (left panel), and in the divergence field (right panel). This is
confirmed by Fig. 3.15, where we plot the profiles of thickness, divergence, and modulus
of velocity along the dipole’s axis. A typical hydraulic jump, with velocity decreasing and
thickness increasing across the jump, is recognizable in the Figure (the mean flow is from
right to left). We recall that inertia-gravity waves are equivalent to sound waves, following
the above-mentioned gas dynamics analogy. Their typical velocity is of order

√
gH0, so
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Figure 3.13 – Evolution of the PV anomaly corresponding to Fig. 3.12. Values from ±0.1
(resp. in black (+) and gray (-)) at the interval 1 up to 10.1 and then at the interval 5
(suitable for cyclone only), in units of f

H0
.

that the hydraulic jump corresponds to the transition from transcritical (maximal Froude
number 1.1÷ 1.2) to subcritical flow.
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Figure 3.14 – Isobars with superimposed velocity field (left), PV anomaly (middle), and
divergence (right) of the modon at t = 46. Same legend as in Figs. 3.12 and 3.13 for the
left and middle panels. Thin lines are added at values ±0.5 for the PV anomaly. Thin
black dotted lines in the right panel indicate PV anomaly qA = ±0.1 contours roughly
corresponding to the dipole’s edge. Absolute value of divergence in units of f : levels of
gray from 0.1 (white) to 4 (black) ; Limits of convergence (divergence) zones : black (gray)
contours.
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Figure 3.16 – Upper panel : kinetic (gray)
and potential (black) energy during the
evolution of shock-modon. Lower panel :
total energy (continuous) and energy dis-
sipation (crosses).
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Evolution of the energy of the system is presented in Fig. 3.16 together with the evolu-
tion of the energy dissipation, both in non-dimensional units. We recall that the numerical
scheme integrates the RSW equations in the conservative form, (cf. Bouchut, 2007), and
has no explicit dissipation. The numerical dissipation is calculated as the departure of the
discrete energy balance in each grid cell summed over all cells. The built-in property of the
code is that dissipation is positive cell-wise and that energy decreases across the shocks.

The shock vanishes after ≈ 70 inertial periods, which is correlated with the stabilisation
of the dissipation rate (see Fig. 3.16, lower panel). The well-formed modon persists for a
long time afterwards (not less than 460 inertial periods), slowly losing intensity and moving
along an almost perfect circular path (cf Fig. 3.17). The characteristics of this modon are
similar to those observed for the modons at smaller Rossby number in (Ribstein et al.,
2010). During this time, and despite the absence of hydraulic jump, the maximal Froude
number remains very close to 1. It decreases from 1.2 at t = 40 to 0.95 at t = 460. The
slow energy decrease (cf. Fig. 3.16) is due to numerical dissipation. No wave radiation was
observed at this stage.
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Figure 3.17 – Modon trajectory from t =
40 to t = 460. Color switches from black to
gray when the shock vanishes. Time inter-
val : 5.

Let us recall that for steady moving structures in RSW the Bernoulli function : B =
1
2(u − U)2 + 1

2(v − V )2 + gh + Ufy − V fx, where (U, V ) is the velocity of the structure,
and PV are functionally dependent (Malanotte-Rizzoli, 1982), which should be reflected
in the corresponding scatter plot. Such plot for the shock-modon is presented in Fig. 3.18.

As compared to the scatter plots for ageostrophic modons at smaller Rossby numbers
(Ribstein et al., 2010), this one is less sharp, especially in the cyclonic (positive PV)
part. This is explained by the presence of the hydraulic jump which is situated mostly in
the cyclonic part of the dipole, cf. Fig. 3.14, left panel. B inherits the jump in h, while
the jump in PV is possible only if B varies along the shock (e.g. if the latter is curved
(Lighthill, 1978)). The signature of the shock in PV is negligeable, and for each value of
PV a range of values of B within the jump appears. Another source of the spread are
uncertainties in computed Bernouilli function, especially when the trajectory is curved,
as above. Nevertheless, the scatter plot is sharp enough to assert, together with the long
life-time, the coherence of the shock-modon.

To test the robustness of the shock-modons, we performed a number of simulations
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Figure 3.18 – Bernoulli function vs PV for
the shock-modon at t = 46.
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Figure 3.19 – Isobars with superimposed velocity field (left) and potential vorticity ano-
maly (right) of the “shock-tripole” formed after collision of two shock-modons. Same legend
as in Figs. 3.12 and 3.13.

of their collisions, similar to our previous sudy (Lahaye et Zeitlin, 2011). They show that
shock-modons undergo frontal collisions forming either a new pair of shock-modons after
partner exhange, or a "shock-tripole" with a fusion of anticylonic vortices. The latter
contains two hydraulic jumps situated between the anticyclonic core and cyclonic satellites
(cf. Fig. 3.19).

Thus, geostrophic modons with large Rossby number in rotating shallow water evolve
towards a new quasi-steady coherent structure, shock-modon which is a combination of
an asymmetric vortex dipole and a hydraulic jump. The structure is dissipative, like the
hydraulic jump (shock) itself, yet long-living and robust with respect to the interactions
with other vortices, as follows from the preliminary study of their collisions. Collisions of
shock-modons can also produce other coherent shock-vortices, like a tripole, indicating that
shock-vortex structures are universal at large Rossby numbers in rotating shallow water.
We expect that this kind of solutions will be relevant for astrophysical generalisations of
the model mentioned above.

Acknowledgements : This work was supported by the French ANR grant SVEMO.
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3.5 Dipôles et tripôles en RSW 1 couche : résumé

L’existence et les propriétés de structures multipolaires (modons et tripôles) dans un
modèle Rotating Shallow Water à une couche ont été étudiées. L’agéostrophie des struc-
tures, dans ce modèle (faiblement) compressible, entraîne une asymétrie cyclone/anticyclone
qui n’est – par construction – pas présente dans le modèle quasi-géostrophique. Elle se ma-
nifeste par un pôle cyclonique plus compact, avec un maximum d’anomalie de vorticité
potentielle et un minimum d’anomalie de hauteur de couche plus prononcé, tandis que le
pôle anticyclonique est plus étendu dans l’espace et contient une circulation plus impor-
tante. De plus, la collision frontale de ces structures peut mener à la formation d’un tripôle
à coeur anticyclonique, tandis qu’aucun tripôle à coeur cyclonique n’a été observé.

A plus grand nombre de Rossby, des structures analogues aux dipôles et tripôles agéos-
trophiques précédemment étudiés existent et peuvent contenir un choc (ressaut hydraulique
associé à un nombre de Froude localement supérieur à 1) sur leur(s) axe(s) de maximum de
vitesse. Un résultat important de ces travaux est l’absence de génération d’ondes par ces
strutures fortement agéostrophiques, même lorsqu’un choc y est présent ou lorsqu’elles in-
teragissent entre elles, dans un état transitoirement hors d’équilibre, au cours de collisions
notamment.

Les collisions élastiques que peuvent subir les modons témoignent d’une attractivité
de ces solutions et d’une prédictabilité – dans une certaine mesure – de l’écoulement. Ces
propriétés sont analogues aux systèmes intégrables et aux solutions de type solitons, dans
lesquels l’évolution du système est entièrement connue à partir des conditions initiales qui
se décomposent sur l’ensemble des solutions du système.

3.6 Dipôles agéostrophiques baroclines et tripôles dans le
modèle RSW à deux couches

Les résultats précédents concernant les structures cohérentes dans le modèle RSW
à une couche apportent de nombreuses informations sur la dynamique des tourbillons
agéostrophiques barotropes. Par construction, les effets de la baroclinicité (cisaillement
vertical de la vitesse, stratification) ne sont pas pris en compte dans le modèle à une
couche. Les structures océaniques (et atmosphériques) ne sont généralement pas barotropes
mais présentent une variation selon la coordonnée verticale. La plupart des tourbillons
océaniques de grande échelle sont plus intenses en surface et leur champ de vitesse décroît
avec la profondeur. A plus petite échelle (méso et sous-méso échelles), il existe également
des structures dites “de sub-surface” dont le maximum de vitesse est localisé sous la surface
(de l’ordre de quelques centaines de mètres). Les effets baroclines sont donc inhérents à la
dynamique des fluides géophysiques. Pour cette raison, il est utile d’étudier les propriétés
de multipôles agéostrophiques baroclines, et le modèle le plus simple permettant cette
analyse est le modèle Rotating Shallow Water à deux couches. L’attention est notamment
portée sur la modification (ou la confirmation) des résultats précédents en ce qui concerne
l’asymétrie cyclone/anticyclone, le découplage dynamique entre ondes et tourbillons et
l’existence – et le cas échéant, les propriétés – de solutions agéostrophiques baroclines. Par
exemple, les ondes d’inertie-gravité baroclines ont une fréquence propre plus petite que les
ondes barotropes, ce qui a pour conséquence de réduire le trou spectral (comme discuté en
section 1.3.1), et l’on s’attend à ce que cela modifie la dynamique des dipôles, en particulier
au cours de collisions, et à grand nombre de Rossby.
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Dans un premier temps, les solutions analytiques sont dérivées dans le modèle QG
à deux couches, avec la surface libre. Deux types de solutions (barotrope et barocline)
sont trouvées et sont utilisées comme conditions initiales dans des simulations numériques
directes des équations RSW à deux couches (avec la surface libre également). Plusieurs
types de solutions dipolaires sont obtenues dans ce modèle et leurs propriétés sont étudiées.
Enfin, des tripôles et des modons non linéaires sont obtenus à l’issue de simulations de
collisions.

Ce travail sur les modons et tripôles en RSW 2 couches a été publié dans la revue
“Journal of Fluid Mechanics” (Lahaye et Zeitlin, 2012b). Le contenu de cette publication
est inclus ci-après, en anglais.
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3.7 Article : Existence and properties of ageostrophic modons
and coherent tripoles in the two-layer rotating shallow wa-
ter model on the f-plane

[ N. Lahaye and V. Zeitlin, J. Fluid Mech., 706 :71–107, 2012 ]

Abstract : We study formation and properties of new coherent structures : the ageos-
trophic modons in the two-layer rotating shallow water model. The ageostrophic modons
are obtained by "ageostrophic adjustment" of the exact modon solutions of the two-layer
quasigeostrophic equations with the free surface, which are used to initialize the full two-
layer shallow-water model. Numerical simulations are performed using a well-balanced
high-resolution finite-volume numerical scheme. For large enough Rossby numbers, the
initial configurations undergo ageostrophic adjustment towards asymmetric ageostrophic
quasi-stationary coherent dipoles. This process is accompanied by substantial emission of
inertia-gravity waves. The resulting dipole is shown to be robust and survives frontal colli-
sions. It contains captured inertia-gravity waves and, for higher Rossby numbers and weak
stratification, carries a (baroclinic) hydraulic jump at its axis. For stronger stratifications
and high enough Rossby numbers "rider" coherent structures appear as a result of adjust-
ment, with a monopole in one layer and a dipole in another. Other types of ageostrophic
coherent structures, such as two-layer tripoles and two-layer modons with nonlinear scatter
plot, result from the collisions of ageostrophic modons. They are shown to be long-living
and robust, and to capture waves.

3.7.1 Introduction

Flows in the ocean and the atmosphere are stratified and subject to rotation. As is
well known, fast rotation corresponding to small Rossby numbers (Ro), leads to effective
bidimensionalization of the flow, and the dynamics in this limit at synoptic scales, com-
parable to the Rossby deformation radius, is well described by the quasigeostrophic (QG)
equations on the tangent plane (Pedlosky, 1987). QG dynamics is essentially the vortex
dynamics following directly from the potential vorticity (PV) conservation. Vortex struc-
tures are ubiquitous in geophysical flows and a number of exact vortex solutions is known
in the QG framework. They can be monopolar, dipolar or multipolar. A famous one is the
modon, a steady-moving symmetric vortex dipole. Steady dipoles are traditionally associa-
ted with atmospheric blocking phases (McWilliams, 1980; Haines, 1989). They commonly
appear through destabilization of vortex sheets or isolated monopolar vortices (Couder et
Basdevant, 1986; Carton, 2001; Baey et Carton, 2002). A corresponding exact solution of
the barotropic QG equations was obtained long ago both on the β-plane (Larichev et Rez-
nik, 1976) and on the f -plane (Kamenkovich et Reznik, 1978). A generalization of these
solutions to the simplest baroclinic model, the two-layer QG equations with the rigid lid
was later obtained by Flierl et al. (1980), giving several families of solutions with different
baroclinic and barotropic components.

The barotropic QG model being a small Rossby number limit of the rotating shallow
water (RSW) equations, a question arises about corresponding ageostrophic solutions in
the full parent model. Such solutions were first obtained semi-analytically by Kizner et al.
(2008) and then numerically by Ribstein et al. (2010), by relaxation of the QG-modon
configuration in the RSW equations on the f -plane. For high enough Ro the QG modon
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emits inertia-gravity waves (IGW) and adjusts to an asymmetric ageostrophic steady di-
pole, the ageostrophic modon (AGM) ("ageostrophic adjustment"). These results provide
an example of the so-called spontaneous imbalance which is of importance e.g. for unders-
tanding non-orographic sources of IGW. A related issue is wave capture by the dipoles
(Bühler et McIntyre, 2005; Snyder et al., 2007). Although the dispersion relation of IGW
in the RSW model is not of the form allowing the wave-capture mechanism, it was recently
found that RSW modons at high enough Ro may be carrying a shock wave (hydraulic
jump) (Lahaye et Zeitlin, 2012c). It was also found that ageostrophic modons in the RSW
model undergo three types of collisions : quasi-elastic ones with an exchange of partners
and formation of either a pair of modons of the same kind, or of the so-called nonlinear
(in the sense of their scatter plot) modons with larger inter-vortex distance, and inelastic
ones which, in particular, produce steady vortex tripoles (Lahaye et Zeitlin, 2011).

A natural question arises whether a baroclinic counterpart of the ageostrophic modon
exists, and if yes, whether it possesses similar peculiar properties. In this paper, we provide
a positive answer to these questions. As in Flierl et al. (1980) we choose the simplest two-
layer baroclinic model, but for the reason explained below we relax the rigid lid boundary
condition and work with free-surface flows. This is why, even in the QG case, we have to
re-derive the baroclinic modon solutions by generalizing the results of Flierl et al. (1980). In
order to get the ageostrophic modons, we use the "ageostrophic" adjustment process, like
in Ribstein et al. (2010), starting from thus derived QG solutions. Once the ageostrophic
baroclinic modons are obtained we use the same technique as in Lahaye et Zeitlin (2011) to
generate other two-layer multipoles : the baroclinic tripole (T) and the baroclinic nonlinear
ageostrophic modon (NAGM).

We use a high-resolution finite-volume numerical scheme developed recently for 2-layer
RSW equations (Bouchut et Zeitlin, 2010) with a free surface. The scheme does not allow
the rigid-lid upper boundary condition. It is weakly dissipative, shock-capturing and en-
tropy satisfying (i.e. ensures the energy decrease across shock, if any), and well-balanced
(preserves geostrophic equilibria).

We show that adjustment of an initial balanced dipolar perturbation leads to several
types of ageostrophic (quasi-)steady structures, depending on initial parameters. We in-
vestigate and quantify, with detailed diagnostics, both baroclinic and barotropic parts of
the resulting structures, show that they capture IGW and, like in the one-layer model,
may contain a baroclinic hydraulic jump in the inter-vortex region at large enough Rossby
numbers for certain classes of initial conditions.

We should emphasize that besides the conceptual importance of showing existence of
the whole new classes of essentially ageostrophic coherent structures with highly non-trivial
collision properties in the two-layer model, which is a standard model for analyzing the
effects of baroclinicity in the atmosphere and ocean, the structures we found may play
a role in transport and mixing, and in establishing routes to dissipation in the ocean,
by interacting with each other or topography, cf. e.g. Hogg et al. (2011). Dipolar vortex
structures in the ocean may be produced by various mechanisms reported in literature, e.g.
by instabilities of monopolar vortices (Baey et Carton, 2002), by evolution of von Karman
vortex streets behind the obstacles (Couder et Basdevant, 1986), or by the instabilities of
coastal currents (Gula et al., 2010).

The paper is organized as follows : in section 3.7.2 we briefly derive the QG model
with the free surface, and the baroclinic modon solutions used for initialization of our
simulations. In section 3.7.3 we present results of DNS of the adjustment of such solutions
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at high Rossby numbers, and describe the different kinds of steady dipoles we obtain.
Different values of parameters (stratification, depth ratio and Rossby number) are used
and their impact is discussed. We then present in section 3.7.4 a numerical investigation of
frontal and lateral collisions of typical two-layer AGMs. Under some conditions, they lead
to formation of new coherent structures : baroclinic tripoles and nonlinear modons. Their
properties are also investigated. Section 3.7.5 contains summary and conclusions.

3.7.2 Steady dipolar solutions of the two-layer quasigeostrophic equa-
tions with a free surface

Reminder of the two-layer RSW model and derivation of the corresponding
QG equations

The standard form of the two-layer RSW equations on the f -plane is :

∂t~vi + (~vi · ~∇)~vi + fẑ × ~vi = −
~∇πi
ρi

, (3.3)

∂thi + ~∇(~vihi) = 0, i = 1, 2 (3.4)

with the dynamical boundary conditions at the interface and the free surface :

π2 − π1 = g(ρ2 − ρ1)h2, (3.5)
π1 − π0 = g(ρ1 − ρ0)(h1 + h2). (3.6)

Here, ~vi, πi and hi are respectively the velocity, the hydrostatic pressure and the thickness
in/of the ith layer, π0 being the external pressure, f is the (constant) Coriolis parameter, ẑ is
the unit vector in the vertical direction (upwards, with the origin of the coordinates system
at the bottom), g is gravity, and ρi is the constant density of the layer i. Our convention
is that the layer 2 is the the lower one. The external pressure is assumed constant and the
associated density negligible, ρ0 → 0. We define the interface displacement η2 = h2 −H2,
where H2 is the thickness of the layer two at rest, and the free surface displacement
η1 = h1 + h2−H0, where H0 = H1 +H2 is the total thickness at rest. Linearization of the
above equations about the rest state leads to the barotropic and baroclinic (or internal)
IGW solutions, with the following dispersion relations :

ωbt =

√
gH0|~k|2 + f, (3.7)

ωbc =

√
NgHeq|~k|2 + f, (3.8)

where Heq is the equivalent height Heq = H1H2/H0, Ng is the reduced gravity with
N = 2∆ρ/(ρ1 + ρ2) and ~k is the wave vector. ωbt and ωbc denote the barotropic and the
baroclinic angular frequencies, respectively. The potential vorticities (PV)

qi =
ζi + f

hi
, i = 1, 2, (3.9)

and their anomalies qAi = qi − f/Hi are layerwise Lagrangian invariants. Here, ζi is the
relative vorticity ζi = ẑ · ~∇× ~vi. For steady-moving solutions of the equations (3.3 - 3.5),
the Bernouilli function in each layer

Bi =
ũi

2 + ṽi
2

2
+
πi
ρi

+ uify − vifx, (3.10)
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where the overbar means the translation speed of the structure and the tilde denotes
departure of the total velocity from this value, is functionally related to the corresponding
PV (Malanotte-Rizzoli, 1982) .

