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Objectifs de thèse 
 

Les canaux TRPC6 sont des canaux cationiques non sélectifs perméables au calcium, 

au sodium et au fer. Leur surexpression dans les cellules HEK293 provoque une accumulation 

de zinc et de soufre. Dans un premier temps, mon travail de thèse a consisté à comprendre ce 

résultat inattendu et à préciser les conséquences fonctionnelles d’une telle surcharge en zinc. 

Ce travail a été complété par l’étude des canaux TRPC6 du cortex de souris, regardant 

notamment leur capacité à faire entrer du zinc dans des neurones en culture.  

Les canaux TRPC6 s’ouvrent en réponse à divers stimuli. Par exemple, dans certains 

types cellulaires, ils peuvent s’ouvrir en réponse à la déplétion des stocks internes calciques. 

Par ailleurs, l’hyperforine (un antidépresseur d’origine végétale) constitue un puissant 

activateur des TRPC6. Afin de mieux comprendre leurs propriétés dans les neurones 

corticaux, j’ai dans un deuxième temps tenté de déterminer si, dans le tissu nerveux, 

l’hyperforine et la vidange des stocks calciques internes contrôlaient des conductances 

identiques ou différentes.  

L’hyperforine provoque une augmentation de la concentration intracellulaire en 

calcium. La réponse des neurones à cette molécule consiste en une phase d’entrée de calcium 

transitoire, précoce, sensible au gadolinium (Gd) (TRPC6 est inhibé par le Gd) et en une 

phase soutenue, plus tardive et se développant plus lentement, insensible au Gd. La troisième 

partie de ma thèse a consisté à caractériser cette réponse calcique tardive. Je me suis d’abord 

intéressé aux conséquences d’une application aigue d’hyperforine puis j’ai analysé, in vitro et 

in vivo, l’impact d’un traitement chronique avec cet antidépresseur. Les mécanismes 

cellulaires d’action de ces médicaments sont encore mal compris. Une hypothèse couramment 

rencontrée dans la littérature propose que l’efficacité thérapeutique des antidépresseurs serait 

sous-tendue par le facteur de croissance BDNF et une activité accrue de la neurogenèse 

hippocampique. Ces deux hypothèses ont été vérifiées à la fois in vitro et in vivo afin de 

mieux comprendre l’effet de l’hyperforine, un antidépresseur naturel couramment prescrit 

notamment en Allemagne ou aux Etats-Unis et dont l’efficacité dans le traitement des 

épisodes dépressifs légers à modérés est égale voire supérieure à celle des antidépresseurs 

synthétiques.  
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1. Les canaux TRP 
 

1.1 Découverte des canaux TRP 
En 1969, un mutant spontané de Drosophile (Drosophila melanogaster) présentant une 

anomalie au niveau de l’électrorétinogramme (ERG) est isolé. Chez ce mutant, l’ERG est 

caractérisé par une réponse transitoire au lieu d’une réponse prolongée telle qu’observée chez 

les drosophiles sauvages lors d’une illumination (Figure 1). 

 

  
Figure 1 Découverte des canaux TRP 

Illustration du rétablissement de l’amplitude maximale de la réponse de l’ERG à un test de flash de lumière de 
240 ms suivi d’une période d’adaptation (en seconde) à la lumière chez la drosophile sauvage (A) et mutante (B). 
(D’après Cosens et Manning, 1969, Nature)1 
 

La première hypothèse posée fût que ce phénotype serait due à une anomalie dans la 

régénération des photopigments1. En 1975, une analyse réalisée par Minke montre que 

l’anomalie se situe à la fin de la cascade de transduction du signal et non au niveau des 

photopigments. Minke propose alors le terme de potentiel transitoire de récepteur (TRP) à ce 

mutant2. Quatorze ans plus tard, Montell et Rubin clonent la séquence du gène trp responsable 

du phénotype chez la Drosophile et les premières études décrivant la protéine TRP comme un 

canal calcique voient le jour3. En 1992, le groupe de Kelly découvre l’existence de TRPL, un 

homologue de TRP puis Zuker montre en 1996 qu’un double mutant trpl;trp  est aveugle, 

prouvant que ces canaux sont ceux activés par la lumière dans les cellules photo-réceptrices4,5. 

Chez la drosophile, la photo-transduction utilise une cascade de signalisation impliquant la 

phospholipase C au sein d’un complexe appelé « signalpex » (Figure 2) composé notamment 

de la rhodopsine, des canaux TRP et TRPL, de la protéine kinase C et des protéines 

d’échafaudage INAD. Le résultat final de l’activation de cette cascade est la dépolarisation 

des cellules photo-réceptrices due à l’ouverture des canaux perméables au sodium et au 

calcium. Dans ce complexe, les canaux TRP et TRPL ont bien sûr le rôle de canaux 

cationique mais aussi un rôle d’ancrage du complexe entre les rhabdomères et la membrane 

plasmique6.  
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Figure 2 Le signalplex chez la drosophile 

Le signalpex ou complexe de signalisation de la photo-transduction, chez la drosophile, est composé des canaux 
TRP, TRPL, de la rhodopsine, de la protéine kinase C (PKC), de la phospholipase C (PLC), des protéines INAD, 
calmoduline (CaM), FKBP59 (FK) et de l’arrestine 2 (Arr). (D’après Montell, 2005, Journal of Physiology)6 
 

1.2 Les TRP 
La super famille des TRP est exprimée dans de nombreux organismes comprenant la levure, 

la drosophile, le ver, le poisson zèbre, la souris, le rat ou encore l’Homme (Tableau 1). 

 

  Drosophile Ver Souris Homme 

TRPC 3 3 7 6 
TRPV 2 5 6 6 
TRPM  1 4 8 8 
TRPA 4 2 1 1 
TRPP 4 1 3 3 

TRPML  1 1 3 3 
TRPN 1 1 0 0 
Total 16 17 28 27 

Tableau 1 Nombre de représentants de chaque sous-famille de TRP chez la drosophile, le ver, la souris et 
l’Homme 

(D’après Flockerzi, 2007, Handbook of Experimental Pharmacology)7.  
 

Les canaux de type TRP jouent des rôles physiologiques divers notamment au niveau 

sensoriel, de la vision, de l’ouïe, du touché, de l’odorat, du goût ou encore de la thermo-

sensation. Les TRP sont activables par une grande variété de stimuli et fonctionnent comme 

de véritables intégrateurs de signaux.  

La superfamille des TRP comprend une trentaine de canaux et se divise en sept sous-familles : 

TRPC, TRPV, TRPM, TRPN, TRPA, TRPP et TRPML. Il est possible de diviser les TRP en 

deux groupes, le 1er présentant des homologies de séquence relativement fortes : TRPC 

(canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (Ankyrin), TRPN (no 
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mechanoreceptor potential C, ou NOMPC). Le second comprend TRPP (polycystin) et 

TRPML (Mucolipin). A noter que les TRPN ne sont pas présents chez les mammifères. 

Les TRP possèdent différents niveaux d’homologies mais tous sont composés de six 

domaines transmembranaires. Ils peuvent former des homo ou des hétéro-tétramères et leur 

perméabilité aux cations mono ou divalents varie suivant le canal considéré 8,9 (Figure 3). 

 
Figure 3 Phylogénie des canaux TRP 

(D’après Clapham, 2003, Nature)10.  
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1.3 Structure des canaux TRP  
Les canaux TRP du 1er groupe sont composés de six domaines transmembranaires 

avec une boucle participant au pore entre les domaines cinq et six. Les parties N-terminale 

(N-ter) et C-terminale (C-ter) sont cytoplasmiques et contiennent le domaine TRP pour TRPC, 

TRPM et TRPN. Les TRP du groupe 1 possèdent plusieurs répétitions du motif Ankyrin dans 

leur partie N-ter à l’exception des TRPM qui contiennent un domaine kinase en C-ter. Les 

canaux TRPP et TRPML (du second groupe) ont aussi six domaines transmembranaires mais 

possèdent une large boucle séparant les domaines 1 et 2. Les motifs TRP ou Ankyrin ne sont 

pas retrouvés chez les canaux TRP de ce groupe8,9 (Figure 4).  