We derive now the corresponding QG equations. The difference with the classical QG
model (e.g. Pedlosky, 1970) is that we do not assume a rigid lid upper boundary condition
in the model, i.e. the barotropic radius deformation is no longer considered as infinite. Let
us recall that the QG equations express the Lagrangian conservation of PV at the next to
the leading order of the asymptotic expansion in small Rossby number. We choose to work
with nondimensional variables :

u = Uu∗, (x, y) = L× (x∗, y∗), t =
L

U
t∗, (3.11)

πi = ρiULfπ
∗
i , (3.12)

h1 = H0(F−1
1 + λ(η∗1 − η∗2)), (3.13)

h2 = H0(F−1
2 + λη∗2). (3.14)

Here, U, L and λ are typical scales for velocity, length and non-dimensional surface and
interface displacements ∆H/H0, and Fi = H0/Hi. The Rossby number is then defined as
Ro = U/(fL). Stars indicate that the variables are dimensionless. They are subsequently
omitted, and the layerwise conservation of PV nondimensionalized by f/Hi reads :

Ro
d1

dt

[
Roζ1 + 1

F−1
1 + λ(η1 − η2)

]
= 0, (3.15)

Ro
d2

dt

[
Roζ2 + 1

F−1
2 + λη2

]
= 0. (3.16)

At the leading order in Rossby number and small associated surface and interface dis-
placements (Ro ∼ λ � 1), by introducing the nondimensional streamfunctions Ψi = π∗i
suggested by the geostrophic balance ẑ×~vi = −~∇Ψi, we obtain the two-layer QG equations
on the f -plane :

d
(0)
1

dt

[
∆Ψ1 +

F1

1− d
(Ψ2 −Ψ1)

]
= 0, (3.17)

d
(0)
2

dt

[
∆Ψ2 −

δF1

1− d
(Ψ2 − dΨ1)

]
= 0. (3.18)

Here and below d is the density ratio ρ1/ρ2 < 1, δ = H1/H2 is the depth ratio, hence

F2 = δF1, and
d
(0)
i
dt = ∂t + J (Ψi, · · · ) is the quasigeostrophic advective derivative where

J (A,B) = ∂xA∂yB − ∂yA∂xB. Expressions in brackets are the quasigeostrophic PVs in
each layer, corresponding, in fact, to the PV anomalies. Note that these equations differ
from the classical ones with a rigid lid, cf. Flierl et al. (1980), by the presence of the density
ratio d in front of Ψ1 in the second term of the equation for the second layer (all others
appearances of this parameter may be removed by rescaling either the parameter F1 or the
length scale).

The two-layer free-surface QG modon

We will derive the QG modon solutions of the equations (3.17 - 3.18) by generalizing
the method of Flierl et al. (1980). We look for a solution steady moving at a constant speed
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c, which we choose to be along the x-axis, without loss of generality. The streamfunctions
depend on x− ct and y only, and we write the QG equations in the form :

J
(

Ψ1 + cy,∆Ψ1 +
F1

1− d
(Ψ2 −Ψ1)

)
= 0, (3.19)

J
(

Ψ2 + cy,∆Ψ2 −
δF1

1− d
(Ψ2 − dΨ1)

)
= 0, (3.20)

which means that the co-moving streamfunctions Ψi + cy and the quasigeostrophic PVs of
the layers are functionally related, i.e.

∆Ψ1 +
F1

1− d
(Ψ2 −Ψ1) = G1(Ψ1 + cy), (3.21)

∆Ψ2 −
δF1

1− d
(Ψ2 − dΨ1) = G2(Ψ2 + cy), (3.22)

where Gi(z) are a priori arbitrary functions. Below we make the assumption that they are
linear. Note that there is no obligation for Gi to be unique over the whole domain. The
only physical condition to be imposed is that Ψi together with their first derivative are
continuous everywhere. We divide the whole f -plane into interior and exterior domains
separated by a circle of radius a, which will be considered as the size of the modon. We
use below the superscripts "int" and "ext" for the interior and the exterior domains, res-
pectively. We further constrain the quasigeostrophic PV to be zero in the exterior domain.

Solution in the exterior domain : We are looking for a localized solution, i.e. Ψi → 0
when r → ∞. It then follows from eqs. (3.21 - 3.22) that Gext

i (z) = 0. We transform the
system to the normal form by introducing the new variables T ext

j = Ψext
1 + βjΨ

ext
2 , which

yields :

∆Tj −
q2
j

a2
Tj = 0, j = 1, 2, (3.23)

where the constants qj obey the following equalities :

q2
j

a2
= −F1

βj

1− βjδ
1− d

= F1
1− dβjδ

1− d
, j = 1, 2. (3.24)

Writing them in a matrix form yields : q2j
a2
− F1δ

1−d
F1

1−d
F1dδ
1−d

q2j
a2
− F1

1−d

(βj
1

)
= 0, j = 1, 2. (3.25)

Solution for β is guaranteed if the determinant is zero, that is :

q2
j

a2
=

F1

2(1− d)

(
1 + δ ±

√
(1− δ)2 + 4δd

)
, j = 1, 2. (3.26)

Hence :
βj =

1

2δd

(
1− δ ∓

√
(1− δ)2 + 4δd

)
, j = 1, 2. (3.27)

Note that because of 0 ≤ d ≤ 1, the constants qj and βj are real. Furthermore, they
only depend on the depth and density ratios, and not on the Rossby nor Burger numbers
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(Bu = (Rd/a)2, with Rd the barotropic deformation radius defined as Rd =
√
gH0/f).

Moreover, from eq. (3.24) we get a relation between the βj which reads :

(β1 − β2)δd =
1

β1
− 1

β2
, ⇒ β1β2 = − 1

δd
. (3.28)

Thus, taking one or another root for the βj amounts to a simple permutation.
After separation of variables in polar coordinates (r, θ) and retaining only the first

angular mode, as we are seeking for a dipolar solution decreasing in r, we get for the
exterior solution :

Tj = AjK1

(qj
a
r
)

sin θ, (3.29)

whereK1 is the first order modified Bessel function and the constants Aj will be determined
by matching with the interior solution (see 3.7.2 below).

Solution in the interior domain : We choose Gi(x) to be linear :

Gi(z) = −Siz +Qi (3.30)

where Si and Qi are constants, to be consistent with the other formulae. We write the
interior equations in normal form by defining the variables T int

j = Ψint
1 + αjΨ

int
2 :

∆Tj +
k2
j

a2
Tj = −(S1 + αjS2) c r sin(θ) +Q1 + αjQ2, j = 1, 2 , (3.31)

where the constants kj obey the equalities :

k2
j

a2
Tj = F1

1− αjδ
1− d

Ψ2 − F1
1− dαjδ

1− d
Ψ1 + S1Ψ1 + αjS2Ψ2, j = 1, 2 , (3.32)

and the same equation as eq. (3.28) holds, namely :

α1α2 = − 1

δd
. (3.33)

In the same way as for the exterior domain, equations (3.32) may be written in a matrix
form. The determinant of the matrix should be zero, which gives :

k2
j

a2
=
S1 + S2

2
− F1

δ + 1

2(1− d)
± 1

2

√(
F1(1− δ)

1− d
+ S2 − S1

)2

+ 4δd

(
F1

1− d

)2

; (3.34)

and

αj =
1− d
F1δd

S2 − S1

2
+
F1(1− δ)
2(1− d)

± 1

2

√(
F1(1− δ)

1− d
+ S2 − S1

)2

+ 4δd

(
F1

1− d

)2
 .
(3.35)

As to the sign of the constants k2
j , there may be negative roots, which switches the form

of the solutions of the Bessel equation (3.31) from oscillatory to exponential (i.e. from
ordinary to modified Bessel functions). To avoid a singularity at r = 0, we have to retain
the modified Bessel function of the first kind In(r) in the interior domain. Streamfunctions
being a combination of Tj , having one of the two k2

j negative is allowed. On the other hand,
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Figure 3.20 – Signs of (kj/a)2 in the (S1, S2) space for δ = 0.2 (left) and δ = 0.85 (right).
Black zone : both k1 and k2 are imaginary. Grey zone : only k1 (or k2) is imaginary. Dashed
zone shows that the value of J1(k1) (that is at the circle of radius a) is between its first
maximum and zero, which indicates where the solutions for S1 and S2 lie.

k2
1 and k2

2 should not be both negative because the solution would not be dipolar anymore
and, moreover, the matching conditions for the first derivative could not be satisfied except
for the trivial case of the flow at rest. Solutions for k2

1,2(S1, S2) are presented in Fig. 3.20,
showing that there exist solutions with non-negative k2

j .
Thus, in the interior domain, the solution is given by :

Tj =
Q1 + αjQ2

k2
j /a

2
+

[
BjJ1

(
kj
a
r

)
−

(
S1 + αjS2

k2
j /a

2

)
cr

]
sin θ, j = 1, 2 (3.36)

with yet unknown constant Bj . If k2 is imaginary one should replace B2J1

(
k2
a r
)

by

B2I1

(∣∣∣k2a ∣∣∣ r), with purely imaginary B2.

Matching conditions : At this stage we have eight constants which remain unknown :
Aj , Bj , Sj and Qj . Because we split the whole plane into two subdomains, we must
constrain the streamfunctions and the velocities to be continuous across the boundary bet-
ween the domains. Thus the streamfunctions must satisfy the following matching condi-
tions :

Ψint
i

∣∣
r=a

= Ψext
i

∣∣
r=a

, i = 1, 2. (3.37)

∂Ψint
i

∂r

∣∣∣∣
r=a

=
∂Ψext

i

∂r

∣∣∣∣
r=a

, i = 1, 2. (3.38)

The continuity of radial velocities is ensured by the continuity of the streamfunctions
themselves, as follows from their dependence on θ. We choose to solve the problem with
these matching conditions expressed in terms of Tj in the interior domain, i.e.

T int
j

∣∣
r=a

= Ψext
1

∣∣
r=a

+ αj Ψext
2

∣∣
r=a

, (3.39)

∂T int
j

∂r

∣∣∣∣∣
r=a

=
∂Ψext

1

∂r

∣∣∣∣
r=a

+ αj
∂Ψext

2

∂r

∣∣∣∣
r=a

, j = 1, 2. (3.40)
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It follows immediately from the first relation and eq. (3.36) that we must have Q1+αjQ2 =
0, because the exterior streamfunction has no constant in θ component. The matching
conditions for the streamfunctions and their radial derivatives give, using the recursion
formulae for Bessel functions (cf. Abramowitz et Stegun, 1964) :

BjJ1(kj)−
S1 + αjS2

k2
j /a

2
ca =

(β2 − αj)A1K1(q1) + (αj − β1)A2K1(q2)

β2 − β1
, (3.41)

BjkjJ2(kj) =
(β2 − αj)A1q1K2(q1) + (αj − β1)A2q2K2(q2)

β2 − β1
, j = 1, 2.

(3.42)

When k2 is purely imaginary, we replace B2K2J2(k2) by iB2I2(|k2|).
We must also specify whether the dividing contour r = a is a streamline or not. For each

layer, if the circle r = a is a streamline then the streamfunction is constant along it. In the
opposite case, the matching conditions enforce the relation between the quasigeostrophic
potential vorticity and the comoving streamfunction to be the same in both the exterior
and interior domains, i.e. Sj = 0, and an exponential shape. Therefore, to have a nontrivial
solution at least in one of the layers the dividing contour should be a streamline there.
Below we will consider the two cases :

— r = a is a streamline in both layers : Sj 6= 0
— r = a is a streamline only in the first (upper) layer : S2 = 0

We call the two corresponding solutions quasi-barotropic and baroclinic ones, as we will
see below that their velocity fields are mostly so. The third possible case corresponding to
r = a being a streamline only in the second (lower) layer will not be treated, although this
does not mean a loss of generality because this case corresponds to a permutation of the
layers with respect to the second case above, with corresponding rescalings of F1 and F2.

Quasi-barotropic modon : G2(Ψ2 + cy) 6= 0 : In this case, the following relations for
the exterior streamfunctions hold :

Ψ1|r=a + ca sin(θ) = 0, ⇒ β2A1K1(q1)− β1A2K1(q2)

β2 − β1
+ ca = 0. (3.43)

Ψ2|r=a + ca sin(θ) = 0, ⇒ A2K1(q2)−A1K1(q1)

β2 − β1
+ ca = 0. (3.44)

giving the values of Aj :

A1 = −ca(1 + β1)

K1(q1)
; A2 = −ca(1 + β2)

K1(q2)
. (3.45)

Hence the exterior streamfunctions are fully determined, and their amplitudes are propor-
tional to the ratio Ro/Bu = ca. Then, the constants kj and αj are expressed in terms of
(S1, S2) by eq. (3.34 - 3.35) and we just have to solve the set of equations (3.41 - 3.42)
which is nonlinear in terms of Sj but linear in terms of Bj . For this purpose we write it in
the form :

Mj

(
Bj
ca

)
= 0, j = 1, 2

whereMj are matrices containing unknowns Sj :

Mj =

 J1(kj)
S1+αjS2

k2j /a
2 +

(β2−αj)A1K1(q1)+(αj−β1)A2K1(q2)
β2−β1

kjJ2(kj)
(β2−αj)A1q1K2(q1)+(αj−β1)A2q2K2(q2)

β2−β1

 ,
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which are determined from the solvability condition det(M) = 0 using a standard iterative
Newton algorithm.

Baroclinic modon : G2(Ψ2 + cy) = 0 : In this case, we have S2 = 0. In the first
layer, the condition that the streamfunction must be constant at r = a, and thus relation
(3.43), still hold. From eqs. (3.32) and (3.41 - 3.42) we can derive two other equations for
S1, A1 and A2 :

kjJ2(kj)

[(
1 + αj +

αjδF1

k2
j /a

2

)
ca+

(β2 − αj)A1K1(q1) + (αj − β1)A2K1(q2)

β2 − β1

]

− J1(kj)
(β2 − αj)A1q1K2(q1) + (αj − β1)A2q2K2(q2)

β2 − β1
= 0, j = 1, 2 (3.46)

We can then write eqs. (3.43) and (3.46) in a matrix form :

M·

 A1

A2

ca(β2 − β1)

 = 0 (3.47)

where the matrix elementsMa,b do not contain the ratio Ro/Bu = ca :

M1,1 = (α1 − β2)q1K2(q1)J1(k1) + (β2 − α1)K1(q1)k1J2(k1),

M1,2 = (β1 − α1)q2K2(q2)J1(k1) + (α1 − β1)K1(q2)k1J2(k1),

M1,3 =

(
1 + α1 +

α1δF1

k2
1/a

2

)
k1J2(k1),

M2,1 = (α2 − β2)q1K2(q1)J1(k2) + (β2 − α2)K1(q1)k2J2(k2),

M2,2 = (β1 − α2)q2K2(q2)J1(k2) + (α2 − β1)K1(q2)k2J2(k2),

M2,3 =

(
1 + α2 +

α2δF1

k2
2/a

2

)
k2J2(k2),

M3,1 = β2K1(q1),

M3,2 = −β1K1(q2),

M3,3 = 1.

Thus, S1 follows from solving det(M) = 0, and A1, A2 are then computed from the linear
system (3.47). The constants Bj are deduced from eq. (3.41) or (3.42), and the full problem
is thus solved.

The pressure fields and associated velocities for both quasi-barotropic and baroclinic
modons with initial gobal Rossby number Ro = 0.2 (see below for definition) and Burger
number Bu = 1, which is the value used in all the simulations presented in this paper, are
given in Fig. 3.21. Here and below, pressure is measured in units of ρigH0. Throughout the
paper, x− and y− axes in the Figures stand for the (x, y) plane unless otherwise stated,
and are given in units of Rd. One may see that velocity fields are rather the same in
both layers for the quasi-barotropic modon, whereas for the baroclinic modon the velocity
in the lower layer is much weaker, in agreement with zero potential vorticity anomaly
in the second layer (note the difference of scales in the second and fourth panels of the
figure). If one compares the norms of the maxima of the nondimensional barotropic and
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Figure 3.21 – Pressure fields in the upper (up) and lower (down) layers for the quasi-
barotropic (left) and baroclinic (right) QG modon solutions with c = 0.2, a = 1, d = 0.8
and δ = 0.85, with superimposed velocity fields. Here and below : black corresponds to
cyclones (depression), gray to anticyclones, dotted line indicates zero pressure anomaly.
Contour interval is ±0.01 for the barotropic modon and the upper layer of the baroclinic
one, and ±0.006 for the lower layer.

baroclinic velocities for the quasi-barotropic and, respectively, the baroclinic modon with
Ro = 0.2, δ = 0.85 and d = 0.8 one gets 0.18 and 0.03 for the former, and 0.16 and 0.15
for the latter.