 
Figure 4 Les différents TRP et leurs caractéristiques structurales 

(D’après Pedersen et al., 2005, cell calcium et Venkatachalam et Montell, 2007, Annual Review of 
Biochemistry)8,9 
 

1.4 Activation des canaux TRP  
De nombreuses molécules permettent l’activation des canaux TRP. Certains de ces 

activateurs ont des effets inhibiteurs sur d’autres TRP, par exemple le 2-APB qui est décrit 

comme agoniste de TRPV1, TRPV2 et TRPV3 alors qu’il bloque TRPV4, TRPV5 ou encore 
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TRPC3. De façon plus générale, l’activation des canaux TRP peut se faire par l’intermédiaire 

de divers effecteurs décrits dans les paragraphes suivants11. 

 

1.4.1 Activation par un ligand  

Les ligands activant certains canaux TRP sont classables en quatre catégories : 

1) Les molécules organiques exogènes de petites tailles, incluant aussi bien les composés 

synthétiques que naturels (capsaicine12, l’iciline13, le 2-APB14 ou l’hyperforine15). 

2) Les lipides ou produits du métabolisme des lipides dont le diacylglycérol16. Il est 

produit suite à l’activation de récepteurs couplés aux protéines G (GPCR) activant 

ainsi les phospholipase C (PLC) qui catalysent l’hydrolyse des phosphatidylinositol 

(4,5) biphosphate (PIP2) en diacylglycérol (DAG) et en d’inositol (1,4,5) triphosphate 

(IP3). Les phosphoinositides17 et eicosanoides18 activent aussi certains TRP. 

3) Les nucléotides de type purine et leurs métabolites comme l’ADP-ribose ou le 

βNAD+19. 

4) Le peroxyde d’hydrogène 20 et les ions inorganiques comme le lanthane21, le zinc22. 

 

1.4.2 Activation par des stimulations thermiques et mécaniques.  

Certains TRP dont TRPV1, TRPV3 ou TRPM8 sont activés par la température mais ce 

mécanisme est encore peu compris. Il existe d’autres mécanismes d’activation possibles 

comme les stimuli mécaniques ou encore le bourgeonnement cellulaire23. 

 

1.5 Les canaux TRP : Des senseurs cellulaires 
Les canaux TRP ont des rôles divers dans le décodage et la transduction des stimuli 

sensoriels au niveau du touché, de la perception des températures, de la vision, de l’ouïe et de 

l’odorat. Au niveau cellulaire les TRP jouent un rôle fondamental dans la perception de 

l’environnement.  

 

1.5.1 Des senseurs du goût et des odeurs  

Décrit chez Caenorhabditis elegans, l’étude du gène osm-9, codant pour un archétype 

de TRPV est la première démonstration de l’implication des TRP dans l’odorat 24. ocr-2, un 

autre gène chez C.elegans (codant aussi pour un TRPV) est lui aussi impliqué dans l’olfaction. 

Ces deux gènes sont exprimés dans les neurones olfactifs et participent probablement à la 
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transduction des signaux olfactifs. Ces deux gènes jouent aussi une rôle dans la nociception et 

dans la sensation de l’osmolalité25,26.  

TRPM5 est décrit chez la souris comme important pour la reconnaissance du goût et 

notamment en ce qui concerne le sucré, l’amer et les acides aminés27. TRPC2 (pseudogène 

chez l’Homme mais exprimé chez la souris) serait aussi impliqué dans la réponse aux 

phéromones. Par exemple, une souris mâle KO TRPC2 présente un phénotype de non-

agression vis-à-vis de l’intrusion d’un autre mâle dans la cage8,28.  

 

1.5.2 Des thermo-senseurs et nocicepteurs  

Il existe plusieurs canaux TRP sensibles aux températures, et certains sont essentiels à 

la perception de celles-ci, nous parlerons de thermoTRP.  

Les canaux TRPV1, TRPV2 sont sensibles aux fortes températures (43°C à >52°C), TRPV3 

et TRPV4 à des températures de 25°C à 39°C alors que les canaux TRPM8 et TRPA1 sont 

sensibles aux températures plus froides (<17°C) (Figure 5). L’implication de TRPM8 dans la 

perception des températures froides est clairement établie alors que celle de TRPA1 est plus 

sujette à controverse. D’un point de vue physiologique nous pouvons noter que ces canaux 

sont sensibles à l’éventail de températures qu’un individu est capable de discriminer8,29,30.  

 
Figure 5 Diagramme des thermoTRP 

Ce diagramme des thermoTRP représente les températures d’activation des TRP impliqués dans la perception 
des températures.  
(D’après Talavera, 2008, Trends in Neurosciences)29. 
 
Le mode d’activation de ces différents canaux par la température n’est pas totalement élucidé, 

plusieurs hypothèses sont avancées. Il y aurait : 1) Une action directe de la température sur la 

membrane lipidique induisant un changement d’environnement du canal ; 2) Une action 

directe de la température sur la conformation du canal ; ou 3) Une production de ligands 

activant le canal produit par un changement de température. L’activation des canaux par la 
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température est dépendante du voltage membranaire pour TRPM8 et TRPV131. L’activation 

par la température provoquerait une augmentation de la probabilité d’ouverture du canal32.  

 

1.5.3 Des mécano-senseurs  

La stimulation mécanique des cellules peut intervenir dans divers processus tels que 

l’osmorégulation, l’ouïe ou encore le toucher. De nombreux TRP participent à la transduction 

de ces processus mécaniques. TRPC1, TRPC3, TRPC6 ainsi que TRPV2 et TRPM4 sont 

impliqués dans la constriction des vaisseaux sanguins suite à une augmentation de la pression. 

TRPM7 est aussi impliqué dans un mécanisme de mécano-sensation sensible aux fortes 

pressions33,34. TRPM3 est activé par un stimulus hyper-osmotique, TRPV4 est activé par un 

stimulus hypo-osmotique, TRPV1 joue un rôle dans la réponse de l’urothélium de la vessie 

aux tensions, TRPP1 et TRPP2 semblent impliqués dans la mécano-sensation au niveau des 

cils primaires des cellules épithéliales dans le néphron. Chez la levure, TRPY1 permet à la 

vacuole de répondre à un stimulus osmotique35-39.  

Chez les vertébrés, les organes de l’ouïe et de l’équilibre utilisent les cellules ciliées pour 

traduire les vibrations acoustiques (signaux mécaniques) en signaux nerveux. Quatre TRP 

semblent jouer un rôle dans la transduction de ce signal : TRPN1, TRPML3, TRPV4 et 

TRPA1. Différentes expériences notamment sur le poisson zèbre ou sur des souris knockout 

pour ces différents TRP ont montré leur importance dans la prise en charge des signaux 

auditifs34,40. En ce qui concerne le toucher, des souris knockout pour TRPA1 ou TRPV4 

présentent une diminution de leur sensibilité aux stimuli mécaniques des voies de la 

douleur41,42. 

 

1.5.4 Des photo-senseurs   

Les premières descriptions des canaux TRP ont révélé leur implication dans la 

phosphotransduction chez la drosophile2. La perception de la lumière chez les humains ne 

passe pas par le même mécanisme. En effet, en plus des cellules en cône et en bâtonnet, les 

mammifères possèdent des cellules ganglionnaires photosensibles. Ces cellules expriment des 

récepteurs couplés aux protéines G (GPCR) appelés mélanopsines. Les canaux TRPC3 et les 

mélanopsines sont impliqués dans la phosphotransduction40,43,44. TRPC6 et TRPC7 semblent 

aussi participer à ces processus de phototransduction45. 
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1.5.5 Des canaux sensibles aux stocks internes de calcium ? L’exemple des TRPC. 

Les canaux sensibles aux stocks internes de calcium sont les « store operated 

channels », ou « store operated calcium entry channels » (SOC). Ils sont activés suite à une 

diminution des stocks intracellulaires calciques (typiquement du réticulum endoplasmique). 

L’activation de GPCR ou de récepteurs à activité tyrosine kinase peut recruter les PLC et 

ainsi permettre l’hydrolyse du PIP2 en DAG et IP3. L’IP3 va se fixer à son récepteur IP3R sur 

le réticulum endoplasmique et induire la libération du calcium depuis ce compartiment. 

L’activation des SOC conduit alors à une entrée de calcium dans la cellule, on parle d’entrée 

capacitive du calcium. Les canaux CRAC (Ca2+ release-activated Ca2+ currents) font partie de 

cette famille de canaux activés en réponse à la déplétion des stocks internes de calcium. 

L’identification des acteurs composant les canaux SOC est un objet de débats depuis plusieurs 

années et récemment deux familles de protéines participant à ce processus ont été identifiées : 

STIM (STIM1 et STIM2) et Orai (Orai1, Orai2 et Orai3). STIM1 est considéré comme le 

senseur calcique du réticulum endoplasmique et Orai1 est la sous-unité qui forme le pore des 

canaux CRAC. Cependant, la contribution des canaux TRP dans ce processus pose question. 

Plusieurs études proposent une action de certains TRPC dans l’entrée capacitive du calcium 

(Figure 6). Le débat est très controversé quant au rôle de TRPC1 dans les SOC. Plusieurs 

publications penchent en faveur d’une implication de ces protéines dans les SOC dans 

différents types cellulaires46-50 et récemment une interaction entre TRPC1-Orai1 et STIM1 a 

été mise en évidence51. Cependant, d’autres groupes utilisant des techniques proches et dans 

des lignées cellulaires identiques ne démontrent pas le rôle de TRPC1 dans les SOC52,53. Chez 

des souris TRPC1-/- l’entrée de calcium en réponse à la déplétion des stocks internes ne 

semble pas être affectée54,55. L’environnement de TRPC1 (surexpression, expression d’autres 

TRPs...) pourrait expliquer en partie la différence dans les résultats publiés à ce jour56. Chez 

la souris, l’expression de TRPC2 augmente l’entrée de calcium suite à un traitement à la 

thapsigargine, ce qui suggère un rôle probable de ces canaux dans les SOC (chez la souris 

uniquement car absent chez l’Homme)57. Comme pour TRPC1, l’implication de TRPC3 dans 

les SOC est débatue. Dans les cellules HEK293 ou dans les cellules A431, la suppression de 

TRPC3 diminue l’activité SOC de ces cellules 49,58. Cependant une souris KO pour TRPC3 ne 

présente pas de défaut au niveau de son activité SOC59. Le rôle de TRPC4 et TRPC5 est aussi 

sujet à controverse. La suppression de ces canaux dans plusieurs types cellulaires tend à 

montrer leur implication dans les SOC60,61. De plus, les souris déficientes pour TRPC4 ne 

présentent plus d’activité SOC62. Cependant d’autres études ne démontrent pas ce rôle associé 

à TRPC4 et TRPC563,64. Le débat existe aussi pour TRPC6 que nous aborderons dans la partie 



Introduction 

 18 

2.2.2. En ce qui concerne TRPC7, son implication dans les SOC est discutée : L’expression 

stable de TRPC7 conduit à la formation de canaux à la fois sensibles au diacylglycerol65 et à 

la formation de canaux de type SOC66 tandis que l’expression transitoire de TRPC7 ne forme 

pas de SOC67. 

 
Figure 6 L’entrée capacitive du calcium 

L’activation d’un récepteur (R) de la membrane plasmique par un agoniste entraine la production d’IP3 qui 
active le récepteur à l’IP3 (IP3R) provoquant une libération du calcium depuis le réticulum endoplasmique. Cette 
déplétion en calcium aurait pour conséquence une relocalisation de STIM1 vers une région proche d’Orai1 à la 
membrane plasmique provoquant l’activation d’Orai1 par un mécanisme inconnu. L’activation d’Orai1 conduit à 
une entrée de calcium dans la cellule. L’implication des canaux TRPC dans ce mécanisme est encore très 
largement débattue.  
(D’après Putney, 2007, Journal of Cell Science)68 
 

Parmi l’ensemble des canaux TRPC, nous allons nous intéresser aux canaux TRPC6 et plus 

précisément au niveau du cortex de la souris. Les canaux TRPC6 sont impliqués dans 

plusieurs fonctions au niveau neuronal. Ils jouent un rôle dans la croissance et la densification 

du réseau dendritique, dans le guidage des cônes de croissance neuronaux ou encore dans la 

protection des neurones lors d’ischémie. TRPC6 est surexprimé dans les glioblastomes 

multiformes où ils contrôlent la croissance tumorale. Compte tenu des rôles 

physiopathologiques joués par ces canaux, il est essentiel de préciser leurs propriétés et les 

processus biologiques qu’ils contrôlent. 
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2. Les canaux TRPC6 
 

Chez l’Homme, le gène codant pour TRPC6 est situé sur le chromosome 11q21-q22 et 

possède 13 exons, codant pour une protéine de 931 acides aminés (aa). Chez la souris, il est 

localisé sur le chromosome 9 et la protéine comprend 930 aa. Le clonage et l’expression de 

l’ADNc de TRPC6 ont été obtenus à partir de la séquence d’ARNm de TRPC6 de cerveau de 

souris. Ce clonage a été réalisé dans les cellules COS de façon transitoire et de façon stable 

dans les cellules HEK29369. 

La protéine est localisée à la membrane plasmique avec les extrémités N et C 

terminales en position  intracellulaire. Elle est composée de 6 hélices transmembranaires (S1-

S6) et possède une boucle participant à la formation du pore entre les domaines 

transmembranaires S5 et S6. Les canaux TRPC6 possèdent 2 sites de glycosylation : Asn 473 

sur la première boucle extracellulaire et Asn 561 sur la seconde70 ainsi que 4 sites de 

phosphorylation identifiés : sérine 76871, sérine 44872, thréonine 6973 et sérine 81474.  

Dans sa partie N-terminale, TRPC6 possède 3 domaines ankyrine (Figure 7) pouvant 

interagir avec des partenaires intracellulaires, un domaine coiled coil et un site de fixation à la 

cavéoline. Le second domaine ankyrine interagit avec MxA, un membre de la superfamille 

des dynamines75.  

En C-ter, TRPC6 contient les deux TRP box caractéristiques : la box 1 EWKFAR 

conservée dans toute la famille des TRPC et la box 2 riche en proline8. TRPC6 possède 2 

domaines de fixation à l’inositol 1,4,5-trisphosphate (IP3) dont le second coïncide avec un 

domaine de fixation à la calmoduline : le CIRB (calmodulin/IP3 receptor binding)70,76. 

TRPC6 s’assemble en homo- ou hétérotétramères avec TRPC3/6/7. De nouvelles 

combinaisons avec TRPC1-TRPC4/5 ont été identifiées dans des cerveaux embryonnaires de 

rat77. Dans les cellules PC12, TRPC6 est associé à un complexe multi protéiques contenant 

notamment la protéine kinase C, la FK506-binding-protéin 12kDA (FKBP12) et la 

calcineurine/calmoduline71. Dans les cellules endothéliales d’artères pulmonaires, la PTEN 

(phosphatase and tensin homologue) s’associe à TRPC6 et lui sert de protéine d’échafaudage 

pour son expression à la surface de la cellule78.  
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Figure 7 Structure et assemblage des TRPC6 

A) Structure des TRPC6, les deux sites de glycosylation sont visibles en gris, les six domaines 
transmembranaires (S1-S6) et la boucle formant le pore (p).  
B) Assemblage en hétérotétramères possibles avec les canaux TRPC1 (1), TRPC3 (3), TRPC4 (4), TRPC5 (5), 
TRPC6 (6), TRPC7 (7). C) Domaines structuraux de TRPC6 et variantes observées D (Zhang and Saffen ,2001) 
et E (Corteling et al, 2004). P112Q, R895C et E897K sont des mutations « gain de fonction » retrouvées dans les 
cas de FSGS (chapitre 2.5.6)70.  
 

2.1 Propriétés ioniques du canal TRPC6  
TRPC6 est un canal calcique non sélectif aux cations possédant une conductance 

unitaire de 28-37pS. La perméabilité au calcium est 5 fois plus importante que la perméabilité 

au sodium16. Les courants passant à travers TRPC6 présentent une rectification double, à la 

fois entrante et sortante79. 

 

 
Figure 8 Courbe (I-V) typique du courant ITRPC6 

Courbe (I-V) typique du courant ITRPC6 à différentes concentrations en calcium externe en présence de CCh. 
(D’après Shi et al, 2004, The Journal of Physiology)79 
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2.2 Contrôle de l’activité des canaux TRPC6 
 

2.2.1 Activation par le diacylglycérol et les composés lipidiques 

Les canaux TRPC6 sont classiquement décrits comme s’ouvrant suite à l’activation de 

certains récepteurs couplés aux protéines G (on parle alors de ROC). L’activation des GPCR 

conduit à l’activation de la PLC-β favorisant ainsi la production de DAG stimulant 

l’ouverture des canaux TRPC6 (Figure 9). De plus, l’activation des récepteurs muscariniques 

(GPCR) augmente l’insertion de TRPC6 à la membrane plasmique 80.  