3.7.3 Ageostrophic adjustement of the two-layer QG modons

Thus we have obtained the modon solutions for the two-layer QG model with a free
surface. QG equations being an asymptotic limit of the full two-layer RSW model at low
Rossby number, a question arises of how such solutions would evolve if used to initialize the
parent model. Such analysis has already been reported in the framework of the one-layer
RSW (Ribstein et al., 2010; Lahaye et Zeitlin, 2012c), with a result that an "ageostrophic
adjustment" of the initial balanced configuration towards an asymmetric dipole takes place
by IGW emission. The resulting ageostrophic modon was moving along a curved path, the
trajectory being bended toward the stronger anticyclonic pole. One of the purposes of our
investigation below is to find whether such scenario holds in the presence of baroclinicity
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in the two-layer model, and if yes, what is the impact of the stratification over the process.
We thus performed a number of numerical simulations with the RSW model initialized
with the exact solutions of the QG equations obtained above. We take the solutions at
large Rossby numbers. A distinction is to be kept in mind between global and local Rossby
numbers. The first one is defined with the global velocity of the structure and its length
scale defined as the distance between the two vorticity extrema. In particular, for the QG
solution it is given by the ratio of the translation speed of the comobile frame and the
typical lengthscale : Ro = c/(fa). The second one is defined (layerwise) as the ratio of
the maximum (or minimum) relative and planetary vorticities, that is as the dimensionless
relative vorticity. We performed a first set of adjustment experiments at global Rossby
number Ro ∼ 0.2, and a second one at an even larger global Rossby number Ro ∼ 0.4.
The maximal local Rossby numbers (whatever the layer and the sign of vorticity) are 0.8
and 2.8, respectively.

We worked with two different values of depth ratio δ = 0.2 and δ = 0.85. The former
corresponds roughly to typical oceanic values and the latter to a typical atmospheric value
which is usually assumed to be close to 1. (We did not choose precisely 1 because, as is
well-known, it corresponds to a degenerate case in the two-layer model.) The density ratio
d is taken, unless otherwise stated, to be d = 0.8. We recall that in the QG model in its
standard form it is assumed that d → 1. We should, however, stay well away of unity in
numerical simulations to avoid degeneracy.

Adjustment at Rossby number Ro = 0.2

We start with the adjustment of quasi-barotropic and baroclinic modons with the
parameters δ = 0.85, d = 0.8, Ro = 0.2. It is worth noting that the baroclinic solution
does not exist for such parameters d and Ro and the depth ratio δ = 0.2, because the high
deviation of the interface associated with baroclinicity leads to outcropping (thickness
taking zero values), which is out of our scope here. Results for the quasi-barotropic modon
with δ = 0.2 are not shown here as they are very similar to those with δ = 0.85.

Quasi-barotropic modon : The pressure and the PV anomalies (PVA) fields during
the evolution of the initial QG-modon perturbation are presented in Figs. 3.22 and 3.23.

The evolution starts by emission of internal (baroclinic) and barotropic inertia-gravity
waves, with a net signature in the velocity divergence fields, as shown in Fig. 3.24. Here and
below, PVA and divergence fields are measured in units of f/Hi and f , respectively. The
typical phase velocities are respectively 0.2 and 1 (in units of

√
gH0), in good agreement

with theoretical values which are given by
√
NgHeq ≈ 0.22 and

√
gH0 = 1. A weak

filamentation of cyclonic vorticity at the rear of the dipole is visible at t = 88, which is a
typical feature of the vortex dipole evolution (see Ribstein et al., 2010; Meleshko et van
Heijst, 1994; Van Heijst et Flór, 1989), together with a weak decrease of the vorticity in
the cyclonic core. The latter is related to the higher gradients in the cyclonic core (as
compared to the anticyclone), which leads to a higher numerical diffusivity.

One sees a quadrupolar pattern appearing in the barotropic divergence field inside
the dipole. This is easily explained by the first order correction in the QG asymptotic
expansion which yields (for a steady flow) : ~∇~v(1)

i = J (Ψi+ cy,∆Ψi). For the zeroth order
dipolar solution this ageostrophic correction gives a quadrupolar angular dependence of the
divergence fields ∝ Ro2 sin(2θ). Indeed, this pattern was already present in the one-layer
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Figure 3.22 – Pressure with superimposed velocity in the first (up) and second (down)
layer at t = 88 (left) and t = 200 (right) during the adjustment of the quasi-barotropic
modon with initial Ro = 0.2. Contours are given at the interval 0.01.
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Figure 3.23 – PVA contours corresponding to Fig. 3.22, at the interval ±0.2 starting at
value ±0.04 in the upper layer and ±0.3 from ±0.06 in the lower layer. Here and below :
Black : cyclone (positive anomaly). Gray : anticyclone.
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Figure 3.24 – Barotropic (left) and baroclinic (right) velocity convergence fields at t = 8
for the adjustment of the quasi-barotropic modon with initial Ro = 0.2.
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Figure 3.25 – Ageostrophic circulation of the quasi-barotropic AGM with initial Ro = 0.2
and t = 200. Left : upper layer, right : lower layer. Pressure anomaly is superimposed (white
contours), at the interval ±0.01.

ageostrophic modon obtained in Ribstein et al. (2010). Its amplitude is very weak (of the
order 5 · 10−3). Small-scale oscillations are also visible in this figure, and are also present in
the baroclinic divergence (not visible in Fig. 3.24, due to the choice of scales). We believe
that they are very weak IGW produced by discretization errors. (Their typical wavelength
is about four times the grid size dx and they persist all over the simulation, whatever the
solver we used - a variety of solvers is available for the code, cf. Bouchut (2007). Since the
computed phase speed both for the barotropic and baroclinic components corresponds to
the baroclinic phase speed (

√
NgHeq), we believe that only the baroclinic component is

physically relevant.) Their amplitude and associated wave momentum are very small, so
that the impact upon the modon evolution is negligible.

Typical nondimensional divergence value is 0.01 (or slightly lower in the upper layer) at
t = 20 and decreases slowly until t = 200 (end of the simulation). It is in a good agreement
with the first-order correction to the QG approximation, since the typical pressure anomaly
is of order 0.05, which would give a typical divergence value of order 10−2 for Ro ∼ 0.2.

We estimate the degree of ageostrophy of the dipole by subtracting the geostrophic
wind from the velocity field, i.e. : ~vai = ~vi − ẑ × ~∇πi. Ageostrophic circulation is shown
in Fig. 3.25. It exhibits a global anticyclonic structure with a stagnation point at the cen-
ter of the dipole. Such pattern may be related to the cyclostrophic balance, with higher
values in the regions with higher curvature of the streamlines (i.e. at the outer edges of
each vorticity pole). As part of the pressure gradient is due to cyclostrophy, the geostro-
phic circulation is overestimated, while the pressure extrema are underestimated, leading
to residual negative circulation. This may partially explain the evolution of the pressure
extrema (minimum negative value increases while maximum positive one decreases), as the
circulation of the modon is approximately conserved (and the initial velocity is diagnosed
from the geostrophic balance, not the cyclogeostrophic one). However, the ageostrophic
motion across the dipole axis up- and downstream of the stagnation point is obviously out
of the cyclogeostrophic balance. Typical ratio of ageostrophic upon geostrophic velocities
is 0.1 for the Rossby number of 0.2.

The life-time of the resulting ageostrophic modon is long, in spite of numerical dissi-
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Figure 3.26 – Energy evolution during the adjustment of the quasi-barotropic modon with
initial Ro = 0.2. Upper panel : kinetic energy (black, right y-axis) and potential energy
anomaly (gray, left y-axis) over the whole domain. Lower panel : total (continuous line)
energy anomaly and dissipation rate (crosses).

pation. Simulation ends at t = 200 but the dipole is likely to persist over several hun-
dreds of inertial periods. The energy anomaly decreases by 20% over the 200 inertial per-
iods of calculation, mainly in its kinetic part, see Fig. 3.26. (Energy anomaly density is
etot = ec+ep−

∑
i=1,2 ρigH

2
i /2−ρ1gH1H2 ; here and below, energy density is measured in

units of ρihif2Rd2 with normalisation ρ2 = 1.) This decrease is associated with the local
Rossby number (local relative vorticity) trend from 0.7 down to 0.5 throughout the simu-
lation. The scatter plots of the Bernouilli function vs potential vorticity in both layers (see
Fig. 3.27) highlight a high degree of coherence of the modon. Two kinds of lines appear in
the scatter plots : vertical ones corresponding to the ambient fluid with constant PV, and
the well-defined curves corresponding to the dipole itself. These latter are almost linear,
as for the classical QG modon solutions.

Baroclinic modon : We recall that the baroclinic modon solution exists only for δ =
0.85. The linearized potential vorticity is strictly zero in the lower layer in this case, and
thus the PVA amplitude in layer two is expected to remain very low during the evolution
of the dipolar perturbation. Indeed the maximum PVA value in layer two remains below
0.1 · f/H2 during the whole simulation, which is less than 5% of the typical upper PVA
values. Evolution of the pressure and potential vorticity fields is given in Fig. 3.28 at an
advanced stage when the modon is already readjusted.

The adjustment of the initial perturbation is similar to the quasi-barotropic modon,
with emission of IGW, filamentation and symmetry loss ; to save space we do not show
it here. However, it should be emphasized that the amplitude of the emitted baroclinic
waves is at least twice larger than that of the waves emitted during the quasi-barotropic
adjustment, while the typical amplitude of the emitted barotropic waves remains weak. This
is not surprising in the sense that formal linearisation of the complete equations gives rise
to a splitting between barotropic and baroclinic components, with no interaction between
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Figure 3.27 – Scatter plots B−PV (left : upper layer, right : lower layer) for the adjusted
quasi-barotropic AGM with initial Ro = 0.2 at t = 180. q1, q2, B1 and B2 are the PV and
the Bernouilli functions in respective layers.
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Figure 3.28 – Pressure anomaly with superimposed velocity fields in the upper (left panel)
and lower (second panel) layers, and the PVA (right panel) in the upper layer for the
adjusted baroclinic AGM with initial Ro = 0.2 at t = 252. Contours are given at the
interval 0.1 in the upper layer, 0.06 in the lower one for the pressure anomalies and 0.6
starting from ±0.12 for the potential vorticity anomaly.
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Figure 3.29 – Baroclinic velocity divergence at t = 252 with superimposed velocity field
for the adjusted AGM. Absolute value of the divergence in levels of gray, from 0.25 (white)
to 1 (black) times the maximum value 2.2 · 10−2 ; convergence (divergence) zones delimited
by black (gray) continuous lines. PVA contour at 0.1 is added in dashed line for localization
of the dipole’s edges.

them at the lowest order. The baroclinic divergence forms a net quadrupolar pattern of
considerable amplitude centered at the cyclonic pole (see Fig. 3.29), while the barotropic
divergence associated with the dipole remains very weak (comparable with surrounding
noise, not shown).

The baroclinic adjustment produces a more pronounced cyclone-anticyclone asymmetry
than the quasi-barotropic one, as visible in the PVA graph at t = 252 in Fig. 3.28. Indeed,
the anticyclonic circulation is getting larger than the cyclonic one in both simulations (see
Fig. 3.30), but this process is enhanced for the baroclinic modon (as seen either in the first-
layer or in the baroclinic component - not shown). To compute the circulation of the vortex,
we integrate the relative vorticity over the cells where the PVA is higher (in absolute value)
than a truncation value qc which is chosen to be 0.15 : Γ± =

∫
ζiH(±qAi− qc)dxdy, where

H( · ) is the Heaviside function. This difference can be understood in terms of the local
Rossby number which is higher in the upper layer in the case of the baroclinic adjustment
(most of the circulation is confined within this layer) than in each of the layers for the
quasi-barotropic initial perturbation, cf. Fig. 3.30. Note also that looking at the evolution
of the baroclinic and barotropic circulations (defined polewise with the help of the PVA in
the upper layer) reveals that the baroclinic component changes more than the barotropic
one for both quasi-barotropic and baroclinic initial conditions (not shown).

Resumé of the adjustment of quasi-barotropic and baroclinic QG modons at
Ro = 0.2 : Thus, we showed that the two-layer QG modons evolve toward new coherent
dipoles in the full RSW model, with characteristic ageostrophic features such as the pre-
sence of a quadrupolar divergence pattern and a net cyclone/anticyclone asymmetry with
the anticyclone being more spread in area and stronger (in the sense of larger circulation)
than the peak-shaped cyclones. This latter feature is highlighted in Figure 3.30 where it
is clear that the maximum of relative vorticity is higher in the cyclones while the anticy-
clonic circulation is stronger than the cyclonic one, in agreement with the curvature of the
trajectory of the dipole (see Fig. 3.31).

Another feature of the two-layer modons is the reduced global velocity of the structure,



108 Chapitre 3 : Structures agéostrophiques multipolaires

0 20 40 60 80 100 120 140 160 180 200
0.25

0.3

0.35

0.4

0.45

0.5

t

Γ

0 20 40 60 80 100 120 140 160 180 200

0.4

0.5

0.6

0.7

0.8

0.9

1

t

|m
a

x
/m

in
(ζ

)|

Figure 3.30 – Evolution of the AGM circulations (left panel) and of the relative vorticity
extrema (local Rossby number - right panel) of the modons with initial Ro = 0.2. Conti-
nuous lines : quasi-barotropic modon, upper layer. Dashed-dotted lines : quasi-barotropic
modon, lower layer. Dashed lines : baroclinic modon, upper layer. Gray : anticyclonic cir-
culation/local Ro, black : cyclonic one.

as compared to the velocity of the QG modons c = Ro · f · a = 0.2. Indeed, the displacement
velocities of the quasi-barotropic and baroclinic dipoles are respectively 0.035 and 0.03, that
is less than a half of the quasigeostrophic one. This has been already observed in the one-
layer model (Ribstein et al., 2010), but the effect is stronger here (the reduction observed
was about 75% in the one-layer model with the same Rossby and Burger numbers). At the
same time the asymmetry is weaker, as compared to the one-layer counterpart, and the
divergence field mainly follows from the QG theory. Trajectories of the quasi-barotropic
and baroclinic modons are shown in Fig. 3.31. They are less curved than the one-layer
ageostrophic modon one.

Adjustment at Rossby number Ro = 0.4

Weakly stratified case : An interesting question is how the scenario of the ageostrophic
adjustment changes with increasing Rossby number. We are particularly motivated here
by our previous finding of combined shock-modon solutions in one-layer RSW (Lahaye et
Zeitlin, 2012c). We, thus, increase the global Rossby number, which is fixed now at Ro =
0.4. The baroclinic QG modon solution is not allowed for this value of the Rossby number
and the chosen values of parameters (δ, d). Hence, we will concentrate on the evolution
of the quasi-barotropic QG modon with δ = 0.85 and d = 0.8, i.e. weak stratification.
Because of the emergence of small-scale dynamical processes during the simulation, the
resolution is doubled below as compared to the previous cases : dx = dy = 0.025 Rd. The
evolution of the pressure and PVA fields is presented in Figs. 3.32 and 3.33.

The adjustment of the modon is quite similar to the Ro = 0.2 case, in what concerns
the emission of IGWs, cf. Fig. 3.34, filamentation and modification of the spatial structure
of PV. Its propagation speed is also diminished with respect to the initial quasigeostrophic
modon decreasing from 0.15 down to 0.05 over the second hundred of inertial periods (the
simulation ends at t = 200). However, the amplitude of the emitted waves is much (an order
of magnitude) higher, and the barotropic and baroclinic divergences of the waves reach the
values of, respectively, 0.15 and 1. We can also see a complex divergence structure inside
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Figure 3.31 – Trajectories of the quasi-barotropic (filled circles) and baroclinic (crosses)
modons. Time interval is 4 for the quasi-barotropic modon and 6 for the baroclinic one,
and simulations end at t = 200 and t = 300, respectively. The arrow indicates the position
of the baroclinic modon at the time corresponding to the end of simulation with the quasi-
barotropic one.
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Figure 3.32 – Isobars with superimposed velocity fields for the adjusted AGM with initial
Ro = 0.4 and d = 0.8 at t = 40 (left) and t = 200 (right). 1st and 3rd panels : upper layer ;
2nd and 4th panels : lower layer. Contour interval : 0.04.
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Figure 3.33 – PVA contours for the AGM with initial Ro = 0.4 and d = 0.8. From left to
right : t = 8, 40 (initial adjustment with shock formation) and 200 (ending stage). First
row : layer 1 ; second row : layer 2. Contours at interval 1 from ±0.2 to 9.2 for both layers,
and 5 from ±15 (applicable to cyclone only). Contour for dissipation higher than 7.5 · 10−3

is superimposed, to visualize the shock, in thick black line.

the dipole with even higher values in Fig. 3.34.
The high-divergence strips inside the dipole are actually associated with a shock, which

emerges due to high transonic velocity values at the axis of the dipole at such Rossby
numbers. Indeed, we recall that the typical phase velocities of the barotropic and baroclinic
IGW are, respectively, 1 and 0.22, to be compared with the maxima of the modulus of the
flow velocity in order to estimate the characteristic Froude number Fr = U/c0. As follows
from the left panel of Fig. 3.35, the "baroclinic" Froude number is larger than 1 over the
whole simulation, and the flow is transonic in the baroclinic sector. Note that the baroclinic
Froude number greatly increases during the first stage of the adjustment starting from 0.51
for the QG solution.