 
Figure 9 Schéma de fonctionnement du couplage GPCR/TRPC6 

L’activation du GPCR par un agoniste entraine l’activation de la phospholipase C (PLC) induisant la production 
de DAG et d’IP3 à partir de PIP2. Le DAG peut ensuite activer l’ouverture des canaux TRPC6. 
 

Les différents GPCR activant les canaux TRPC6 sont listés dans le tableau 2. 

Récepteurs couplés aux protéines G 
activant TRPC6 

Types cellulaires références 

Adrénocepteur α1 Myocytes de veines portes 81
 

Angiotensine II (AT1) Cardiomyocytes 82,83
 

Bradykinine B2 Neurones sympathiques 84
 

Histamine H1 Cellules CHO 16
 

Muscarinique M1 Neurones sympathiques 84
 

Muscarinique M3 Cellules HEK293 85
 

Muscarinique M5 Cellules COS 69
 

Orexine (OX1 R) Neuroblastome IMR-32 86
 

Purinergique P2Y Cellules de muscles lisses d’aorte 87
 

Sérotonine Cellules A7r5 (muscles lisses vasculaires) 88
 

Trombine (PAR-1) Cellules endothéliales 89
 

Vasopressine (V1 et  V1a AVP R) Cellules HEK293 et A7r5 88,90
 

Tableau 2 GPCR activant TRPC6 
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Certains récepteurs à activité tyrosine kinase (RTK) (Tableau 3) sont aussi impliqués 

dans l’ouverture des canaux TRPC6 grâce à la phosphorylation de la PLC-γ qui entraine une 

production accrue de DAG. Les canaux TRPC6 seraient aussi activés par l’interleukine-1β via 

sa fixation sur son récepteur (l’IL-1R) dans les astrocytes91. 

 

Récepteurs tyrosine kinase activant 
TRPC6 

Types cellulaires références 

PDGF Cellules A7r5 (muscles lisses vasculaires) 88
 

EGF Cellules COS 92
 

BDNF (TrkB) Cellules granulaires cérébelleuses de rat 93
 

VEGF Cellules HEK293 94
 

Tableau 3 Récepteurs TRK activant TRPC6 
 

Le DAG va aussi servir dans la formation des acides gras polyinsaturés (PUFA) sous l’action 

de la DAG lipase ou être transformé en acide phosphatidique par l’intermédiaire de la DAG 

kinase (Figure 10).  

 

 
Figure 10 Voies impliquées dans la production du diacylglycérol 

Production du diacylglycérol (DAG) à partir du phosphatidylinositol-4,5-biphosphate (PIP2) et de la 
phosphatidylcholine (PC). Ce schéma présente aussi les voies métaboliques basées sur l’action de la DAG lipase 
et de la DAG kinase. 
 

Les canaux TRPC6 sont régulés par un certain nombre de ces composés lipidiques. 

Tout comme pour les canaux TRPC3 et TRPC7, les canaux TRPC6 sont activables par le 

diacylglycérol ou ses analogues perméants comme le 1-oleoyl-2-acetyl-sn-glycerol (OAG) et 

le 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG). Cette activation induit une entrée de calcium 

et de sodium indépendamment de l’activation de la protéine kinase C16,95. L’acide 

arachidonique et ses métabolites sont aussi des activateurs des canaux TRPC6 : l’acide 20-

hydroxyeicosatetraenoique (20-HETE) active l’ouverture des canaux96 tandis que l’acide 

epoxyeicosatrienoique (EET) stimule la translocation des canaux TRPC6 vers la membrane 

plasmique des cellules endothéliales de veines ombilicales humaines97. Le EET augmente 

l’expression des canaux TRPC6 dans les cellules de muscles lisses d’artères pulmonaires chez 
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le rat98. L’IP3, produit de l’hydrolyse du PIP2, est aussi impliqué dans la régulation des canaux 

TRPC6 des myocytes de veines portes de lapin. L’IP3 augmente la probabilité d’ouverture des 

canaux en réponse à l’OAG99. L’IP3 aurait cette action en levant l’inhibition du PIP2 sur les 

canaux TRPC7 qui forment des canaux hétérotétramériques avec les canaux TRPC6 dans les 

cellules de veines portes100. Mais l’action du PIP2 sur les canaux TRPC6 est sujette à de 

nombreuses controverses. Le PIP2 est premièrement décrit comme un régulateur positif des 

canaux TRPC6 dans un modèle de sur-expression101 alors que dans les myocytes d’artères 

mésentériques, le PIP2 exerce une forte inhibition de la réponse des canaux TRPC6 à 

l’angiotensine II et à l’OAG102. Le phosphatidylinositol 3,4,5-triphosphate (PIP3) est aussi un 

régulateur positif des canaux TRPC6, à la fois dans un modèle de sur-expression103 et dans un 

modèle d’expression endogène dans lequel PIP3 perturbe la liaison de la CaM avec TRPC6104. 

Enfin, la podocine, une protéine de la membrane plasmique impliquée dans la 

glomérulosclérose focale et segmentaire, augmente l’activité des canaux TRPC6 lorsqu’elle 

est liée au cholestérol105.  

L’ensemble de ces études démontre l’importance de la phospholipase C par le biais de divers 

récepteurs (couplés aux protéines G ou à activité tyrosine kinase) sur l’ouverture des canaux 

TRPC6 dans de nombreux modèles d’étude confortant ainsi l’hypothèse que les canaux 

TRPC6 sont des ROC.  

Cette hypothèse est néanmoins contrebalancée par des études montrant l’activation des 

canaux TRPC6 suite à la déplétion des stocks internes de calcium. 

 

2.2.2 Les TRPC6 sont-ils aussi des SOC ?  

 L’entrée du calcium dans les cellules en réponse à une déplétion des stocks internes se 

produit suite à l’activation des canaux SOC de la membrane plasmique. Des inhibiteurs des 

pompes SERCA du réticulum endoplasmique comme la thapsigargine ou l’acide 

cyclopiazonique sont couramment utilisés pour étudier une réponse de type SOC. Les 

protéines Orai1 et STIM1 ont récemment été décrites comme les actrices du courant Icrac. 

L’hypothèse de l’implication des canaux TRPC dans le complexe membranaire associé à Orai 

fait l’objet de nombreuses recherches et plusieurs études ont montré le rôle des canaux 

TRPC6 dans ce processus. Par exemple, dans les cellules HEK293 sur-exprimant TRPC6, 

l’expression d’Orai conduit à une augmentation de la réponse SOC106. Dans les cellules de 

muscles lisses vasculaires pulmonaires, le PDGF active la prolifération cellulaire via la voie 

c-jun/STAT3 augmentant l’expression de TRPC6 et l’entrée capacitive du calcium107. Dans 
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les cellules Huh-7 (hépatome), la sur-expression des canaux TRPC6 augmente l’entrée 

calcique par la voie SOC108. Dans les plaquettes humaines, TRPC6 est associé à la réponse 

SOC en coexistant au sein d’un complexe multi protéiques avec TRPC1, IP3R, SERCA3109 et 

STIM1110. Des travaux tentent de réconcilier l’hypothèse de l’implication des canaux TRPC6 

à la fois dans un processus d’entrée capacitive du calcium et dans un processus non capacitif 

dans les plaquettes. Les canaux TRPC6 seraient soit en interaction avec Orai1 et STIM1 

(SOC) soit en interaction avec TRPC3 pour former des canaux non capacitifs. Ce phénomène 

serait régulé par la concentration calcique interne 111,112 (Figure 11).  

 

 
Figure 11 Implication des canaux TRPC6 dans deux voies d’entrée CCE et NCCE 

NCCE : non capacitative calcium entry, CCE : capacitative calcium entry (ou SOC). Dans ce schéma, les auteurs 
tentent de réconcilier les deux hypothèses sur l’implication des canaux TRPC6 dans l’entrée de calcium. La 
NCCE mettant en jeu les canaux TRPC3 associés aux canaux TRPC6 et la CCE mettant en avant le rôle de 
STIM1 et Orai1.   
(D’après Jardin et al., 2009, Biochemical Journal)111. 
 