The right panel of Figure 3.35 exhibits a typical shock with a peak in the derivative
of the velocity and a strong local variation of the layer thicknesses. However, this jump
is almost indistinguisheable in the pressure fields, cf. Fig. 3.32. This is explained by the
expression of these latter in terms of the thicknesses of the layers :

Ψ1 ∝ h1 + h2, Ψ2 ∝ dh1 + h2

which shows that the shock may be cancelled in the pressure field of a layer if the jumps of
the thicknesses cancel each other . The amplitude of the jump in pressure in another layer
is then the jump of the thickness with a factor (1−d), which is small as the stratification is
weak. Therefore we have here a baroclinic shock, the thickness variations being of opposite
sign layerwise (as well as the velocity ones), and the signature in the barotropic field
being much weaker than in the baroclinic field (by a factor of 20, cf. Fig. 3.35, right
panel). The baroclinic (or internal) hydraulic jump in two-layer models has been subject
to numerous studies starting from Benton (1954) and Yih et Guha (1955). Criteria of the
shock formation derived in these works are based upon layerwise “local” Froude numbers,



3.7 Article : Existence and properties of ageostrophic modons and coherent tripoles in
the two-layer rotating shallow water model on the f -plane 111

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

x10
−1

−1

−0.5

0

0.5

1

1.5

 

 

8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5
7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.34 – Barotropic (left) and baroclinic (right) velocity divergence fields for the
adjustment of the quasi-barotropic QG modon with initial Ro = 0.4 at t = 8. Highest
represented values are 0.15 for the barotropic field and 2 for the baroclinic one, while the
true maxima reach, respectively, 0.27 and 7.5.
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Figure 3.35 – Left panel : maximum of the modulus of velocity in the upper (continuous)
and lower (dashed) layers (values at the left y-axis), and barotropic (circles) and baroclinic
(crosses) Froude numbers (values at the right y-axis). Right upper panel : profiles of the
thickness of the upper (black solid line) and lower (black dashed line) layers together with
the dissipation (gray) along the dipole’s axis at t = 40. Right lower panel : barotropic
(black) and baroclinic (gray) divergence profiles.
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Figure 3.36 – Left panel : PVA contours in the upper layer at t = 88 and the zone
of strong dissipation. Same conventions as in Fig. 3.33. Middle panel : evolution of the
position of the barycentres of PVA from t = 50 (upper left) to t = 200 (lower right).
Triangles : upper cyclone, circles : upper anticyclone, gray filled squares : lower total PVA
barycentre. Right panel : displacement of the cyclonic (triangles) and anticyclonic (circles)
upper (black, empty) and lower (gray, filled) barycentres with respect to the lower total
one (thus in (0, 0)) from t = 50 to t = 200. Simulation with initial Ro = 0.4, d = 0.8.

defined as |~vi|/
√
ghi (see also Armi (1986)). The shock formation we observe is consistent

with these criteria.
It should be reminded that the conservation laws of the two-layer shallow-water mo-

del are insufficient to completely fix the Rankine-Hugoniot conditions across the shock, in
contradistinction with the one-layer RSW model. Hence, some closure hypothesis is ne-
cessary to obtain the shock conditions, as have been discussed in many studies, see e.g.
Klemp et al. (1994); Montgomery et Moodie (2001); Jiang et Smith (2001); Holland et al.
(2002). This, together with possible hyperbolicity loss, which we do not encounter in the
present simulations, explains the difficulty of constructing reliable numerical schemes for
the two-layer RSW equations (Castro et al., 2004) . We recall that the Rankine-Hugoniot
conditions consistent with our numerical scheme are momentum conservation layerwise
(Bouchut et Zeitlin, 2010).

Despite the weak effect of the shock upon the pressure fields, the dynamical impact of
the hydraulic jump is not negligible. It is well known that PVA appears behind a shock,
associated to the variation of the Bernouilli function jump along the shock (and, thereby, of
the energy dissipation), see Pratt (1983); Schar et Smith (1993). In the present simulation,
the shock is a source of dipolar PVA in the upper layer, as follows from Figure 3.36, left
panel. Thus created "extra" cyclonic vorticity is being advected around the anticyclonic
pole and coming back along the dipole axis, subject to vortex stretching. This extra vorti-
city produces oscillations of the upper-layer anticyclone about its equilibrium position, cf.
Fig. 3.36. It is visible that the barycenter of the negative PVA in the upper layer, which
is defined as

∫
~r|qAi |H(|qAi |−0.1)dxdy∫
|qAi |H(|qAi |−0.1)dxdy

, moves along a quasi-elliptic path with respect to the
lower anticyclone’s center. The anticyclonic PVA due to the shock is also advected by the
cyclonic core, but the latter experiences almost no oscillations, probably because of the
higher interface deviation in the cyclonic pole leading to a stronger inter-layer coupling.

Filamentation of vorticity due to this complex process leads to strong attenuation of
PVA in the upper layer, as visible in the last panels of Fig. 3.33, together with a decrease in
the energy anomaly (mostly in its kinetic component) of 40% over the 200 inertial periods
of simulation, which is twice that of the simulation with Ro = 0.2 (not shown). Energy
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Figure 3.37 – Absolute value of the baroclinic divergence field with superimposed velocity
for the adjusted AGM with initial Ro = 0.4, in levels of gray. Limits of convergence
(divergence) zones are indicated by black (gray) contours, at the value 0.15. PVA contour
at 0.1 is added in dashed black line.

dissipation is also enhanced by the shock itself, as follows from the Fig. 3.35.
However, the modon stabilizes in the course of its evolution, with no more PV created

by the shock which has lost intensity, and becomes a quasi-steady structure (it is not steady
since the upper anticyclone undergoes weak quasi-periodic oscillations). The distribution
of the baroclinic divergence of the thus adjusted modon at t = 200 is given in Fig. 3.37.
The barotropic divergence is weak, on the level of surrounding noise, and not shown. One
clearly sees the shock with an associated high value 1.5 of nondimensional divergence, and
a signature of baroclinic captured waves at the exterior edges of the cyclone and anticy-
clone. The appearence of such "wave capture" in rotating shallow water is curious, as the
dispersion of the baroclinic IGWs here is weak, unlike continuously stratified flows, and
the wave-capture mechanism as introduced in Bühler et McIntyre (2005) is not transpo-
sable. Nevertheless the IGW signature inside the dipole is similar to that observed for
continuously stratified dipoles (Snyder et al., 2007).

Strongly stratified case : As we have seen above, the weak signature in the pressure
field of the shock inside the dipole at high Ro is due to the weak stratification, i.e. high
(close to 1) value of the parameter d. We now present results of the adjustment of the
quasi-barotropic modon at Rossby number Ro = 0.4 with a lower value of the density ratio
d = 0.6.

The initial QG modon is very close to the one with d = 0.8. A coarser resolution is
sufficient in this case (dx = dy = 0.05 Rd). We present in Fig. 3.38 the evolution of the
PVA fields and their end state in Fig. 3.39. The adjustment is rather different as compared
to the previous case. In addition to the strong filamentation, the upper dipole turns around
its fellow cyclone and its antycyclonic part is mostly ejected at the end of the rotation.
During this process the lower dipole is slightly distorted, but then recovers the usual shape.
It drives the structure out of the initial location, leaving the ejected upper-layer anticyclone
behind. The final two-layer modon consists of a dipole in the lower layer together with a
cyclonic monopole situated at the position of the cyclone in the initial upper-layer dipole.
It is similar to the "rider" structures discussed in the literature in the two-layer QG model
(Flierl et al., 1980) and to the "triton" obtained by Verron et Sokolovskiy (2002) in the
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Figure 3.38 – PVA evolution for the adjustment of the modon with initial Ro = 0.4 and
d = 0.6. Contours correspond to PVAi = ±0.15f/Hi, in dotted black line for the lower
layer and continuous black and gray lines for, respectively, the cyclone and the anticyclone
in the upper layer. From left to right and up to down : t = 20, 40, 60, 80 and 100.

studies of ensembles of hetons - point vortex solutions of two-layer QG equations, cf.
Gryanik et al. (2006).

As visible in Fig. 3.40, the upper layer contains a weak anticyclonic circulation asso-
ciated with a small pressure anomaly. The result of the ejection of the upper anticyclone
is that the shock at the dipole axis disappears. (It is resolution-dependent : with higher
resolutions the shock is weakened but persists. This does not affect the reorganisation of
the vortex, which is our main emphasis here.) Maximum values of the divergence are in-
deed reduced to 0.3 for the baroclinic component and 0.03 for the barotropic one, and
typical barotropic and baroclinic Froude numbers are now respectively 0.35 and 0.9. The
impact of the upper anticyclone ejection is highlighted by the evolution of the maxima of
velocity and velocity divergence in the layers presented in Fig. 3.41 for two values of d.
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Figure 3.39 – PVA in the upper (left) and lower (right) layer for the modon with initial
Ro = 0.4 and d = 0.6 at t = 160. Same conventions as in Fig. 3.33.
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Figure 3.40 – Pressure anomaly and velocity fields in the upper (left) and lower (right)
layers for the adjusted modon with initial Ro = 0.4 and d = 0.6 at t = 160. Same
conventions as in Fig. 3.32.

Note that for the sake of comparison the figure shows simulations with the same resolution
(the coarser one, i.e. dx = dy = 0.05 Rd) for both d. With this resolution the shock in
the d = 0.8 case is weaker than presented above, and almost vanishes at t ≈ 140, which
is why the values of Froude numbers and divergence extrema are rather low at the end of
the simulation. It is clear from the Figure that the divergence extrema are highly reduced
in the d = 0.6 case which leads to approximatively constant velocity maxima (consistent
with the absence of dissipative shock), whereas the velocities for d = 0.8 undergo a slight
but continuous decrease. The same holds for the energy dissipation, which is higher when
the hydraulic jump is present, with higher peak values associated with the shock (cf. Fig.
3.35). Total energy anomaly over the 200 inertial periods is reduced by 30% in the case
with no shock (d = 0.6), whereas it is reduced by 45% with a shock (d = 0.8) at the same
resolution (not shown). Evolution of barotropic and baroclinic Froude numbers is given in
Figure 3.41. We conclude that, even if the velocities are higher in the d = 0.6 case, Froude
numbers are lower than in the case of d = 0.8, after the upper anticyclone was ejected
(t = 60).

The divergence field presented in Fig. 3.42 shows a net wave signature with higher wave
numbers and amplitudes along the dipole’s axis, and lower ones at the exterior edges of
the poles. Note that the baroclinic divergence amplitude is greatly reduced as compared
to the ageostrophic modon with a shock. The scatter plot of the equilibrium state of the
"rider" modon shows that it is a (quasi-)steady coherent structure, see Fig. 3.43.

Preliminary discussion of the adjustment experiments

We thus found coherent ageostrophic dipoles in the two-layer shallow water model at
large enough Rossby numbers. Such structures were already known in the QG models but
were not reported in the full “compressible" shallow water model, to our knowledge, except
for simulations in the the two-layer model with a rigid lid where dipoles (and tripoles, see
below) were observed at the late stages of the evolution of the unstable isolated vortex in
cyclo-geostrophic balance (Baey et Carton, 2002). For relatively low Ro = 0.2 we found
the basic processes and properties of the modons similar to those in the one-layer model,
namely :

— QG modons adjust to ageostrophic ones by emission of inertia-gravity waves,
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Figure 3.41 – Evolution of the velocity maxima (up) and of the divergence maxima (down)
for the d = 0.8 case (left) and the d = 0.6 case (right) at Ro = 0.4. Same conventions as
in Fig. 3.35, left panel.
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Figure 3.43 – Scatter plots B vs. PV in the upper (left) and lower (right) layers for the
"rider" modon with initial Ro = 0.4 and d = 0.6 at t = 180. Same conventions as in
Fig. 3.27. Left branch of the scatter plot in the upper layer corresponds to the ejected
anticyclone which stays at its initial position.

.

— cyclone-anticyclone symmetry is destroyed during this process, resulting in peak-
shaped cyclone and spreaded anticyclone,

— the resulting modons are moving along the curved paths with lower than the QG
modons velocity,

— a quadrupolar pattern of divergence is associated to the modons.
Yet, increasing the Rossby number leads to drastic changes in the adjustment process
due to emergence of a baroclinic hydraulic jump situated at the dipole’s axis where the
flow becomes transonic. We, thus, get a new baroclinic shock-modon coherent structure
generalizing the one-layer shock-modon (Lahaye et Zeitlin, 2012c). With decreasing the
density ratio of the layers, the adjustment process undergoes a qualitative change at high
Ro, with a vortex reorganization and formation of the coherent "rider" structure (monopole
in the upper and dipole in the lower layer). These new features at large Rossby number come
with a net increase of the ratio of the maximal values of ageostrophic to geostrophic velocity.
Indeed, this ratio was of the order 10−1 in the simulation with initial Ro = 0.2, whereas it
exceeds 1 for the baroclinic component in the simulations with Ro = 0.4 (and reaches 0.5
for the barotropic one, with the best resolution we used). The highly ageostrophic processes
emerge together with an apparent baroclinic wave capture, although the standard wave-
capture mechanism should not work in shallow water.

3.7.4 Collisions of the ageostrophic modons : multipoles in the two-layer
RSW model

Scattering of quasi-barotropic modons

Following our approach to one-layer modons, we proceed with simulations of collisions
of the ageostrophic modons found above. As in the one-layer case, we hope to find in this
way new coherent structures in two-layer rotating shallow water. We have seen above that
the ageostrophic modons with Ro = 0.2 are, in fact, weakly ageostrophic. Their collisions
resemble those of QG modons studied in literature (e.g. Van Heijst et Flór, 1989) and
are not presented in this subsection. We will thus present only the results of collisions
between two essentially ageostrophic modons with initial Ro = 0.4. In previous studies
with one-layer model it was found that the AGMs survive frontal collision forming two
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Colliding modons Ro (global) Configuration Outcome sectionOrientation I.P.
Quasi-barotropic 0.4 180◦ 0 2 AGMs 3.7.4
Quasi-barotropic 0.4 180◦ 2 Tripole 3.7.4
Quasi-barotropic 0.4 90◦ – AGM + NAGM 3.7.4
Baroclinic 0.2, 0.3 180◦ 0 2 AGMs 3.7.4
Baroclinic 0.2, 0.3 180◦ 2 Tripole 3.7.4
Baroclinic 0.2, 0.3 90◦ – AGM + NAGM 3.7.4

Table 3.1 – Configuration of collisions of ageostrophic modons (I.P. : nondimensional
Impact Parameter)

AGM after exchange of partners (Ribstein et al., 2010). Afterwards, we found that other
collisions may produce new kinds of multipoles in the RSW model : the tripole (T) and the
nonlinear ageostrophic modon (NAGM) (Lahaye et Zeitlin, 2011). The former consists of
an anticyclonic core with two cyclonic satellites, while the latter is a dipole with a reduced
global Rossby number, because of larger distance between the two vorticity cores, and
essentially nonlinear scatter plot of B vs PV (cf. Hesthaven et al., 1995). Recently, we
presented similar results for shock-modons with Ro = 0.4 (transonic one-layer AGM with
a hydraulic jump) whose collisions lead to formation of a shock- tripole (Lahaye et Zeitlin,
2012c). Guided by our previous experience, we performed the collission experiments with
above-described two-layer modons with similar results, leading to discovery of new types
of ageostrophic coherent structures in the two-layer model.

The resolution in these experiments was chosen to be dx = dy = 0.05 Rd. The collisions
are initialized by cutting the adjusted modon from the previous simulations with δ = 0.85
and d = 0.8 at t = 100 and then pasting it twice in a new domain at orientations 0˚ and
180˚ (except for 2 AGM→ AGM+ NAGM collision, where the orientation angle is 90◦, see
subsection 3.7.4 below) at different values of the impact parameter (the distance between
the axes of the colliding modons). The collisions we studied are summarized in Table 3.1.

2 AGM → 2 AGM collision : We show in Figs. 3.44 and 3.45 the evolution of the
pressure and PVA fields during a typical head-on collision of two modons. We show the
fields in the lower layer, their evolution in the upper layer being similar.

It is clear from the figures that modons relax towards their initial shape after scattering.
The dissipation rate of the kinetic energy is slightly reduced when the collision occurs
(around t = 50) (cf. Fig. 3.46), as opposed to the behaviour of the potential energy anomaly.
Their variation thus cancel each other, and the total energy is rather well-conserved (the
overall energy anomaly loss is 24% for 200 inertial periods computing). Actually, the energy
dissipation is only attributable to the intrinsic dissipation by the modons themselves (the
average dissipation rate is the same as that of the free modon evolution, without any
scattering) and not to the collision, which therefore can be considered as a quasi-elastic
process.

Almost no wave radiation is observed during the collision (not shown). This surprising
feature was already observed in the one-layer model, and may be explained as follows : in
spite of the important ageostrophic component of the modon, the fields evolve slowly with
respect to the fast time-scale of the waves. However, the low group velocity of the internal
waves together with the strong fine-scale component contained into the shock could have
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Figure 3.44 – Evolution of the lower layer pressure field with superimposed velocity for
a collision of two quasi-barotropic AGMs. From left to right : t = 24, 48 and 68. Same
conventions as in Fig. 3.32.
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Figure 3.45 – Evolution of the lower layer PVA corresponding to Fig. 3.44. From left to
right : t = 24, 48 and 68. Same conventions as in Fig. 3.33.
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Figure 3.46 – Evolution of the energy of the system during the 2AGM→ 2AGM collision.
Same conventions as in Fig. 3.26.
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Figure 3.47 – Evolution of the baroclinic divergence field with superimposed velocity du-
ring the 2AGM→ 2AGM collision. From left to right : t = 24, 48 and 68. Same conventions
as in the Fig. 3.37 with the maximum of represented values at 0.8. Maximal absolute values
decrease from 1.3 at t = 24 to 0.84 at t = 68.
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Figure 3.48 – Evolution of the pressure anomaly with superimposed velocity fields during
the merging of the anticyclones and ageostrophic tripole formation. From left to right :
t = 30, 45, 60 and 100. Same conventions as in Fig. 3.32.

lead to a wave emission.
The hydraulic jump reforms at the axes of the newly-born modons, see. Fig 3.47, which

was double-checked by a higher-resolution simulation. As suggested by our work on shock-
modons in the 1-layer model (Lahaye et Zeitlin, 2012c), the outcome of the collision is
expected to be similar for a wide range of shock intensities.

2 AGM → T collision : At larger impact parameter, when the AGM hit each other by
their anticyclones, a coherent tripole forms. Evolution of the pressure and PVA fields in
the lower layer are given, respectively, in Figs. 3.48 and 3.49.