2.2.3 Les canaux TRPC6 sont-ils mécano-sensibles ? 

L’hypothèse d’une activation des canaux TRPC6 par des stimuli mécaniques est 

relativement controversée. Dans un premier temps, une étude a démontré le rôle direct des 

canaux TRPC6 en tant que senseur des tensions membranaires induites mécaniquement ou par 

des changements osmotiques. Le peptide de tarentule GsMTX-4 inhibe ce phénomène et 

l’activation des canaux par l’OAG ce qui suggère que les canaux TRPC6 sont sensibles à 

diverses modalités d’activation113. 
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Dans les cellules de myocytes ventriculaires de souris, le courant ionique via les canaux 

TRPC6 est régulé de façon mécano-sensible. L’activation des canaux TRPC6 par une tension 

de la membrane peut influencer l’entrée de calcium soit via la dépolarisation membranaire 

soit en augmentant l’activité de l’échangeur Na+/Ca2+ 114. Dans les ganglions de la racine 

dorsale, TRPC6 et TRPC1 agissent avec TRPV4 dans un mécanisme impliquant la 

sensibilisation des nocicepteurs provoquant une hyperalgésie mécanique115. Ces résultats 

diffèrent cependant de ceux obtenus lors d’une étude montrant que la tension membranaire ne 

semble pas influencer de façon aussi directe l’activité des canaux TRPC6. Dans les cellules de 

muscles lisses vasculaires, les récepteurs couplés aux protéines Gq/11 sont mécano-sensibles. 

Ils fonctionnent comme des senseurs de la tension membranaire et provoquent l’activation des 

canaux TRPC6 par l’intermédiaire des protéines G et de la PLC116. Cette observation a été 

confirmée par des travaux récents présentant l’activation des canaux TRPC6 par une 

stimulation mécanique comme secondaire à la production de 20-HETE (un métabolite de la 

PLA2/ω-hydroxylase), et concluant que les canaux TRPC6 ne sont pas directement mécano-

sensibles117. 

 

2.2.4 Outils pharmacologiques pour activer les canaux TRPC6 : 

 

L’acide Flufénamique 

L’acide flufénamique (FFA) est un bloqueur des canaux TRPC3 et TRPC7. Son action 

sur les canaux TRPC6 a été testée sur des cellules HEK et A7r5. Dans les deux cas, le FFA 

conduit à une augmentation de l’amplitude du courant à travers TRPC681,88. L’utilisation de 

podocytes immortalisés transfectés par un dominant négatif de TRPC6 a permis d’observer 

que le FFA activait les canaux TRPC6, augmentant le calcium intracellulaire118. Cependant, 

des résultats différents ont été observés sur des neurones corticaux embryonnaires (qui 

expriment TRPC6) et sur des cellules HEK293 où la réponse FFA est la même en présence ou 

en absence de calcium extracellulaire. Les signaux calciques observés ne seraient donc pas 

produits par une entrée de calcium dans ces cellules mais plutôt par une libération de celui-ci 

depuis les stocks internes. L’utilisation de mitochondries isolées montre que ces organites 

libèrent du calcium en réponse au FFA. Par ailleurs, la réponse SOC en présence de FFA est 

considérablement réduite par rapport à celle observée dans les cellules non traitées (des 

résultats similaires sont trouvés avec le FCCP, un protonophore mitochondrial)119. Le FFA ne 

semble finalement pas être un agoniste sélectif des canaux TRPC6. 
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L’hyperforine  

L’hyperforine est un des composants bioactifs du millepertuis perforé ; il active les 

canaux TRPC6 sans affecter les autres canaux TRPC15,120 (Figure 12).  

 
Figure 12 L’hyperforine active sélectivement les canaux TRPC6 

A) Cellules HEK293 exprimant TRPC6 et stimulées par l’OAG (100 µM) puis application d’hyperforine 10 µM. 
Les deux traitements induisent une augmentation du calcium intracellulaire. B) Résumé de l’expérience (A) 
réalisée sur des HEK293 exprimant différents TRPC ou qui ne sur-expriment pas de TRPC (control). Les 
cellules exprimant les canaux TRPC6 ont une réponse significativement différente des cellules contrôles. 
***p<0,001 t-Test. (D’après Leuner et al., 2007, FASEB)15.  
 

L’activation des canaux TRPC6 par l’hyperforine augmente la concentration intracellulaire en 

calcium. Appliquée de façon chronique, l’hyperforine stimule la croissance des neurites des 

cellules PC1215 et favorise la différentiation des kératinocytes120,121. L’hyperforine provoque 

une perte du potentiel de la membrane mitochondriale122,123, induisant aussi une libération de 

calcium et de zinc depuis ce compartiment123. 

 

2.3 Régulation de l’activité des canaux TRPC6 
 

2.3.1 Régulation par la protéine kinase C 

Les canaux TRPC6 sont activables par le diacylglycérol (chapitre 2.2.1). Cependant le 

DAG est un activateur de certaines protéines kinases C (PKC). La question du rôle de la PKC 

sur la régulation des canaux TRPC6 a donc été posée. Une des premières descriptions des 

canaux TRPC6 a révélé que leur activation par le DAG se fait de façon indépendante de la 

PKC. En effet, l’ajout d’activateur ou de bloqueur de PKC comme le phorbol-12,13 

didecanoate (PDD), le phorbol-12-myristoyl-13-acetate (PMA) ou encore la staurosporine ou 

le bisindolylmaleimide n’empêche pas l’influx de Mn2+ en réponse à l’OAG16,85. Le résultat 
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est identique avec d’autres molécules soit activatrices de la PKC comme le phorbol 12,13 

dibutyrate soit inhibitrices comme la calphostine C81. Dans les neurones corticaux, l’ajout de 

PMA ou de GF109203X (un inhibiteur de PKC) ne modifie pas la réponse OAG95. 

Néanmoins, dans certains cas, la PKC exercerait une action régulatrice sur TRPC6. Dans le 

chapitre 2.2.1, nous avons abordé la stimulation des canaux TRPC6 en réponse à l’activation 

de certains récepteurs. Le carbachol (CCh, activateur des récepteurs muscariniques) est 

couramment utilisé à cet effet pour produire une entrée de calcium via les canaux TRPC6. Par 

des techniques d’électrophysiologie sur des cellules HEK sur-exprimant TRPC6, le PMA 

(activateur de PKC) réduit le courant induit par le CCh (mais pas celui induit par l’OAG)85. 

L’utilisation de la calphostine C ou de peptides inhibiteurs de la PKC provoque une levée 

d’inhibition des canaux TRPC6 suite à l’activation par le CCh79 (Figure 13). 

 
Figure 13 La PKC inhibe le courant ITRPC6 

La PKC inhibe le courant ITRPC6 produit par le CCh. L’ajout d’inhibiteur de PKC, ici le peptide IP19-36 5 µM 
lève cette inhibition. 
(D’après Shi et al, 2004, Journal of Physiology)79.  
 

Dans les cellules PC12, l’activation des récepteurs muscariniques M1 conduit à la 

formation d’un complexe transitoire et réversible entre ces récepteurs, TRPC6 et la PKC. 

Dans ce complexe, la PKC phosphoryle TRPC6 sur la sérine 768. Le complexe est associé à 

l’immunophiline FKPB12, à la calcineurine et à la calmoduline. La phosphorylation des 

canaux TRPC6 est corrélée à une inhibition qui peut être levée par l’ajout de GF109203X (un 

inhibiteur de PKC)71. Dans les cellules de muscles lisses d’artères mésentériques de lapin, la 

chélérythine (inhibiteur de PKC) lève l’inhibition produite par le calcium (Chapitre 2.3.4) et 

augmente l’activité des canaux TRPC6 en réponse à l’angiotensine II124. Enfin, la PKC est 

capable de phosphoryler les canaux TRPC6 sur la sérine 448. Cette phosphorylation conduit 

elle aussi à l’inhibition des canaux72. 
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2.3.2 Régulation par les protéines kinases A (PKA) et G (PKG) 

Les études traitant de la régulation des canaux TRPC6 par la PKA ou la PKG sont peu 

nombreuses comparées à celles traitant de la PKC. L’analyse de la séquence primaire de 

TRPC6 (humaine) montre la présence de séquences consensus pour la PKA et la PKG. Les 

canaux TRPC6 forment un substrat pour la PKA mais leur phosphorylation à l’aide 

d’activateur de PKA comme le Sp-5,6-DCL-cBiMPS (BIMPS) ne semble pas réguler l’entrée 

de calcium en réponse à l’OAG125. Dans les cellules endothéliales de veines ombilicales 

humaines (HUVEC), l’inhibition de la PKA par le Rp-cAMP empêche la translocation des 

canaux TRPC6 vers la membrane plasmique en réponse aux EETs (chapitre 2.2.1) diminuant 

notamment l’entrée de calcium induite par la bradykinine97.  