One can see that the anticyclones merge, forming a large anticyclonic core with two
cyclonic satellites at the same axis. We recognize here a tripolar vortex well known in
non-rotating quasi-bidimensional flows, see e.g. van Heijst et Kloosterziel (1989); Kizner
et Khvoles (2004a). Yet the tripole is ageostrophic in our simulations. Once again, only a
very weak wave emission is present in the velocity divergence fields (not shown). During
the fusion, important patches of anticyclonic vorticity are stretched by the cyclones and
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Figure 3.49 – Evolution of the PVA field corresponding to Fig. 3.48. From left to right :
t = 30, 45, 60 and 100. Same conventions as in Fig.3.33.
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Figure 3.50 – Baroclinic velocity field with associated divergence for the ageostrophic
tripole at t = 150 (left panel - same conventions as in Fig. 3.37 with saturation value 0.25).
Right panel : scatter plots B vs. PVA in the upper and lower layers, at t = 195 (same
conventions as in Fig. 3.27).

vice-versa, leading to some dissipation of (mainly anticyclonic) PV. However, the local
Rossby number increases and reaches a value of 2.5 during the fusion, and remains high
(greater than 1) for the adjusted tripole. The tripole is a coherent structure. We present the
baroclinic velocity fields with associated divergence together with the scatter plots of the
Bernoulli function vs PV in Fig. 3.50. A clear wave signature with high divergence values
is visible in the baroclinic component, which looks like two wave-packets captured within
each jet between the core and the satellites. The barotropic divergence exhibits two weak
quadrupoles centred over each cyclonic satellite (not shown). Their amplitudes are three
times higher than the one of the ambient barotropic waves (generated by the adjustment
of the initial dipole and the numerical adjustment due to initialization of the collision) at
t = 100 and twice higher at t = 200. The tripole is long-living (the collision simulation runs
over 400 inertial periods). The ratio of ageostrophic and geostrophic typical velocities is,
respectively, 0.3 and more than 1 for the barotropic and baroclinic components. It seems to
be consistent with the cyclogeostrophic balance, in agreement with the very low amplitude
of the large scale divergence pattern. Thus, as visible in the baroclinic divergence (Fig.
3.50, left panel), the strongly unbalanced flow component resides in captured waves and
remains embedded into the tripole until the end of the simulation.

Typical velocities in the upper and lower layers at t = 100 are 0.25 and 0.35, and typical
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Figure 3.51 – Evolution of the pressure anomaly with superimposed velocity field for the
AGM → NAGM collision. From left to right : t = 40, 52, 76 and 152. Same conventions as
in Fig. 3.32.
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Figure 3.52 – Evolution of the potential vorticity anomaly for the AGM → NAGM colli-
sion. From left to right : t = 40, 52, 76 and 152. Same conventions as in Fig. 3.33.

barotropic and baroclinic Froude numbers, respectively, are 0.3 and 0.7. Thus the flow is
subcritical and the hydraulic jumps are absent, which may be deduced from the patterns of
the divergence and layer thicknesses, and from the absence of noticeable dissipation which
would occur in the presence of discontinuities. The scatter plot shown in Figure 3.50, right
panel, exhibits a strongly nonlinear relation between the Bernouilli function and PVA and
highlights the coherence of the tripole.

2 AGM → AGM + NAGM collision : Another kind of collision is the lateral one
with incoming modons’ axes at approximatively right angle. It is known that in purely
bidimensional non-rotating hydrodynamics, a strictly perpendicular collision of vortex di-
poles leads to a dipole and a nonlinear dipole (Couder et Basdevant, 1986). This kind of
collision is presented below, with the lower-layer pressure and PVA in Figs. 3.51 and 3.52,
respectively.

One sees that a new AGM is formed and goes away upward in the graph. During
the collision, the action of two remaining vortices (that is, the former partners of the
vortices now bound into a new AGM) slightly compress the new modon and pulls out
some anticyclonic vorticity. The weak anticyclonic patch thus pulled away from the AGM
is then stretched and dissipated (see. Fig. 3.52). This lack of anticyclonic vorticity in the
AGM is afterwards balanced by filamentation of the cyclonic vorticity (not shown) at its
rear, in a similar way as during the initial adjustment for Ro = 0.2. On the other hand,
the remaining vortices of opposite sign form a new dipole with a higher distance between
the two vorticity extrema. This is the nonlinear ageostrophic modon (NAGM). Once again,
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Figure 3.53 – Baroclinic divergence with superimposed velocity field at t = 152 (left, with
same conventions as in Fig. 3.37), and scatter plots (two right panels) at t = 180 (same
conventions as in Fig. 3.27), for a typical two-layer NAGM. True maximum value for the
divergence is 0.3.

there is almost no wave emission during the collision.
The resulting NAGM is characterised by lower local and global Rossby numbers, in

agreement with lower typical velocities (0.2 and 0.3 in the upper and lower layers). This is
associated with a decrease of the kinetic energy of the system compensated by an increase
of the potential energy (not shown). Indeed typical pressure anomalies for the NAGM
are stronger, and their spatial extension (as well as that of the thickness anomalies) is
higher than for the AGM (compare Fig. 3.51 between t = 40 and t = 152). It contains a
strongly asymmetric baroclinic component (the maximum baroclinic velocity is 0.14 and
the barotropic one is 0.25), with a visible wave signature (see Fig. 3.53) over each pole,
with higher amplitude in the (more intense) anticyclone. This structure is coherent, as is
clear from the scatter plot. Like for its known bidimensional counterpart, it has a strongly
nonlinear shape, which is at the origin of the name (Hesthaven et al., 1995; Kizner et
Khvoles, 2004b).

Frontal scattering of baroclinic modons

The above-presented results on the scattering of quasi-barotropic modons are not very
different from what occurs in the barotropic one-layer model (Lahaye et Zeitlin, 2011) and
(Lahaye et Zeitlin, 2012c), which is due to the almost barotropic character of ageostrophic
modons. The main difference are trapped waves which appear in the baroclinic component
in the two-layer case. Obviously, the baroclinic component itself is a totally new feature in
the two-layer model.

On the other hand, the baroclinic modons have clearly different vertical structure,
which is why we expect different results for their collisions. We thus take the baroclinic
modons with initial Ro = 0.2, δ = 0.85 and d = 0.8 and follow the same procedure as
for the quasi-barotropic modons to study frontal collisions. It is worth noting that the
baroclinic modon is far from the configuration with an infinite depth / infinite density of
the lower layer, which would correspond to a passive lower layer, and hence reduced-gravity
effective one-layer model. Indeed we have seen that the lower-layer circulation is non zero,
albeit weak. Hence we are dealing with a truly baroclinic modon and not a reduced-gravity
one-layer one.
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Figure 3.54 – Evolution of the divergence extrema during the 2AGM → T (solid) and
the 2AGM → AGM + NAGM (dashed) baroclinic collision with initial Ro = 0.2 (initial
AGMs collide at t ≈ 110). Convergence (divergence) in black (gray).

Three kinds of collisions were performed, along the same lines as in the quasi-barotropic
case above. We have found that despite the differences in their structure, as compared to
one-layer or two-layer quasi-barotropic AGM, the baroclinic modons also survive collisions,
leading to either a pair of baroclinic modons after partner exchange when the impact
parameter is close to zero, or to a baroclinic tripole or NAGM when the modons encounter
each other, respectively, on their anticyclone sides or at perpendicular paths (not shown).

Yet some differences exist, as compared to the quasi-barotropic modons collisions. Be-
cause the Rossby number is smaller in the baroclinic case, the Froude numbers (both
baroclinic and barotropic) remain less than one. Hence, no shock waves embedded into
the resulting structures are observed. It then appears that the formation of the tripole, or
of the NAGM, occurs with a sharp decrease of the upper-layer divergence. The resulting
divergence pattern consists of two weak quadrupoles centred over each cyclonic satellite
in the upper layer, as concerns the tripole, and a very weak quadrupole over the cyclone
for the NAGM. This feature is shown for the tripole formation in Figs. 3.54 and 3.55. The
lower-layer divergence remains very low during the simulations. Typical values of the diver-
gence extrema decrease from 0.03 down to 0.01 for the tripole and 0.005 for the NAGM.
Yet the amplitude of the waves emitted through these processes is very small. A weak
tripole is forming in the lower layer with vorticity poles of opposite sign compared to the
upper ones. Nevertheless, typical values of thus created lower layer PVA remain very low
(the ratio of typical values of upper to lower layer PVAs is about 20).

We also undertook simulations with baroclinic modons at higher Rossby number ≈ 0.3
(see Fig. 3.55 for the tripole). Actually, the initial QG dipole was computed with Ro = 0.25,
then afterwards the velocity fields was amplified (by a factor 1.2 or so) in order to get a
higher Rossby number. This allowed us to get a baroclinic modon with rather large Rossby
number, and without outcropping. Results for both the adjustment and the scattering of
such baroclinic modons are rather the same, besides the divergence field which is obviously
stronger as the modon becomes more ageostrophic.
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Figure 3.55 – Layer one divergence with superimposed PVA contour at 0.1 and velocity
for the tripole with initial Ro = 0.3 at t = 256. Same conventions as in Fig. 3.29 with
limiting values [0.01 0.05].

3.7.5 Conclusions

Thus, we have constructed two classes of exact steady-moving symmetric dipolar solu-
tions of the quasigeostrophic limit of the two-layer rotating shallow water equations with
a free surface, and showed that they fall into two classes : quasi-barotropic and baroclinic.
While the first may be thought of as a direct generalisation of the barotropic modons in
the one-layer rotating shallow water, the second is proper to the two-layer system. We
used them both, with moderate Rossby numbers and certain reasonable values of depth
and density ratios for the fluid layers, for initialization of the numerical simulations of
the full two-layer rotating shallow water model with well-balanced shock-capturing code,
and showed that both adjust to new ageostrophic asymmetric steady dipoles, similar to
what happens in the barotropic one-layer rotating shallow water model. These results indi-
cate the existence of steady ageostrophic solutions of the two-layer rotating shallow water
equations and give an example of "spontaneous imbalance". The baroclinic and the baro-
tropic velocity fields, though, behave differently for two classes of solutions during such
adjustment. These differences are quantified.

An increase in Rossby number changes the scenario of adjustment leading to the ap-
pearence of baroclinic hydraulic jumps inside the dipoles (although only quasi-barotropic
modons exist for the highest value of the Rossby number Ro = 0.4 we used) . Depending
on the density ratio they lead to new coherent structures, shock-modons : the modons
with incorporated shock, for weak stratification ; or "riders" : monopoles in the upper layer
driven by dipoles in the lower layer, for strong stratification. The ageostrophic component
of the flow of these new structures is strong, with a signature of wave capture at the
edges, besides the shock in the middle. Yet, the inertia-gravity wave emission is practically
nonexistent during the collision process.

As in the one-layer rotating shallow water, the collisions between the ageostrophic



126 Chapitre 3 : Structures agéostrophiques multipolaires

modons may be either quasi-elastic, or produce new coherent structures : ageostrophic
tripoles and so-called nonlinear dipoles with strongly curved scatter plot. This conclusion
holds both for moderate and high Rossby-number colliding modons, with embedded shocks
in the last case.

It should be stressed that production of tripoles and nonlinear dipoles by colliding sym-
metric dipoles is well-documented in the literature in the framework of the incompressible
two-dimensional Euler equations (or equivalent QG equations on the f -plane). It is, howe-
ver, rather surprising that baroclinicity and compressibility do not essentially affect these
processes, even when colliding dipoles contain embedded shocks. In the case of quasi-elastic
scattering with partner exchange these shocks re-form inside the exiting dipoles.
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3.8 Résumé et perspectives

Dans ce chapitre, la dynamique de structures multipolaires agéostrophiques barotropes
et baroclines a été étudiée.

Les propriétés importantes dégagées dans les modèles à une et deux couches sont si-
milaires. Cependant, les phénomènes de capture d’ondes ou de formation d’un front (ou
choc) au sein des structures apparaissent pour des nombres de Rossby moins élevés dans
le modèle barocline, ce qui est en accord avec la réduction du gap spectral par rapport
au modèle barotrope. La modification de l’anomalie de vorticité potentielle générée par
le front reste faible et ne destabilise pas les structures observées. Dans certains cas, cette
modification est même inexistante. Par ailleurs, une plus grande variétée de structures
cohérentes a été obtenue en RSW deux couches.

Les structures tourbillonaires observées montrent une forte attractivité, ce qui indique
qu’elles constituent probablement des solutions stables du système et donc des minima
d’énergie. Ceci a été montré, en particulier, par des simulations numériques mettant en jeu
des interactions simples entre des dipôles, à savoir des collisions à deux membres. L’issue
la plus fréquente est la reformation de ces dipôles via un processus quasi-élastique avec
échange de partenaires, ou bien la formation d’autres structures cohérentes. Même lorsque
le nombre de Rossby est grand, l’émission d’ondes d’inertie-gravité observée est négligeable
et le système évolue manifestement dans une dynamique “équilibrée”, au sens large. Les
résultats obtenus ici montrent que ces états à l’équilibre “agéostrophique” constituent des
minima d’énergie du système. Il est intéressant d’extrapoler ces résultats à la dynamique
d’un ensemble de plusieurs structures cohérentes en interaction, qui peut correspondre au
stade final de l’évolution d’un écoulement turbulent en l’absence de forçage. Nos résultats
montrent (i) que l’évolution d’un tel système ne conduira vraisemblablement pas à la
génération substantielle d’ondes d’inertie-gravité, écartant ainsi ce mécanisme en tant que
possible source de dissipation et de mélange, et (ii) que l’on peut anticiper la reformation de
structures cohérentes à l’issue de l’évolution de ce système, généralisant ainsi les résultats
connus sur la turbulence quasi-bidimensionnelle aux écoulements agéostrophiques.

Ce résultat d’absence d’émission d’ondes d’inertie-gravité est robuste, même pour des
nombres de Rossby grands, associés à des nombre de Froude supérieurs à l’unité, pour
lesquels la formation de chocs au sein des structures a été observée. Plus généralement,
le phénomène d’ondes capturées au sein des structures est intriguant. En effet, un tel
processus (wave-capture, en anglais) est connu dans les équations primitives (Bühler et
McIntyre, 2005) et a également été étudié au sein d’un dipôle de vorticité dans ces équations
par Plougonven et Snyder (2007). Néanmoins, le mécanisme impliqué dans ce phénomène
dépend de la relation de dispersion des ondes et n’est pas valable dans les équations RSW du
fait de la faible dispersion des ondes courtes dans ce modèle. Les ondes piégées observées ont
une longueur d’onde courte et une amplitude importante, participant ainsi à la dissipation
d’énergie au sein même de la structure. La formation de fronts est associée à une dissipation
d’énergie plus importante.

Suivant les travaux de Snyder et al. (2007, 2009), il pourrait être intéressant d’étudier
en détail les caractéristiques de ces ondes en regardant, par exemple, les perturbations
linéaires autour du dipôle observé. Un autre type d’analyse à mener consisterait à effectuer
une séparation dynamique approximative des parties équilibrée et non-équilibrée de l’écou-
lement, en utilisant une relation d’équilibre plus générale que l’équilibre géostrophique. Une
analyse simple de la partie équilibrée au sens du géostrophisme est en effet donnée dans la
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section 3.7.3 et montre une déviation dans les zones de forte courbure, associée à la force
centrifuge. L’utilisation d’une relation incluant notamment des corrections divergentes (e.g.
la relation de Charney-Bolin généralisée) peut permettre une meilleure visualisation des
caractéristiques dynamiques de la partie agéostrophique de l’écoulement.



CHAPITRE 4

Turbulence d’ondes et de tourbillons

4.1 Notions de turbulence (quasi) bidimensionnelle

4.1.1 Turbulence bidimensionnelle incompressible

Les écoulements atmosphériques et océaniques à grande échelle, de par leur nature in-
trinsèquement turbulente et quasi-bidimensionnelle (dans le plan horizontal par l’action
conjuguée de la rotation, la stratification et le faible rapport d’aspect, cf. section 1.1), ont
constitué une motivation forte pour l’étude de la turbulence bidimensionnelle depuis des dé-
cennies. Par ailleurs, les caractéristiques phénoménologiques et théoriques de la turbulence
à deux dimensions sont singulièrement différentes de celles des écoulements tridimension-
nels, singularité qui est à l’origine d’un intérêt fort pour ce problème en soi, de sorte que
la turbulence bidimensionnelle est peu à peu devenue une discipline distincte. Au delà de
l’intérêt théorique, la turbulence bidimensionnelle présente l’avantage d’être plus facile à
simuler numériquement (le nombre de degrés de liberté du système est plus petit) et à étu-
dier expérimentalement (e.g. Tabeling, 2002; Kellay et Goldburg, 2002). Ces expériences
consistent principalement en des écoulements confinés dans des films minces (obtenus grâce
à des solutions contenant des tensioactifs – les bulles de savons en étant l’exemple arché-
type, (e.g. Couder et Basdevant, 1986)), ou bien des écoulements de fluide ferromagnétique
forcés par un champ électromagnétique.

L’absence de “vortex stretching” – l’amplification d’un filament de vorticité par élonga-
tion le long de son axe dans les équations d’Euler 3D – dans les écoulements bidimensionnels
est associée au fait que la vorticité (ζ = ∂xv − ∂yu, i.e. sa composante verticale pour un
écoulement 2D) est un invariant lagrangien en l’absence de dissipation :

dζ

dt
= (∂t + ~v · ~∇)ζ = 0, (4.1)

d’où l’existence d’une constante du mouvement appelée enstrophie :

Z =
1

A

∫∫
A
ζ2d2~r. (4.2)
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Les écoulements turbulents 3D se caractérisent par une cascade directe de l’énergie, c’est à
dire un transfert par triades résonantes entre les modes vorticaux vers les petites échelles.
Cette cascade est associée à un spectre de puissance en k−5/3, initialement introduit par
Kolmogorov en 1941 et basé sur l’homogénéïté et l’isotropie de l’écoulement. Dans l’espace
physique, ce transfert vers les petites échelles est justement associé à l’étirement longitudi-
nal des filaments de vorticité qui concentre (par conservation du moment angulaire et du
volume) la vitesse dans un rayon plus petit, jusqu’à atteindre l’échelle où la viscosité va
dissiper l’énergie associée. En l’absence de vortex stretching, ce processus n’existe pas dans
les écoulements incompressibles 2D. Il existe deux cascades dans ces derniers (Kraichnan,
1967), associés aux deux invariants que constituent l’énergie et l’enstrophie : une cascade
inverse d’énergie, associée à un spectre de puissance en k−5/3 avec un flux spectral d’énergie
négatif – et donc un transfert de l’énergie vers les grandes échelles ; et une cascade directe
d’enstrophie, dont le spectre caractéristique 1 est en k−3. L’évolution des écoulements 2D
consiste donc généralement en la formation de tourbillons de plus en plus grand par fusion
de tourbillons, générant dans leur entourage de la filamentation de vorticité par distorsion
de petites structures environnantes. La littérature à ce sujet est extrêmement vaste et nous
ne citerons que les travaux de McWilliams (1984) qui adopte une approche de dynamicien
des fluides géophysiques, et la revue récente de Boffetta et Ecke (2012). Les tourbillons
ainsi créés sont des structures cohérentes (un tourbillon axisymétrique est une solution du
système) qui inhibent le phénomène de cascade inverse de l’énergie (McWilliams, 1990).
En effet, la filamentation de vorticité est associée à une dissipation, tandis que les tour-
billons concentrent de fortes valeurs de vorticité (en valeur absolue). La distribution de
cette dernière dévie alors de la gaussianité : en particulier, le moment normalisé d’ordre
4 – appelé Kurtosis – est supérieur à celui correspondant à une distribution gaussienne,
indiquant des fortes valeurs “plus fréquentes” que pour cette dernière. Ceci caractérise ce
qui est appelé intermittence en turbulence. La cohérence de l’écoulement entraîne une ra-
réfaction des triades résonantes associées à la cascade inverse de l’énergie (McWilliams,
1990), d’où l’inhibition de cette dernière. Les spectres associés à ces régimes cohérents ont
une pente plus raide que k−3.

L’état final du système est généralement constitué de quelques tourbillons cohérents
bien séparés les uns des autres ; parfois seulement deux tourbillons de vorticité de signe
opposée (la circulation totale est ainsi maintenue nulle), lorsque la taille du domaine est
petite (par rapport à l’échelle typique de la condition initiale).

4.1.2 Turbulence quasi-2D : fluides géophysiques

La modélisation des écoulements géophysiques par les équations d’Euler 2D incompres-
sibles est une approche satisfaisante pour obtenir une description globale, valable à grande
échelle. Les conséquences des résultats énoncés précédemment sur la phénoménologie de la
turbulence 2D sont les suivantes :

— La formation de structures cohérentes est un élément important pour le transport
de quantités dynamiques, thermodynamiques, chimiques et biologiques, notamment
dans les océans (cf. sections 1.1 et 1.4). Dans l’atmosphère, les phénomènes de blo-
cage ont un impact météorologique important aux moyennes latitudes, en mainte-

1. on peut montrer que ce spectre est associé à des phénomènes non-locaux qui brisent les hypothèses
permettant sa dérivation. Kraichnan (Kraichnan, 1967) montra que cette non-localité conduit à un spectre
modifié en log(k/k0)k−3.
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nant un même régime de temps sur une longue période (au delà de la semaine), ce
qui peut générer des épisodes de froid ou des vagues de chaleur.

— Le mécanisme de dissipation d’énergie par viscosité moléculaire intervient à très pe-
tite échelle. Dans le cadre des équations de Navier-Stokes 3D, cette échelle – appelée
dimension de Kolmogorov – est associée à un nombre de Reynolds local de l’ordre
de l’unité, et le rapport de cette longueur sur la taille typique des grandes structures
est donné par Re−3/4. S’il est vrai que les écoulements géophysiques sont tridimen-
sionnels à très petite échelle, il manque un mécanisme permettant de transférer
l’énergie de l’écoulement vers ces petites échelles. L’apport d’énergie étant continu,
qu’il s’agisse du forçage par le vent pour les océans, où le flux radiatif incident
pour l’atmosphère, il existe nécessairement un puit d’énergie qui maintient l’équi-
libre global de ce système. Or, l’énergie tend à s’accumuler aux grandes échelles.
Les différents mécanismes identifiés pour la retransmettre aux petites échelles sont
les instabilités des écoulements, l’interaction avec la topographie et la génération
d’ondes de gravité (souvent associée à l’un ou l’autre des deux précédents méca-
nismes – cf. chapitre 2 et section 1.3).

Les équations d’Euler 2D incompressibles sont invariantes par addition d’un terme de
Coriolis constant. En effet, ces équations s’écrivent, en notation tensorielle :

∂tvi + vj∂jvi + ∂iP = 0, (4.3)
∂ivi = 0, (4.4)

où les indices i, j dénotent les composantes et P est la pression. On peut également les
réécrire en une équation pronostique pour la vorticité et une équation diagnostique pour
la pression :

dζ

dt
= (∂t + vi∂i)ζ = 0, (4.5)

∆P = ∂ivj∂jui. (4.6)

L’ajout du terme de Coriolis ne change que cette dernière équation (4.6), ce qui n’altère
pas la dynamique du système. Or, dans les écoulements géophysiques, la force de Coriolis
et la stratification sont responsables de l’existence d’une longueur intrinsèque, le rayon
de déformation de Rossby (cf. section 1.1). La présence de cette longueur constitue une
différence importante, et a motivé l’utilisation des équations quasi-géostrophiques pour
l’étude de la turbulence géophysique quasi 2D (e.g. Charney, 1971; Cushman-Roisin et
Tang, 1990). Ces dernières sont formellement analogues aux équations d’Euler 2D : en
particulier, la conservation lagrangienne de la vorticité potentielle permet de définir une
enstrophie et donc la prédiction de deux régimes de cascade. En revanche, l’existence du
rayon de déformation entraîne une relation différente entre la vorticité potentielle (analogue
à la vorticité dans les équations d’Euler) et la vitesse – ou la fonction de courant (e.g.
Zeitlin, 2007). En effet, la fonction de courant Ψ associée à une anomalie de vorticité
localisée (typiquement pour un point-vortex : ζ(~r − ~r0) = δ(~r − ~r0)) dans les équations
d’Euler décroit comme le logarithme de la distance à la perturbation |~r − ~r0| :

∆Ψ(~r) = ζ(~r) −−−−→
ζ(~r)→δ(~r0)

Ψ(~r − ~r0) ∝ log |~r − ~r0|. (4.7)

Dans les équations QG, cette anomalie (de vorticité potentielle, notée ici qA) est associée
à une fonction de courant qui est proportionnelle à K0(r/Rd), où K0 est la fonction de
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Bessel modifiée du second type et Rd le rayon de déformation :(
∆− 1

R2
d

)
Ψ(~r) = qA(~r) −−−−→

qA(~r)→δ(~r0)
Ψ(~r − ~r0) ∝ K0

(
|~r − ~r0|
Rd

)
. (4.8)

La fonction K0 a un comportement asymptotique logarithmique pour de petites valeurs
de son argument, et une décroissance exponentielle pour de larges valeurs. Il en résulte
un effet d’écrantage : des perturbations de vorticité potentielle localisées (par exemple
des vortex) suffisamment séparés – de l’ordre de quelques Rd – n’interagissent pas. Cet
effet est susceptible de jouer un rôle important dans l’évolution d’un écoulement turbulent
en inhibant la cascade inverse d’énergie, et en contrôlant la taille typique des tourbillons
cohérents finalement formés.

Le modèle QG constitue ainsi, de par la présence du rayon de déformation, une meilleure
représentation des écoulements géophysiques turbulents par rapport aux équations d’Euler
2D incompressibles.

4.1.3 Turbulence en Rotating Shallow Water : introduction à l’article

Les équations QG présentent une symétrie par rapport au signe de la vorticité po-
tentielle, alors que la dynamique des tourbillons observés dans les océans et l’atmosphère
montre une asymétrie cyclone/anticyclone (e.g. Chelton et al., 2011), dont l’origine est
majoritairement dynamique, bien que les effets physiques et thermodynamiques y jouent
également un rôle. Les équations RSW ne contienne pas cette symétrie – qui provient
de l’hypothèse d’écoulement à l’équilibre géostrophique inhérente aux modèles QG (cf.
section 1.3.2) – et permettent ainsi de caractériser l’asymétrie, conjointement aux effets
agéostrophiques pris en compte dans le modèle.

Les écoulements géophysiques contiennent également une composante rapide associée
aux ondes d’inertie-gravité (cf. sections 1.1 et 1.3), qui sont filtrées dans les modèles équi-
librés. L’évolution d’un champ d’ondes aléatoire constitue un problème en soi dans de
nombreux systèmes physiques (e.g. Nazarenko, 2011). Le modèle RSW permet l’inclusion
de cette composante dynamique (cf. section 1.3), et plusieurs théories existent pour la
dynamique d’un ensemble d’ondes d’inertie-gravité dans les équations RSW (cf. section
4.2.1 et (Falkovich et Medvedev, 1992; Zeitlin, 2005)). Au delà de cette problématique,
l’utilisation du modèle RSW nous permet d’étudier la turbulence d’ondes et de tourbillons
et les interactions éventuelles entre ces deux composantes.

Nous présentons donc dans la suite une étude de la turbulence d’ondes et de tourbillons
dans un modèle RSW à une couche. Y sont présentés des résultats de simulations numé-
riques concernant la turbulence de tourbillons (avec la présence d’ondes) et d’ondes (sans
tourbillons). L’approche originale de cette étude réside dans l’utilisation de deux types de
conditions initiales radicalement différentes pour la turbulence de tourbillons. Le premier
consiste en un champ de vorticité aléatoire, à l’équilibre géostrophique et suivant un spectre
de puissance imposé. Il s’agit de conditions initiales fréquemment utilisées pour l’étude de
la turbulence en déclin. Le second type, en revanche, est un ensemble de modons (obtenus
en partie 3.1) disposés avec des orientations différentes. Ces structures sont cohérentes et
agéostrophiques (la distribution de la vorticité n’est pas gaussienne), et l’état initial de
l’écoulement est très différent de ce qui est obtenu avec une distribution aléatoire de la
vorticité – qui plus est à l’équilibre géostrophique. Ceci permet notamment de discuter
l’impact des conditions initiales sur l’évolution du système. La cohérence de l’écoulement
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et l’impact du rayon de déformation sur la formation de structures cohérentes, l’asymétrie
cyclone/anticyclone et la dynamique des ondes sont ainsi discutés. Ces résultats ont donné
lieu à une publication dans le journal “Physics of Fluids” (Lahaye et Zeitlin, 2012a). Le
contenu de cet article est inclus, en anglais, dans la section suivante.
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4.2 Article : Decaying vortex and wave turbulence in rota-
ting shallow water model, as follows from high-resolution
direct numerical simulations

[ N. Lahaye and V. Zeitlin, Phys. Fluids, 24(11) :115106 :1–13, 2012 ]

Abstract : We report results of direct numerical simulations of decaying turbulence in
an inviscid rotating shallow water model. We use a new-generation high-resolution well-
balanced shock-capturing finite-volume scheme with several types of initializations : “clas-
sical" ones with random velocity and/or height fields, or an initialization with randomly
oriented coherent vortex dipoles. Together with "full" turbulence simulations we also per-
form pure wave-turbulence ones, starting from an initial random wave field of small am-
plitude with zero potential vorticity anomaly and a given initial spectrum. Statistical pro-
perties of the rotating shallow water turbulence, as well as the development of coherent
structures and their interactions are studied in detail. For all "full" turbulence simulations
we find a tendency to form coherent structures with clear cyclone-anticyclone asymmetry
and very steep energy spectra, with exponents close to -6. We also observe a decorrelation
of the vortex and wave fields in time, even at significant Rossby numbers. However, we do
not observe a universal power law in the evolution of coherent vortices, predicted by the
"universal decay" theory for the 2D turbulence. A clear sensitivity to the initial conditions
is thus established. For wave-turbulence simulations we observe a tendency to form very
steep spectra different from the predictions of the so-called weak turbulence, and of both
the turbulence of cusped nonlinear waves and the shock turbulence.

4.2.1 Introduction

As is well known, at large scales the dynamics of the atmosphere and the oceans is
quasi two-dimensional, due to the effects of stratification and rotation inhibiting vertical
motions. This is one of the main motivations of the long-lasting studies of two-dimensional
incompressible turbulence. A great number of works on this topic are available in literature
(see e.g. the review (Tabeling, 2002)). If the plane of motion rotates uniformly, the equa-
tions of motion of two-dimensional incompressible fluid remain the same, up to a change
of variables. Yet, the background rotation induces, among others, the appearance of an
intrinsic length scale, the Rossby deformation radius, in the primitive equations of the
atmosphere and the ocean, which is expected to inhibit the inverse energy cascade process.
This is why the two-dimensional quasi-geostrophic (QG) model, where the deformation
radius explicitly appears, is more appropriate for studying the turbulence of large-scale
oceanic and atmospheric flows (Larichev et McWilliams, 1991; Cushman-Roisin et Tang,
1990). In turn, the QG model is an asymptotic limit at small Rossby numbers of the ro-
tating shallow water (RSW) model, which is a standard conceptual model of (barotropic)
dynamics of the oceans and the atmosphere at synoptic scales, e.g. (Gill, 1982). RSW al-
lows for rudimentary vortex-stretching (compressibility) and inertia-gravity waves (IGW),
which are filtered out in the QG models. The model incorporates in a rather simple way
both major actors of the dynamics of the atmosphere and the oceans, vortices and waves,
and their interactions. While the vortex modes are balanced (in the sense of geostrophic
balance) at small Rossby numbers, the IGW are essentially unbalanced. It is natural to use
this model for studies of the geophysical fluid turbulence, and in particular of the role of
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the interactions of balanced and unbalanced components of the flow. Yet, the number of
works in this direction is rather scarce.

Farge et Sadourny (1989) simulated the evolution of the forced wave-vortex RSW tur-
bulence using a pseudo-spectral code. They obtained power spectra following a k−4 law.
They also argued that at large scales (i.e. larger than the Rossby deformation radius) the
cascade processes may be inhibited, resulting in a k−7/3 power law. Later, Yuan et Hamilton
(1994) performed a detailed analysis of the energy transfer between balanced and unba-
lanced modes in the same type of simulations and observed a k−3 power spectrum, fairly
similar to what is expected in the enstrophy cascade regime of two-dimensional turbulence.
Polvani et al. (1994) performed simulations of decaying RSW turbulence and reported the
emergence of a cyclone-anticyclone asymmetry during the evolution of an initial Gaussian
random-phase vorticity field. These papers are, to our knowledge, the state of the art of
the simulations of rotating shallow water turbulence.

Independently, there exist theoretical predictions for energy spectra of weakly and
strongly nonlinear waves in the RSW model. Thus, the model was exploited in the studies
of the so-called weak turbulence of IGW (Falkovich et Medvedev, 1992), where equilibrium
energy spectra in k−8/3, corresponding to the constant energy flux through the spectrum
and k−7/3, corresponding to constant wave-action flux, were calculated from the solutions
of a kinetic equation obtained for small-amplitude random-phase waves interacting through
quartet resonances. A specific class of exact solutions — stationary essentially nonlinear
waves with a limiting cusp-shape profile — are known in the RSW model, with a prediction
for the energy spectrum in k−4 for an ensemble of such waves (Shrira, 1986). At the same
time, shallow water equations being equivalent to those of barotropic two-dimensional gas,
shocks (hydraulic jumps) are inherent in the model. Predictions for energy spectrum in
k−2 of the turbulence produced by an ensemble of random shocks were made by Kuznetsov
(2004). Neither wave-turbulence nor shock turbulence theories were ever confronted with
numerical simulations, to our knowledge.

Yet, new high-resolution numerical tools became available recently for the RSW equa-
tions, the so-called well-balanced entropy-satisfying finite-volume schemes (Bouchut, 2007).
These numerical schemes are based upon the conservative form of the equations, and thus
respect the conservation laws. They maintain the states of geostrophic equilibrium, on
the one hand, and on the other hand, are shock-capturing, with guaranteed energy de-
crease across the shocks ("entropy-satisfying" property). These schemes, thus, resolve well
both the vortex and the wave component of the flow, including shocks, and are natural
to apply for simulations of decaying RSW turbulence. Among other applications, such
schemes were used to investigate the properties of coherent quasi-stationary vortex struc-
tures in the RSW model, and a whole zoo of such structures is now known (Kizner et al.,
2008; Lahaye et Zeitlin, 2011). This gives an opportunity of alternative, with respect to
the standard random-field one, initializations of the simulations of decaying turbulence by
random ensembles of coherent structures, and thus of testing the sensitivity of the results
to initialization.

Below we report the results of numerical experiments on decaying RSW turbulence
with the new well-balanced entropy-satisfying finite-volume scheme and different types of
initializations : the traditional for turbulence simulations ones, with random velocity and
pressure fields, and the "non-traditional" ones, with randomly oriented coherent dipoles,
where the individual dipole fields are imported from previous numerical experiments. We
also report the simulations of the wave turbulence initialized by an ensemble of IGW with
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random phases and given initial energy spectrum. No explicit dissipation is introduced in
the code. The dissipation is purely numerical, weak and localized in the zones of strong
gradients, as was confirmed by numerous tests of the code.

The paper is organized as follows. In section 4.2.2, we give a description of the initial
conditions used in the simulations. In section 4.2.3 we discuss the general behavior of
the decaying vortex flows, and in section 4.2.4 the impact of the initial conditions on
the evolution of the flow. We compare the results of our experiments on wave turbulence
with existing theoretical predictions in section 4.2.5. Section 4.2.6 contains summary and
discussion.

4.2.2 Initializations

We start by recalling the equations of the RSW model and introducing notation and
important dynamical quantities. The RSW equations on the f−plane, where the latitudinal
variation of the Coriolis parameter is neglected, read :

(∂t + u∂x + v∂y)u− fv + g∂xh = 0,

(∂t + u∂x + v∂y)v + fu+ g∂yh = 0, (4.9)
∂th+ ∂x(hu) + ∂y(hv) = 0.

Here u and v are the x− and y−components of the velocity, h is the thickness of the
shallow water layer, H0 is its unperturbed value, f = const is the Coriolis parameter, and
g is gravity. The important quantity is the potential vorticity (PV) :

q =
ζ + f

h
, (4.10)

where ζ = ∂xv − ∂yu is the relative vorticity. The PV is a Lagrangian invariant in the
absence of dissipation. It’s anomaly is defined as qA = q − f/H0. The model possesses
an intrinsic length scale, the Rossby deformation radius Rd =

√
gH0

f . The Rossby number
Ro = U

fL characterizes the intensity of the vortex motion, where U and L are typical
velocity and size of the vortex. The energy of the system is the sum of kinetic and potential
energies, and is given, up to a constant density, by

E =

∫ ∫
dxdy

(
h
u2 + v2

2
+ g

h2

2

)
. (4.11)

Our numerical scheme integrates the equations (4.9) rewritten in the conservative form,
with the choice of numerical fluxes which maintains the balanced states and ensures the
energy decrease across the shocks (Bouchut, 2007). For all the simulations presented in the
paper we used periodic boundary conditions.