Dans les cellules HEK293 et A7r5, la PKG inhibe les canaux TRPC6. Un donneur 

d’oxyde nitrique (le SNAP) inhibe le courant TRPC6 induit par le carbachol (CCh). Le 8Br-

cGMP (un analogue perméant du GMPc) supprime aussi le courant TRPC6 induit par le CCh. 

Il est proposé que les SNAP activent la PKG qui va phosphoryler les canaux TRPC6 sur la 

thréonine 69. Cette voie NO-cGMP-PKG régule de façon négative les courants cationiques à 

la fois dans les HEK293 et A7r573. La phosphorylation des canaux TRPC6 par la PKG serait 

importante dans la prévention de l’hypertrophie des cardiomyocytes ventriculaires en 

impliquant la phosphodiesterase 5126,127 (PDE5), un effet du NFAT (nuclear factor of 

activated T-cells)126 et par l’intervention d’une voie  utilisant les peptides natriurétiques 

atriaux et cérébraux (ANP et BNP)128 (Figure 14). 

 

 
Figure 14 Schéma illustrant la voie de signalisation impliquant TRPC6 et NFAT 

En présence (A) et en absence d’activateur de PKG (B) dans l’hypertrophie cardiaque.  
(D’après Koitabashi et al., 2010, Journal Molecular of and Cellular Cardiology)126.   
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2.3.3 Régulation par les tyrosines kinase Src/Fyn 

Fyn est un membre de la famille des protéines-tyrosines kinases (PTK) de type Src. Il 

existe une interaction directe entre Fyn et les canaux TRPC6. La stimulation des récepteurs du 

facteur de croissance de l’épiderme (EGF) induit une phosphorylation des canaux TRPC6 

dépendante de Fyn. Cette phosphorylation augmente l’activité des canaux TRPC6 dans les 

cellules HEK293 exprimant de façon stable les canaux TRPC692. Toutefois, la 

phosphorylation des canaux TRPC6 par Fyn ne semble pas être essentielle à leur 

fonctionnement car dans des cellules COS-7 déficientes pour fyn ou src, l’activité des canaux 

TRPC6 n’est pas affectée90. Dans un modèle de podocytes immortalisés, le knockdown de 

Fyn bloque la phosphorylation de TRPC6 et réduit l’apoptose causée par le TGF-β1 mais sans 

influencer l’expression des canaux TRPC6129.  

 

2.3.4 Régulation par le calcium et par la calmoduline 

 

Calcium 

Le calcium extracellulaire a des effets complexes (et controversés) sur l’activité des 

canaux TRPC6. L’ajout de calcium dans le milieu externe après l’application de carbachol 

augmente le courant induit par le CCh dans les cellules HEK81. Dans les cellules de muscles 

lisses A7r5, une concentration de 2 mM de calcium externe inhibe l’activité des canaux 

TRPC6 induite par la vasopressine alors qu’une concentration externe de 50 à 200 µM 

potentie l’amplitude des courants via TRPC6. Néanmoins, supprimer totalement le calcium 

externe diminue les courants via TRPC688. Le calcium aurait un rôle double dans la régulation 

des canaux TRPC6 : A de faibles concentrations externes (IC50 ~0,4 mM) il augmenterait les 

courants TRPC6 et à de fortes concentrations externes (IC50~4 mM) il serait un inhibiteur. Les 

processus d’activation des canaux TRPC6 semblent cependant être dépendants de la 

calmoduline 79. 

 

Calmoduline 

La calmoduline (CaM) est une petite protéine intracellulaire ubiquitaire liant le 

calcium et impliquée dans la régulation de plusieurs canaux ioniques comme les TRP et 

TRPL de drosophile4. La calmoduline après activation par le calcium et formation du 

complexe Ca2+-CaM, active un certain nombre de kinases dont la CaM-kinase II ou la 

phosphatase calcineurine. L’utilisation d’inhibiteurs de CaM tels que le calmidazolium (CMZ) 
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ou le trifluoperazine (TFP) a permis de mettre en évidence dans les HEK293 sur-exprimant 

TRPC6 l’importance de cette protéine dans l’activation de la réponse de type ROC des 

TRPC6 mais seulement après vidange des stocks130. L’inhibition de la CaM ne semble pas 

influencer la réponse SOC de ces cellules. Des résultats semblables ont été obtenus en 

coexprimant un mutant de la CaM (insensible au calcium) provoquant une forte diminution 

des réponses CCh, GTPγS et OAG. Les mêmes résultats sont observés avec des 

concentrations intracellulaires en calcium très faibles ou en inhibant la CaM kinase II par le 

KN-62 ou par le peptide inhibiteur CAMK-IP(281-309). En revanche, l’inhibition de la 

calcineurine par le FK506 ne semble pas affecter le courant ITRPC6
79. Les canaux TRPC6 

possèdent une région sur l’extrémité C-terminale pouvant lier l’IP3 et la CaM : le CIRB 

(CaM/IP3 Receptor Binding, chapitre 2 figure 7)131. Le PIP3 a la capacité de déplacer la CaM 

et des mutations augmentant l’affinité du PIP3 pour TRPC6 augmentent les courants via 

TRPC6. Des mutations diminuant l’affinité de PIP3 avec TRPC6 réduisent les courants via 

TRPC6. Contrairement aux études précédentes, celle-ci suggère donc un rôle inhibiteur de la 

CaM vis-à-vis des canaux TRPC6104. Dans le système nerveux central, la surexpression des 

canaux TRPC6 augmente la phosphorylation de la kinase IV Ca2+/calmoduline dépendante 

(CaMKIV) et de CREB (cAMP-Response-Element Binding protein), stimulant la croissance 

dendritique et la formation des synapses via cette voie CaMKIV-CREB132,133.   

 

2.3.5 Régulation redox des canaux TRPC6 

Les espèces réactives de l’oxygène (ROS) sont impliquées dans de nombreux 

processus cellulaires affectant l’expression des gènes, la prolifération cellulaire, l’apoptose ou 

encore la migration cellulaire. Les ROS sont générées dans plusieurs compartiments 

intracellulaires (90% des ROS proviennent des mitochondries) par l’intervention d’enzymes 

dont la NADPH oxydase. Une étude sur des rats traités à la puromycine aminonucléoside 

(PAN) qui détériore les podocytes (pour mimer la FSGS, chapitre 2.5.6) a montré une 

association entre la NADPH oxydase et l’expression des canaux TRPC6. En effet, le 

traitement PAN sur les rats augmente l’activité de la NADPH oxydase (donc probablement 

les ROS) et conduit à une augmentation de l’expression des canaux TRPC6134. De plus, le 

peroxyde d’hydrogène (H2O2), active les canaux TRPC6 mais ne semble pas oxyder 

directement la protéine TRPC6. L’activation semble passer par l’intermédiaire d’un ou 

plusieurs composés cytoplasmiques non identifiés à ce jour20.  
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2.3.6 Régulation par la voie de signalisation Notch 

La voie Notch est nécessaire au développement embryonnaire et post-natal de 

nombreux organes en régulant notamment la différentiation, l’apoptose et la prolifération 

cellulaires135. Les Notch sont des récepteurs transmembranaires activés par les DSL 

(delta/Serrate/Lag2). L’activation des Notch conduit à leur clivage par les γ-secrétases 

libérant la partie intracellulaire du récepteur (NICD). Le NICD entre dans le noyau et 

s’associe avec le facteur de transcription CSL pour contrôler l’expression de certains gènes. 

Numb est un régulateur important des Notch, la perte d’expression de Numb est notamment à 

l’origine de tumeurs. Numb est aussi décrit pour moduler l’homéostasie calcique. 

L’expression de Numb dans les PC12 augmente l’expression des canaux TRPC6 ainsi que les 

réponses ROC et SOC. Ce processus est supprimé par des inhibiteurs de la voie Notch136. 

Dans les glioblastomes multiformes, l’inhibition de la voie Notch inhibe la réponse à 

l’hypoxie conduisant ainsi à une diminution de l’expression des canaux TRPC6 qui est forte 

dans les glioblastomes multiformes137. 