Four different types of initializations of numerical simulations are used in this work. One
is devoted to the study of pure wave turbulence, and consists of an ensemble of random-
phase IGWs in the wavenumber range 4 < K < 400 (here and below, K = k/2π, with
k the modulus of the wave-vector), and the initial energy spectrum in k−2 or k−3. The
amplitudes of the waves are small, of the order of 10−3 in non-dimensional terms, and taken
as solutions of the equations (4.9) linearized about the state of rest. By construction, the
PV anomaly of such configuration is identically zero. The numerical domain is (0.4 Rd)2,
with a resolution 1000× 1000. Higher resolution and, thus, a smaller domain are necessary
in this case in order to resolve the small-scale part of the wave spectrum.
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Type Label Initial ano-
malies Ro max(|ζ0|)

f Bu
Mean
energy
anomaly

< Ω0 >

C1 all fields 0.1 0.7 0.16 1.6 · 10−3 0.03
Coherent-
structure C2 all fields 0.3 3.5 0.16 2.4 · 10−2 0.43

C3 all fields 0.6 6.5 0.16 5.5 · 10−2 1.12

P1 height field
only 0.07 0.3 2 5.1 · 10−3 0.01

Random-value
cell-wise P2 velocity

field only 0.25 1.6 1.6 4.1 · 10−3 0.47

P3 all fields 0.25 2.5 1.6 4.1 · 10−3 0.48
B1 all fields 0.1 1.5 2.5 6 · 10−4 0.21

Spectral bump
(m = 25) B2 all fields 0.45 5 2.5 4 · 10−3 1.37

B3 all fields 1 9 2.5 1.6 · 10−2 5.73
Spreaded spectral
bump (m = 8) B4 all fields 0.5 7 2.5 7.4 · 10−3 16.98

Table 4.1 – Initial conditions for different runs

Vortex turbulence simulations are initialized either with an ensemble of randomly orien-
ted coherent structures with strongly correlated velocity and pressure (height) fields, or
using a randomly distributed vorticity field. For coherent-structure initializations, we used
a 8×8 ensemble of so-called ageostrophic modons. These latter are obtained by adjustment
in the full RSW model of an initial perturbation corresponding to the exact analytic di-
polar solution of the QG equations (Ribstein et al., 2010). In finite time, a steady-moving
quasi-stationary state is reached in this way. It was demonstrated (Ribstein et al., 2010;
Lahaye et Zeitlin, 2011) that such modon is robust and long-living. The calculational do-
main in the simulations with coherent-structure initialization has the size (32 Rd)2, while
the grid size is dx = dy = 0.05 Rd. This method of initialization is essentially different
from what is used in most of the studies of (quasi) two-dimensional turbulence. The initial
state is not in geostrophic, but in ageostrophic balance. The divergence field associated to
each dipole has a characteristic quadrupolar form (Lahaye et Zeitlin, 2011; Ribstein et al.,
2010). These simulations are referred to by labels C1 to C3.

For the sake of comparison, we also undertook numerical simulations with initial ran-
dom fields. This was done by either computing a random value of the height anomaly field
in each cell of a ten-times coarser grid (labels P1 to P3), or by initializing the height ano-
maly field with imposed energy spectrum of the form km/2

(k+k0)m , where k0 is a characteristic
wavenumber corresponding to the maximum of the energy density and m is a "spread"
constant (this shape of the energy spectrum is described as a "spectral bump" below), and
random phases of the Fourier modes, with subsequent inverse Fourier transform (labels
B1 to B4). The velocity field is then initialized using the geostrophic wind relation and
above-defined height field. Thus, the initial state is balanced. It is to be emphasized that
although the divergence field is absent at t = 0, it appears in the form of random IGW
through the inital geostrophic adjustment process due to discretization errors and because
the geostrophic flow is not a stationary solution of the RSW equations (in other words, the
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initial time derivative of the divergence is not zero). Numerical domain for the simulations
with this kind of initial conditions is (16 Rd)2 with dx = dy = 0.04 Rd and (8 Rd)2 with
dx = dy ∼ 0.0156 Rd for the latter.

Note that the calculational domains are smaller in the random initializations than in
the coherent-structure ones, because of the presence of smaller scales in the initial fields.
Indeed, the typical length scale of the initial configuration is chosen to be smaller than
the Rossby deformation radius, in order to check the influence of the latter on the energy
cascade. Note also that the shape of the energy spectrum for the initial conditions with
cell-wise random height anomaly peaks at a value corresponding to the sub-grid size, with
a k2 slope 2 for smaller wavenumbers.

Various runs for the "full" (vortex + wave) turbulence are summarized in Table 4.1.
These runs are named simply "vortex turbulence" below, to distinguish them from purely
wave turbulence to be discussed in section 4.2.5. They are arranged according to the type
of initial conditions, global and local initial Rossby numbers, and the typical initial length
scale given via the Burger number Bu = (Rd/L)2.

The local initial Rossby number here is the ratio of the maximal absolute value of initial
relative vorticity estimated from its value and trend just after the initial adjustment, and
the planetary vorticity : ζ0/f . The global Rossby number is defined either as the maximum
value of the modulus of the velocity divided by f and multiplied by the energy centroid,
or as the mean absolute value of the vorticity divided by f . We recall that the centroid of
energy is defined as 〈k〉 =

∫
kE(k) dk/

∫
E(k) dk. Also given for each initial configuration

are the mean energy anomaly and the enstrophy, defined by Ω =
∫ ∫

hqA
2dxdy. One sees

from the Table that, because of the coherent distribution of vorticity, close Rossby numbers
for coherent and random initial conditions are not associated with mean energies of the
same order. Throughout the paper, we will mainly rely on the results from the runs C2 (a
coherent-structure initialization), B2 (a random one with a Rossby number close to C2)
and B3 (a random one with initial mean energy close to C2). One sees that the initial
mean enstrophy is much greater in the run B3. However, it rapidly decreases and, after a
few tens of inertial periods, reaches rather the same value as in the run B2. The vorticity
fields corresponding to the different types of initialization are shown in Figure 4.1. Here
and below, the length scale is nondimensionalized by the Rossby deformation radius, while
the time and the vorticity are given in nondimensional units of f−1 and f , respectively.

Figure 4.1 – Initial vorticity fields for runs C2 (left), P3 (middle) and B2 (right).

2. The white noise corresponding to the potential energy spectrum gives a purple noise for the kinetic
energy, with our procedure
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Figure 4.2 – Evolution of the vorticity field (in units of f) for runs C2 (up) and B2 (down)
at t = 10 (left), 250 (middle) and 500/750 (top/bottom). The green square in the upper
right panel gives the size of the domain for runs B.

4.2.3 General features of the evolution of the vortex system

Here we recapitulate the common features of the evolution of freely decaying vortex
turbulence, as observed in our numerical simulations. We will rely on the runs B2, B3 and
C2, which are typical for the evolution of an initially overall random field and a random-
dipole one, respectively. Unless otherwise mentioned, these results are general in their
class. The evolution of the vorticity field is visualized in Fig. 4.2. One sees the formation
of larger coherent vortex monopoles through mergers and filamentation of vorticity, which
are of common knowledge in the two-dimensional turbulence. Yet, we should stress that
they are obtained here with a compressible model. The evolution of the energy of the
system (in units of ρgH2

0 ), which is presented in Fig. 4.3 exhibits a transfer from the
kinetic energy, which is dominant as expected in vortex dynamics, to the potential energy.
This may be associated with the formation of coherent structures with stronger and wider
surface deviations. It is to be emphasized that the relative energy dissipation rate ( 1

E ·
∂E
∂t )

is rather weak, of the order 10−4, and is a little higher for the random initial conditions
due to the presence of small scales and high wavenumber IGW emission, enhancing the
numerical diffusion.

Thus we see that different initializations produce qualitatively similar states at the
late stages, although the mechanisms involved are clearly different : on the one hand,
we have complex interactions between modons, with collisions and fusions of vortices.
On the other hand, coherent structures emerge from a chaotic flow through organization
of the vorticity field and inverse energy cascade. The vorticity field at the late stages
consists of an ensemble of near-axisymmetric well-separated vortex monopoles (Fig. 4.2,
right panels). Note that for the simulations with coherent initializations (like the run C2
presented here), the late stages exhibit a clear cyclone-anticyclone asymmetry in favor of
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Figure 4.3 – Evolution of the mean energy for runs C2 (left) and B2 (middle). Black
continuous : total energy anomaly, black dashed : kinetic energy, gray dashed : potential
energy anomaly, gray continuous : dissipation, calculated as the departure of the discrete
energy balance in each grid cell averaged over all cells. Right panel : evolution of the
Rossby numbers computed using the mean of the absolute value of the vorticity for runs
C2 (continuous gray), B2 (dashed black) and B3 (continuous black).
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Figure 4.4 – Evolution of the centroid of energy (left), the kurtosis (middle) and the
skewness (right) of the vorticity for runs B2 (black dashed), B3 (black continuous) and C2
(gray).

anticyclones, in the sense that they are in greater number and are more axisymmetric
than the cyclones. This is in accordance with the cyclone-anticyclone asymmetry already
observed by (Polvani et al., 1994; Cushman-Roisin et Tang, 1990). Such property is specific
to the shallow water dynamics at high Rossby numbers (in our case for Ro > 0.1), while
pure two-dimensional incompressible Euler equations are cyclone-anticyclone symmetric.
Evidence of this asymmetry is manifest in the evolution of the skewness (the normalized
third order moment) of the vorticity, as visible in Fig. 4.4.

The evolution of the centroid of energy and the kurtosis (the normalized fourth order
moment) of the vorticity are also presented in this Figure (first two panels). It is clear that
the emergence/strengthening of coherent structures is associated with the decrease of the
energy centroid, which may be considered as an evidence of the inverse energy cascade.
One may see a more or less distinct saturation of these quantities, which is a manifestation
of the inhibition of the cascade processes due to the coherent structures, as explained by
McWilliams (1990), and to the impact of the finite deformation radius 3. Indeed the typical
size of the vortices at this stage is of the order of Rd, and looking at the evolution of the
vortex ensemble we see that neighboring vortices of the same sign practically do not merge,
or produce a great amount of vorticity filaments. This is due either to the instability of

3. The notions of direct/inverse energy cascade are more appropriate in the context of forced turbulence.
Following Polvani et al. (1994), we use it in a broader sense to describe the energy transfer towards
smaller/larger scales.
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Figure 4.5 – Energy spectrum at t = 0 (gray), 10 (black dotted), 250 (black dashed) and
500 (black continuous) for runs C2 (left) and B2 (right).

larger vortices, or to the screen effect of the finite deformation radius. We see however that
the run with coherent initial conditions exhibits larger structures, of the order of 2 Rd.

The energy spectra exhibit a maximum at the location in the k- space fairly corres-
ponding to the centroid of energy, and a steep slope beyond it with a power law estimated
at k−6, see Fig. 4.5. As compared to the well-known enstrophy cascade power law k−3, it
is much steeper. We have to stress, however, that the evolution of the system with ran-
dom initial conditions, cf. the right panel of Fig. 4.5, goes through an “inertial regime",
corresponding to a period of active cascade processes, during which the spectrum exhibits
a slope close to k−4.

Finally, we note that the divergence field at the end of the simulations has no correlation
with the vorticity field, nor with the modulus of its gradient (not shown), being a random
wave field of rather weak magnitude (of order 10−2, in units of f). As already mentioned
above, the initial divergence field for the ensemble of modons is driven by the vorticity, each
vortex dipole bearing a quadrupole of divergence (Ribstein et al., 2010). The correlation of
the divergence and vorticity disappears in course of evolution, as the modons are destroyed.
We thus have an indication of the wave-vortex decoupling. This might seem not surprizing
in view of relatively small global Rossby numbers at the late stages, cf. Fig. 4.3, right
panel. Indeed, wave-vortex decoupling (splitting) may be proved in the RSW model at low
Ro (Reznik et al., 2001). Yet, the local Rossby numbers remain high (greater than 1) at
the late stages of the simulation (cf. Fig. 4.2, right panels).

4.2.4 Impact of the initial conditions

As already stated, one of the goals of the present work is to study the influence of the
initial conditions on the evolution of RSW turbulence and, thus, a degree of universality of
the latter. In order to quantify the vortex system we applied a vortex census method (Weiss,
1991; McWilliams, 1984). It is based on the Okubo-Weiss criterion which compares the
rotation and the strain rates : Q = ζ2−σ2, with σ =

√
σ2
n + σ2

s where σn = ∂xu−∂yv and
σs = ∂xv+ ∂yu are respectively the normal and shear strains. A simply-connected domain
where this quantity is positive and the mean vorticity is greater than some fixed threshold
is considered as a coherent vortex. The proper value of the dimensionless threshold is of the
order of the initial global Rossby number of the flow for coherent-vortex initializations and,
for simulations with random initializations, the global Rossby number at the beginning of
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Figure 4.6 – Evolution of the vortex density (left) and the mean vortex area (middle) for
the runs B2 (black dashed), B3 (black continuous) and C2 (gray). Right panel : evolution
of the mean (continuous and dashed lines, same conventions as for the two left panels) and
the maximum absolute value of the divergence (B2 : black dash-dotted, B3 : black dotted,
C2 : gray dotted).

the inertial regime, once the initial adjustment with strong energy dissipation ended (cf.
Fig. 4.3, middle panel). Theoretical predictions for the decay law of purely two-dimensional
decaying turbulence, under assumptions of self-similarity and conservation of both the
kinetic energy and the extrema of the vorticity, were derived by Carnevale et al. (1991).
Such scaling laws were observed in laboratory (Hansen et al., 1998) and numerical (Weiss
et McWilliams, 1993; Carnevale et al., 1991) experiments, showing power laws with typical
exponents — most often, for the vortex density — in the range [0.71− 0.75] (note that the
theory does not predict the value of this coefficient). Yet, the universality of this scaling is
not totally clear in the 2D turbulence (van Bokhoven et al., 2007).

In Figure 4.6 we show the evolution of the vortex density ρ, defined as a number of
coherent vortices per unit area, and the normalized mean area of the vortices < A >
defined as the total area occupied by coherent vortices divided by the number of vortices
and normalized by the area of the domain, as observed in the runs B2, B3 and C2. The
scaling exponents found in all of our simulations are summarized in Table 4.2.

The evolution of the ensemble of vortices roughly follows power laws, at least once the
coherent vortices have emerged, but the relations between the exponents of the different
quantities do not follow the universal decay theory, and vary from one run to another. We
observe a change in the slope of different quantities in time. For random initializations
only the later times, when the vortex census method works properly, are relevant because
at earlier stages the flow is not coherent enough to allow for a clear separation between
the vortices. For these reasons, one should discard the values obtained for the run B4,
which exhibits distinct vortices only at the very end of the simulation (simulation time
here is less than for the run B2). However, in the simulations with coherent initializations
(runs C2 and C3) or with a random initialization at large Rossby number (run B3), there
is a more or less distinct change in the slope within the range of time when the flow is
organized into well-defined coherent vortices. The values of the scaling factors obtained
for the different runs are very different, and only one of them (run B2) corresponds to
the classical values observed in two-dimensional models, whereas one could expect such
behavior in experiments with low Rossby number, i.e. close to QG dynamics. It is to be
stressed that the change in the slopes of the decay laws is intriguing, and especially the fact
that it does not affect all the quantities. We, thus, have a clear indication that universal
decay theory does not apply. Such absence of a universal scaling behavior in the RSW
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Run < ζ >c ρ < A > A < Ω > < |~∇ ·~v| > accuracy
C1 0.2 ∼ 0 0.3 0.1 0 -0.3 low
C2 0.25 -0.45 0.38 ; 0.6 -0.14 ; 0.08 -0.55 -0.3 good
C3 0.34 -0.42 ; -0.65 ∼ 0.45 0 ; 0.1 -0.57 ∼ 0 good
P1 0.05 NA NA NA NA -0.35 low
P2 0.1 ∼ −1.4 ∼ 0.7 NA -0.8 -0.5 medium
P3 0.1 -1.0 0.6 -0.45 -0.8 -0.53 good
B1 0.1 -0.5 NA -0.5 -0.8 -0.6 medium
B2 0.2 -0.72 0.65 -0.2 -0.6 -0.43 good
B3 0.4 -1.0 0.6 -0.75 -0.62 -0.45 good
B4 0.2 -1.4 0.65 -0.75 -0.8 -0.45 medium

Table 4.2 – Power laws of integral quantities as a function of time, during the “inertial
regime". < ζ >c is the minimal mean vorticity to take a vorticity patch into account, and
ρ, < A > and A are respectively the vortex density and the mean and total area of the
vortices, and < Ω > the mean enstrophy of the flow. The “accuracy" row is an indication
of whether the vortex census method allows or not to clearly identify the coherent vortices.
Two numbers in a row mean a change of slope.

−2 −1 0 1 2
10

−4

10
−3

10
−2

10
−1

ζ

P
(ζ

)

 

 

t=125

t=250

t=498

−0.5 0 0.5
10

−4

10
−3

10
−2

10
−1

ζ

P
(ζ

)

 

 

t=125

t=250

t=495

−1 0 1
10

−4

10
−3

10
−2

10
−1

ζ

P
(ζ

)

 

 

t=100

t=200

t=395

Figure 4.7 – Evolution of the probability distribution function of vorticity for runs B2
(left), P3 (middle) and C2 (right).

turbulence is in agreement with the form of the probability density distribution of vorticity
presented in Fig. 4.7, which clearly varies from one to another type of initialization, and
evolves in time without tending to a universal shape.

The lack of universality and the observed sensitivity of the decaying RSW turbulence
to initial conditions is globally explained by the presence of infinity of conservation laws
in the RSW system, related to Lagrangian conservation of PV. (This consideration is also
valid for 2D and QG turbulence). In the inviscid limit the whole phase-space of the system
is foliated into subspaces of constant integrals and the motion is confined to a subspace
defined by initial conditions. It is reasonable to think that at small dissipation this foliation
still constrains the motion, although this argument cannot be made quantitative at the
present stage.

Besides the vortex component of the flow, we also looked at the decay of the diver-
gence field (Fig. 4.6, right panel). Once again, we observe a contradictory behavior : well
defined power laws, but strongly varying exponents. While earlier we mentioned indica-
tions of wave-vortex decoupling, this result points in the opposite direction, since different
initial vortex configurations lead to different power laws for the decay of divergence. This
means that one should be cautious in interpreting the results in view of complexity of the
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Figure 4.8 – Evolution of the energy spectra for the simulations of wave turbulence with
initial spectra in k−2 (left) and k−3 (right).

interactions between the vortical and the divergent components of the flow.

4.2.5 Evolution of a random wave field without vortex component

The weakly nonlinear wave turbulence theory is based on the transfer of energy through
nonlinear resonant interactions among random-phase waves. In the context of inertia-
gravity waves, the four-wave resonances lead in the asymptotic limit of large wavenum-
bers (i.e. weakly dispersive range) to the power spectra in k−8/3 (constant energy flux)
and k−7/3 (constant wave action flux) predicted in (Falkovich et Medvedev, 1992). These
spectra correspond to exact solutions of the kinetic equation established under assumption
of small wave amplitudes and quasi-Gaussian statistics. At higher wave amplitudes wave-
breaking and shock formation inevitably take place in the RSW model, which is a typical
example of a hyperbolic system with characteristic weak solutions. Gentler spectra in k−2

are obtained (Kuznetsov, 2004) for ensembles of random shocks. Strong nonlinearity may
manifest itself differently in the RSW, as exact nonlinear stationary plane-wave solutions
are known to exist in this model with limiting Λ-cusp crests at strong nonlinearities (Shrira,
1986). For random ensembles of such waves the predicted by Shrira (1986) energy spectra
are in k−4. A general theory of the spectra produced by self-similar distributions of Λ -
crest plane waves was developed by Belcher et Vassilicos (1997), with predicted spectra in
k−5+D with positive D (typically, D = 1). For the wave-crest ridges of fractal dimension
D the energy spectrum is predicted to be k−3−D, with 0 < D < 2, (see Nazarenko et al.,
2010) and references therein.

Motivated by these theoretical predictions, and mostly by the weak turbulence theory,
we simulated the evolution of an initial random Gaussian IGW field of weak amplitude in
the RSW model. The maximum initial amplitude (of the longest wave) is 3.5 · 10−3 and
the mean absolute value of the non-dimensional surface elevation is 10−3. We present in
Fig. 4.8 the evolution of the wavespectrum up to t = 20/f .

As visible in the figure, the distinguishable slopes we obtain exhibit a power law close to
k−6, far steeper than all the power laws predicted by the theory. Moreover, we see that the
large-scale component hardly evolves throughout the simulation, whereas the small-scale
one adjusts quickly towards this steep slope. Explanations of such discrepancies between all
theoretical predictions and our results may rely on the finite size of the domain. As shown
by, e.g. Nazarenko (2006); L’vov et Nazarenko (2010), the discrete resonance processes,
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Figure 4.9 – Divergence field at t = 10 for a random IGW initialization.
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Figure 4.10 – Height (upper panel), cross-shock (v) and along-shock (u) velocities (middle
panel, resp. in continuous and dashed lines) and divergence (lower panel) spatially averaged
along a moving line of strong convergence.

lead to weaker magnitude of the collision integral and to a sandpile behavior of the system,
leading to steeper spectra. Yet, no theoretical prediction along these lines for the RSW
model is available, to our knowledge. The peculiarity of the RSW model is that if, by
finite-size effects leading to sparser resonant quartets, the exchange of energy of some
waves with the rest of the spectrum is suppressed, these waves will eventually break down
and form shocks. (As shown by Zeitlin et al. (2003), rotation does not prevent breaking
in RSW). This is what we observed in the simulations by studying the evolution of the
divergence field. The divergence field of a typical simulation displayed in Fig. 4.9 at t =
10/f shows the coexistence of long breaking waves represented by the straight convergence
fronts (breaking zone is characterized by high and concentrated values of convergence), and
a "soup" of shorter non-breaking waves at this stage of evolution. By considering the images
at subsequent times we check that the convergence fronts move with the phase velocity of
IGW with corresponding wavelength (not shown). A spatial mean along one of such waves
is presented in Fig. 4.10 and clearly exhibits wave-breaking. This behavior is typical for
all wave-turbulence simulations we performed. Therefore, apparently due to the finite-size
effects, the longest waves of the initial spectrum do not exchange enough energy with other
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Figure 4.11 – Normalized probability distribution function of the second order increment
of the height deviation at different separations averaged over one inertial period (five data
outputs). Gaussian distribution is superimposed in grey. Curves are shifted vertically at
equal intervals for clarity.

parts of the spectrum, and break. They are not numerous enough to produce the shock
turbulence. Yet, as coherent structures they contribute to the non-Gaussianity of the wave
field. To check this, and also to detect the characteristic assymmetry due to the Λ - crest
waves, (cf. Nazarenko et al., 2010), we present in Fig. 4.11 the probability distribution
function of the increments of the height deviation. As seen in the figure, a pronounced
non-Gaussian tail is observed at the positive side at small separations, decreasing with
separation. We should stress that a non-Gaussian tail at negative side is typical for cusp-
shaped waves (Nazarenko et al., 2010). These latter, thus, should be discarded in our
simulations. The observed tail is, most probably, due to the shocks, cf. Fig. 4.10.

4.2.6 Summary and discussion

Thus, our numerical simulations with a new high-resolution finite-volume scheme for
decaying vortex turbulence both with classical, random field, and new, coherent-dipole, ini-
tializations confirmed the previous results on coherent structure formation and pronounced
cyclone-anticyclone asymmetry, which were checked with different diagnostics. Dynamical
influence of the finite deformation radius was observed, as well as decoupling of vortex and
wave components of the flow. The simulations also displayed sensitivity to initial condi-
tions and lack of universality in the behavior of integral characteristics of the flow in time,
although power-law decays were systematically observed. Very steep energy spectra close
to k−6 arise in the simulations independently of initializations, most probably due to the
dominance of coherent vortices in the flow.

For pure wave turbulence, initialized with a random-phase wave-field with identically
zero potential vorticity anomaly, we also observe very steep spectra with exponents between
-5 and -6, which can not be explained by either of existing theories (weak turbulence,
shock turbulence, nonlinear cusp-crest wave turbulence). We observe that the longest and
higher-amplitude waves of initial spectrum propagate quasi-freely and break, while shorter
waves adjust to the steep equilibrium spectrum. We interpret these observations as due to
influence of the finite-size effects. We see no manifestation of the cusp-crest nonlinear waves
in the simulations. An increase of the calculational domain and wider initial spectrum
of waves would help to clarify the finite-size effects, but we should emphasize that our
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simulations are already very costly : typical calculational time for a wave-turbulence run
was 1200 hours on a 2.3 GHz processor ; the timestep was 5 · 10−5 f−1 ∼ 11 seconds.

To summarize, we observe clear signs of non-universality in the decaying vortex-wave
turbulence in rotating shallow water, and steep spectra incompatible with any existing
theory in the pure wave turbulence.
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4.3 Discussion et résultats subséquents

Ce chapitre a présenté des résultats concernant plusieurs aspects de la turbulence en
déclin dans un modèle RSW barotrope à l’aide de simulations numériques directes.

D’une part, la turbulence d’ondes en déclin a été étudiée en utilisant des conditions ini-
tiales contenant uniquement des ondes d’inertie-gravité, et avec une anomalie de vorticité
potentielle strictement nulle. L’évolution ainsi simulée ne correspond à aucune des prédic-
tions théoriques existantes sur la turbulence d’ondes. Des spectres raides ont été trouvés,
manifestement associés à l’absence de régime de cascade et à la formation de chocs par
les ondes de plus grande échelle présentes dans ce domaine. Nous supposons que l’absence
d’interaction entre les ondes de plus petite échelle est associée à la taille du domaine nu-
mérique (“effets de taille finie”). Il est également possible que les résonances à quatre ondes
dans ce modèle (dans le cadre de la turbulence faible) aient un temps typique d’interaction
trop lent pour permettre un transfert conséquent d’énergie, notamment par rapport au
temps typique de développement des non linéarités (déferlement) par les ondes.

Récemment, la turbulence d’ondes a été étudiée par Augier et Lindborg (2014) dans le
modèle ShallowWater avec et sans rotation, en utilisant un schéma numérique approximant
les équations pour un champ d’ondes, i.e. avec une vorticité faible. La résolution – fixant le
rapport entre la taille du domaine et les plus petites longueurs d’ondes résolues – est plus
importante dans ces simulations, et le système est forcé et dissipé, ce qui constitue une
différence importante par rapport à notre étude. Dans ce contexte, la formation de chocs
a également été observée, et le spectre de puissance associé correspond aux predictions
théoriques pour un écoulement dominé par un ensemble de chocs.

D’autre part, la turbulence de tourbillons agéostrophiques a été regardée dans des séries
de simulations numériques avec deux classes de conditions initiales : l’une correspondant à
une distribution de vorticité gaussienne, l’autre à un écoulement à fort degré de cohérence.
La formation de structures cohérentes avec une forte asymétrie cyclone/anticyclone (en
faveur des anticyclones) a été confirmée, et constitue une manifestation notoire de l’agéo-
strophie du système. Pour expliquer cette préférence en faveur des anticyclones, Polvani
et al. (1994) ont proposé un argument s’appuyant sur la variabilité du rayon de déforma-
tion dans l’espace. En effet, une définition locale du rayon de déformation montre qu’il est
plus grand dans les anticyclones, en accord avec l’anomalie positive de déviation de la sur-
face libre dans ces structures. Ceci entraîne une portée d’interaction plus grande, puisque le
taux de décroissance du champ de vitesse associé à une perturbation de vorticité potentielle
(eq. 4.8) est déterminé par la valeur du rayon de déformation.

Une sensibilité aux conditions initiales a été observée, notamment via la conservation
approximative de la distribution de la vorticité, et de la vorticité potentielle, au cours du
temps. Les conclusions sur le découplage dynamique entre ondes et tourbillons sont plus
nuancées : le champ d’ondes évolue librement et suit une loi de déclin autosimilaire, mais
nous avons remarqué que le taux de déclin dépend des conditions vorticales de l’écoulement,
quand bien même cette dernière composante ne semble pas suivre une loi de décroissance
bien définie.

Etant donné ces résultats, une perspective intéressante serait de travailler sur une sé-
paration, nécessairement approximative (cf. section 1.3), de l’écoulement en une partie
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équilibrée (au sens plus large que celui donné par l’équilibre géostrophique, cf. section 1.3)
et une partie non équilibrée. Ceci permettrait une meilleure compréhension du découplage
entre ondes et tourbillons, ainsi qu’une comparaison directe avec les structures cohérentes
utilisées comme conditions initiales dans certaines simulations de ce chapitre et présentées
dans le chapitre 3. Les résultats obtenus sur ces structures (cf. résumé correspondant, sec-
tion 3.8) pourraient alors être généralisés. Cependant, ce type de séparation dynamique est
difficile à réaliser et constitue, en soi, une des questions ouvertes de la DFG. En revanche,
l’application d’une relation d’équilibre sur l’écoulement permettrait une comparaison avec
des résultats d’expériences de laboratoire, notamment celles utilisant depuis peu une mé-
thode de visualisation par altimétrie à haute résolution (Afanasyev et Craig, 2013), qui
nécessitent elles-mêmes une relation d’équilibre pour diagnostiquer le champ de vitesse.

Enfin, réaliser un ensemble de simulations sondant les paramètres de l’écoulement
(nombres de Burger, Rossby et Froude) pour discuter la dépendance des effets agéos-
trophiques à ces paramètres, en les comparant notamment à des expériences de laboratoire
et à des simulations dans des modèles équilibrés (QG, surface QG, etc.), permettrait de
conclure avec plus de certitudes sur ces questions.
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L’objet de cette thèse est la compréhension de la dynamique, des interactions et des
propriétés des structures cohérentes agéostrophiques, dans des modèles simplifiés des écou-
lements de fluides géophysiques à grande échelle : les modèles Rotating Shallow Water.
Plus particulièrement, nous nous sommes intéressés aux structures tourbillonaires : vortex
isolés, structures multipolaires et ensemble de tourbillons. Les résultats principaux sont
résumés ici.

Existence de structures cohérentes agéostrophiques dans les modèles RSW
— Des dipôles et des tripôles de vorticité agéostrophiques, barotropes et baroclines,

ont été systématiquement observés dans des simulations numériques à haute réso-
lution avec des conditions initiales variées. Ces structures, connues dans le cadre
des équations d’Euler bidimensionnels incompressibles, et – par extension – dans
les modèles quasi-géostrophiques, sont ainsi généralisées à un contexte incluant la
compressibilité (horizontale).

— Les expériences numériques réalisées indiquent que ces multipôles sont des solutions
stables des équations RSW. Notamment :
— Ces structures sont quasi-stationnaires et ont un temps de vie long.
— Lorsque l’état du système est écarté de ces solutions (e.g. lors de collisions), il

évolue de manière à les reformer.
— Leur formation est observée à l’issue de la déstabilisation d’anticyclones agéos-

trophiques.
— Les tourbillons cohérents émergent spontanément d’un système turbulent à grand

nombre de Rossby. La compressibilité de l’écoulement n’empêche pas leur forma-
tion. En revanche, l’existence du rayon de déformation borne leur taille typique
maximale.

— L’agéostrophie de l’écoulement (nombre de Rossby grand) est systématiquement
associé à une asymétrie cyclone/anticyclone. Les cyclones sont moins étendus dans
l’espace mais sont associés à une anomalie de pression de plus grande amplitude.
Dans un écoulement turbulent, ils sont trouvés en moins grand nombre et sont moins
axisymétriques que les anticyclones.
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Ces résultats montrent que, à l’instar de l’équilibre géostrophique dans les équations li-
néarisées, des minima d’énergie correspondant à des structures cohérentes stables existent
dans les équations complètes. On présume alors, à défaut de pouvoir le prouver analyti-
quement, que ces structures observées sont des solutions des équations de Saint-Venant en
rotation.

(Dé)couplage dynamique ondes-tourbillons
— Les structures cohérentes stables n’émettent pas d’ondes d’inertie-gravité. Ceci est

une caractéristique omniprésente de nos simulations numériques, même lorsque le
nombre de Rossby de l’écoulement est très grand, ou en présence de fronts.

— La rétroaction de ces derniers sur l’écoulement est faible, voire inexistante. En par-
ticulier, ils n’entraînent pas la déstabilisation des structures cohérentes observées.
Par ailleurs, les expériences de turbulence montrent un découplage entre ondes et
tourbillons, pour des nombres de Rossby grands.

— En revanche, un mécanisme complexe de capture d’ondes par les structures co-
hérentes a été observé. Ces ondes ne sont jamais libérées vers l’extérieur, même
lorsque ces structures sont écartées de leur état d’équilibre – notamment au cours
de collisions.

— Un ressaut hydraulique stationnaire peut se former au sein des structures tour-
billonaires à grand nombre de Froude. Sa dynamique est totalement pilotée par
l’écoulement associé à ces dernières et, étonnament, la rétroaction de ce front sur
cet écoulement est négligeable.

En résumé, dans des configurations stables, la dynamique des ondes est pilotée par les
structures tourbillonaires et leur rétroaction est faible, même pour des nombres de Rossby
conséquents.

Instabilités agéostrophiques de tourbillons
A l’opposé des configurations stables énoncées ci-dessus, ces instabilités constituent une
source importante d’ondes et de mouvements agéostrophiques, en particulier associés à des
zones de forte divergence.

— L’instabilité centrifuge “classique”, présente lorsque les nombres de Rossby et de
Burger sont respectivement grands et petits (de l’ordre de 1), possède un équivalent
non axisymétrique qui devient dominant lorsque le nombre de Rossby diminue et/ou
le nombre de Burger augmente. Le taux de croissance de ces modes asymétriques
croît avec la stratification et le cisaillement vertical.

— Ces instabilités centrifuges entrent en compétition avec l’instabilité barotrope agéos-
trophique lorsque le nombre de Rossby diminue et/ou le nombre de Burger aug-
mente.

— Les simulations numériques à haute résolution montrent que la structure monopo-
laire du vortex initial est systématiquement détruite au cours de la saturation non
linéaire de ces instabilités.

— Le développement non linéaire de l’instabilité centrifuge engendre une émission
d’ondes de forte amplitude et la formation de fronts. A conditions initiales équi-
valentes, ces mouvements agéostrophiques sont nettement moins prononcés lorsque
l’instabilité barotrope domine l’évolution de l’écoulement, ce qui montre une forte
sensibilité aux conditions initiales.

http://www.rapport-gratuit.com/
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— L’instabilité de l’anneau de vorticité de cyclones tropicaux est intrinsèquement ra-
diative, résultant de l’interaction entre les modes de Rossby localisés sur l’anneau
de vorticité et les modes d’inertie-gravité se propageant vers l’extérieur du cyclone.
La saturation non linéaire de cette instabilité engendre une instensification du tour-
billon par redistribution de la vorticité potentielle vers le centre.

Plusieurs questions peuvent être formulées à l’issue de ces travaux. L’utilisation de mo-
dèles plus complexes constitueraient une avancée dans la compréhension des détails de
certains processus que nous avons dégagés. Ceci est vrai en particulier pour l’instabilité
centrifuge, dont le développement dans un mileu continuement stratifié avec une struc-
ture verticale de l’écoulement et une stratification non triviales n’a pas été étudié. Nous
avons observé, toujours dans le cadre de l’instabilité centrifuge, la déstabilisation d’un front
concentrique. La déstabilisation de ces fronts – qui peuvent également se former au cours
de l’évolution d’autres instabilités – est aussi un sujet à explorer, en tant qu’instabilité
secondaire de l’écoulement.

Par ailleurs, la non-universalité mise en évidence dans nos simulations d’écoulements
turbulents et la sensibilité aux conditions initiales reste une problématique pleinement
ouverte, même dans les écoulements 2D incompressibles.

Les observations de collisions quasi-élastiques entre modons dans le modèle RSW, la
stabilité de ces structures et la prédactibilité de l’écoulement associé, sont des arguments
forts en faveur de l’intégrabilité de ces équations. Cette dernière question, ainsi que la
séparation dynamique entre ondes et partie équilibrée et la définition d’une variété lente
dans les écoulements à grande échelle, restent des questions fondamentales non résolues de
la dynamique des fluides géophysiques.
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