 

2.3.7 Inhiber spécifiquement les canaux TRPC6 : une impasse pharmacologique. 

Il n’existe pas d’inhibiteur spécifique des canaux TRPC6. Cependant plusieurs 

inhibiteurs non-spécifiques sont couramment utilisés. Le Lanthane, le Gadolinium et le 

Cadmium inhibent l’entrée de calcium via les canaux TRPC6 mais inhibent aussi d’autres 

conductances calciques81. Des inhibiteurs non spécifiques comme le SKF-9636595, 

l’amiloride138, le 2-APB139 et le GsMTx-4113 sont aussi utilisés pour bloquer l’entrée calcique 

via les canaux TRPC6.  

 

2.4 Association des canaux TRPC6 avec d’autres voies d’entrée du calcium 
 Dans certains types cellulaires, l’activation des canaux TRPC6 aurait un effet sur 

l’entrée calcique via d’autres canaux ou transporteurs. Dans les cellules A7r5 de muscles 

lisses qui expriment de façon endogène les canaux TRPC6, l’entrée de calcium induit par 

l’activation des TRPC6 par l’OAG (analogue du diacylglycérol) est réduite en présence de 

nimodipine ou de verapamil. Ces expériences suggèrent un lien entre les canaux calciques 

dépendants du voltage de type L et les canaux TRPC6. L’entrée de sodium via les canaux 

TRPC6 serait en effet à l’origine d’une dépolarisation de la membrane qui induirait 

l’ouverture des canaux calciques de type L 140. Ce processus semble cependant dépendre du 

type cellulaire. En effet, dans les neurones corticaux embryonnaires, les réponses calciques 
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induites par l’OAG ne sont pas affectées par la nifédipine ou par l’ω-conotoxine (deux 

inhibiteurs des canaux calciques dépendants du voltage)95.  

Dans certaines conditions, une entrée de calcium via l’échangeur Na+/Ca2+ (NCX) 

peut être associée à l’activité des canaux TRPC6, notamment dans les cellules de muscles 

lisses. Localisé dans la membrane plasmique, l’échangeur NCX est essentiel à l’entrée du 

sodium et à la sortie du calcium en échangeant 3 ions Na+ contre un ion Ca2+. Cependant, le 

transport de ces deux ions est conditionné par le gradient de sodium, de calcium et par le 

potentiel de membrane. L’échangeur NCX possède un potentiel d’inversion (ENCX=3ENa-ECa) 

pouvant conduire au transport d’un ion Ca2+ pour la sortie de trois ions Na+141. L’entrée de 

sodium via les canaux TRPC6 serait responsable de l’inversion de NCX conduisant à une 

entrée de calcium dans les cellules de muscles lisses87,142 (Figure 15) Ce processus est aussi 

présent dans les artérioles afférentes143 et semble responsable d’une partie de l’entrée calcique 

dépendante de l’OAG dans les neurones corticaux embryonnaires95. Les canaux TRPC6 

influenceraient la concentration calcique intracellulaire de multiples façons: via une entrée 

directe à travers les canaux ou, dans certaines cellules, via la dépolarisation induite par 

l’entrée de sodium, faisant entrer du calcium via les canaux calciques dépendants du voltage 

ou, via l’entrée de sodium par TRPC6 qui conduit à l’inversion de NCX. Ces réponses 

dépendent du type cellulaire144. 

L’ensemble de ces données traduisent l’existence de domaines membranaires regroupant ces 

différents acteurs de l’homéostasie du sodium et du calcium145,146.  
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Figure 15 TRPC6 et couplage avec le NCX 
A) L’activation des canaux TRPC6 permet l’entrée du sodium. B) La forte augmentation du sodium provoque le 
fonctionnement en mode inverse de NCX et donc une sortie de sodium pour une entrée de calcium. Il apparait 
alors que l’entrée de sodium par les canaux TRPC6 a un rôle majeur dans ce mécanisme dépendant de NCX. 
(D’après Eder et al., 2005, Pflügers Archiv )141 
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2.5 Expression, fonctions et physiopathologies des canaux TRPC6 
Les canaux TRPC6 sont exprimés dans de nombreux organes et tissus (Figure 16) tels 

que le cerveau, le cœur, les poumons, les reins, le foie, le placenta etc… 

 
Figure 16 Expression de l’ARNm de TRPC6 

Expression de l’ARNm de TRPC6 dans le cerveau et dans les tissus périphériques chez l’Homme. Les données 
sont exprimées en unité arbitraire et normalisées par rapport à l’expression de l’ARNm de la cyclophiline. 
(D’après Riccio et al., 2002, Molecular Brain Research)147 
 
Les canaux TRPC6 ont été identifiés dans un très grand nombre de cellules telles que les 

cellules sanguines, les cellules vasculaires de muscles lisses, les fibroblastes, les cellules 

endothéliales, différentes populations de neurones et dans certaines tumeurs70,147-150. 

 

2.5.1 Les cellules vasculaires. 

 

Cellules de muscles lisses vasculaires. 

TRPC6 est associé au récepteur α1 adrénergique dans les cellules de muscles lisses 

vasculaires81. De plus, TRPC6 a un rôle important dans la dépolarisation induite par la 

pression et dans la constriction des petites artères et artérioles, processus qui conduit à une 

entrée calcique via les canaux calciques dépendants du voltage151. L’hypertension artérielle 

pulmonaire idiopathique (IPAH) est une maladie vasculaire rare et grave, caractérisée par 
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l’augmentation des résistances artérielles pulmonaires, aboutissant à une insuffisance 

cardiaque droite. La prolifération excessive des cellules des muscles lisses des artères 

pulmonaires (PASMC) est la cause principale de l’augmentation de la résistance vasculaire. 

Chez les patients atteints de IPAH-PASMC l’expression de TRPC6 est augmentée107,152.  

Cellules de l’endothélium vasculaire.  

Les canaux TRPC6 semblent jouer un rôle important dans la régulation de la 

perméabilité et la migration des cellules endothéliales78,89,153. L’inhibition de l’expression des 

TRPC6 par des siRNA réduit l’entrée calcique induite par la thrombine, cela réduit aussi 

l’activation de RhoA et la phosphorylation de la chaine légère de myosine89. Dans les cellules 

endothéliales d’aorte, l’entrée de calcium via les canaux TRPC5 et TRPC6 inhibe la migration 

des cellules. Par ailleurs, la lysophosphatidylcholine (lysoPC) inhibe la migration cellulaire de 

façon dépendante du calcium et indépendamment des canaux calciques dépendants du voltage. 

L’inhibition des canaux TRPC6 réduit considérablement l’effet de la lysoPC153.  

 

2.5.2 Les cellules épithéliales pulmonaires.  

Chez les patients atteints de mucoviscidose, l’activation des canaux TRPC6 par l’OAG 

dans des cellules épithéliales pulmonaires se traduit par des réponses calciques beaucoup plus 

grandes que dans les cellules saines. Il existerait un couplage entre les canaux CFTR et 

TRPC6 dans lequel CFTR réduit l’activité des canaux TRPC6 et TRPC6 augmente l’activité 

des canaux CFTR favorisant le transport du chlore. Ce couplage est perdu dans les cellules 

épithéliales pulmonaires modèles de mucoviscidose154.  

  

2.5.3 Les myocytes et fibroblastes cardiaques. 

Les canaux TRPC6 sont exprimés dans les cardiomyocytes. L’hypertrophie cardiaque 

induite par l’angiotensine II est influencée par une voie de signalisation dépendante du 

calcium, de la calcineurine et du NFAT or cette voie est dépendante de l’activation des 

canaux TRPC6 et TRPC382. Chez les souris sur-exprimant les canaux TRPC6 au niveau du 

cœur, une hypertrophie cardiaque ainsi qu’une plus grande sensibilité au stress cardiaque 

pouvant entrainer une mort prématurée de l’animal sont observées82,127,128,155.  

Les fibroblastes cardiaques expriment aussi les canaux TRPC6. Dans ces cellules, TRPC6 est 

sur-exprimé suite à un traitement à l’endothéline-1, étape cruciale pour l’activation de la 

NFAT qui régule négativement la formation des myofibroblastes. 
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2.5.4 Tissu sanguin  

  

Erythrocytes 

Les canaux TRPC6 sont exprimés dans les érythrocytes. Ils permettent une entrée de 

calcium dans ces cellules et semblent impliqués dans la survie cellulaire138.  

 

Plaquettes  

TRPC6 est très exprimé dans les plaquettes. Dans ces cellules, les canaux TRPC6 ne 

sont pas régulés par les tyrosines kinases mais sont sensibles à la phosphorylation dépendante 

de l’AMP cyclique125. Les canaux TRPC6 semblent participer à un complexe impliquant la 

PI3 kinase et le PIP3 pour permettre l’entrée du calcium103. Malgré les études montrant que 

l’activation des plaquettes par la thrombine induit une entrée de calcium indépendamment de 

la voie SOC125,156, certaines études montrent l’implication des canaux TRPC6 dans la voie 

SOC dans les plaquettes en coexistant au sein d’un complexe multi protéiques avec TRPC1, 

IP3R, SERCA3109et STIM1157. Les canaux TRPC6 ont donc un rôle double, à la fois dans 

l’entrée capacitive du calcium et dans l’entrée de calcium indépendante de la voie SOC111,112. 

 

2.5.5 Les kératinocytes 

La découverte de l’hyperforine comme activateur spécifique des canaux TRPC6 a 

permis de mettre en évidence leur rôle dans la différentiation des kératinocytes. L’influx de 

calcium via les canaux TRPC6 induit la différentiation et inhibe la prolifération des 

kératinocytes en cultures primaires et des cellules HacaT (lignée cellulaire de 

kératinocytes)121. Chez les patients atteints de psoriasis, la réduction de l’expression de 

TRPC6 dans les kératinocytes conduirait à une diminution de la différentiation de ces cellules 

et une augmentation de leur prolifération. Des traitements basés sur l’activation des canaux 

TRPC6 pourraient voir le jour158.  

 

2.5.6 Les cellules rénales 

Les canaux TRPC6 sont exprimés à la fois dans le glomérule, dans l’épithélium 

tubulaire et dans les podocytes glomérulaires. Les podocytes participent notamment à la 

perméabilité du glomérule. 

La plus détaillée des physiopathologies dans laquelle TRPC6 est impliqué est la FSGS 

(glomérulosclérose focale et segmentaire). Cette maladie touche les reins et plus précisément 
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le glomérule. La FSGS peut provoquer des protéinuries, de l’hypertension, des insuffisances 

rénales et peut aller jusqu'à la détérioration complète du rein. Cette maladie est héréditaire. 

C’est le cas d’une famille de Nouvelle-Zélande qui présente un phénotype autosomal 

dominant pour la FSGS. Des études sur cette famille ont permis de déceler une mutation sur 

le chromosome q11, le gène muté est celui codant pour TRPC6. La protéine mutée est 

présente chez tous les individus atteints de la FSGS de cette famille. La mutation TRPC6 P112Q 

provoque une augmentation de l’activité des canaux TRPC6 conduisant à une augmentation 

intracellulaire de calcium159. Plusieurs autres mutations ont été mises en évidence chez les 

patients atteints de FSGS : P111Q, R895C, E897K, A270T, N134I et K874Ter. En plus d’une 

augmentation de l’activité des canaux TRPC6, la mutation P112Q induit une augmentation de 

l’expression des canaux TRPC6. Cet accroissement d’expression des canaux TRPC6 est aussi 

retrouvé chez d’autres patients atteints de dysfonctionnements rénaux160. Au niveau des 

diaphragmes de fente (jonction entre les interdigitations des pieds de podocytes), les canaux 

TRPC6 formeraient un complexe de signalisation impliquant la podocine, la néphrine et 

probablement les récepteurs AT1 à l’angiotensine II161. 

 Contrairement à la régulation des canaux TRPC6 par le glucose dans les plaquettes, 

dans les cellules mésangiales glomérulaires une augmentation de la concentration en sucre 

dans le milieu de culture diminue l’expression des canaux TRPC6. Des résultats similaires 

sont trouvés chez les rats où un diabète est provoqué162.  

 

2.5.7 Les cellules cancéreuses. 

La présence des canaux TRPC6 a été observée dans plusieurs types de cellules 

cancéreuses. Ils sont présents dans des biopsies de cancer de prostate malignes et bénignes 

ainsi que dans les lignées cellulaires de cancer de prostate 22Rv1, DU145 et PC3163. Dans les 

cellules épithéliales de cancer de prostate, les canaux TRPC6 sont impliqués dans la 

prolifération cellulaire via la phényléphrine et le récepteur α1-adrénergique. La phényléphrine 

stimule la prolifération des cellules cancéreuses en induisant un influx de calcium via 

TRPC6164. Dans les cellules d’hépatomes (provenant de tumeur du foie), les canaux TRPC6 

sont associés à une voie d’entrée du calcium de type SOC. Il apparaît que l’entrée calcique via 

les canaux TRPC6 influence la prolifération des cellules hépatocytaires tumorales108. 

L’expression de TRPC6 est aussi accrue dans les cellules épithéliales de cancers gastriques 

humains par rapport à celle des cellules épithéliales de sujets sains. Dans ces cellules 

cancéreuses, il semble que le blocage des canaux TRPC6 provoque un arrêt dans la phase 
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G2/M et un arrêt de la croissance. Ces différentes données, sur plusieurs types de cellules 

cancéreuses, montrent toutes un rôle important des canaux TRPC6 dans la prolifération 

tumorale. Ces canaux sont aussi surexprimés dans les cellules épithéliales d’adénocarcinome 

dans les cancers du sein165,166 et dans les glioblastomes multiformes (tumeurs agressives du 

cerveau) où ils semblent jouer un rôle important dans leur croissance167. Ces canaux 

pourraient constituer une nouvelle cible thérapeutique intéressante pour les traitements 

anticancéreux.    

 

2.5.8 Le tissu nerveux 

 

Localisation 

La distribution des canaux TRPC6 dans le cerveau a été étudiée chez, le rat, la souris 

et l’Homme (Figure 17) où TRPC6 est présent dans de nombreuses régions dont le cortex 

(gyrus cingulaire et gyrus frontal supérieur), le cervelet, l’hippocampe, le noyau accumbens… 

 
Figure 17 Expression de l’ARNm de TRPC6 dans le cerveau humain 

Les données sont exprimées en unité arbitraire et normalisées par rapport à l’expression de l’ARNm de la 
cyclophiline. 
(D’après Riccio et al., 2002, Molecular Brain Research)147  

 

Les études chez le rat montrent la présence des canaux TRPC6 dans le cerveau 

embryonnaire77 : dans le bulbe olfactif, le cervelet (où l’expression diminue à l’âge adulte168), 

l’hippocampe, le cortex, le tronc cérébral et dans le mésencéphale169. TRPC6 est localisé dans 

les dendrites des cellules du gyrus denté de l’hippocampe133,170 et aussi dans les neurones 

dopaminergiques de la substance noire où les canaux sont en association avec mGluR1 
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(metabotropic glutamate Receptor 1)171. TRPC6 a de plus été localisé dans le neuropile (fibres 

gliales et neuronales) des ganglions de la base172. 

 

Les études chez la souris montrent aussi la présence des canaux TRPC6 dans le cerveau 

embryonnaire : dans les neurones173 et astrocytes91 du cortex et dans les neurones post-

synaptiques de l’hippocampe132.   

 

Fonctions 

Dans les cellules granulaires du cervelet, l’expression de la forme dominant-négative 

des canaux TRPC3 ou TRPC6 inhibe l’effet du BDNF sur le guidage des cônes de croissance 

neuronaux. Des résultats similaires sont obtenus avec la méthode d’ARN interférence93. Les 

canaux TRPC6 sont essentiels pour la protection des neurones par le BDNF via l’activation de 

CREB174. Une ischémie cérébrale diminue l’expression des canaux TRPC6 dans le cortex. 

L’utilisation de peptides protégeant TRPC6 de la protéolyse protège les neurones contre 

l’ischémie en favorisant l’activation de CREB175. Dans l’hippocampe de rat, TRPC6 est 

impliqué dans la croissance des dendrites. L’expression de TRPC6 est maximale entre les 

jours 7 à 14 post-natal, période importante dans la croissance des dendrites neuronales. 

L’action de TRPC6 dans ce mécanisme n’est pas directe mais TRPC6 favorise cette 

croissance via la voie dépendante de CaMKIV-CREB. La sur-expression de TRPC6 dans les 

neurones augmente et densifie le réseau dendritique dans les cellules transfectées par rapport 

aux cellules non transfectées. Il semblerait que l’influx de Ca2+ par TRPC6 soit important 

pour favoriser la croissance dendritique de ces cellules133. De plus, TRPC6 est impliqué dans 

le développement des synapses excitatrices132.  

Dans les astrocytes de cortex murins, les canaux TRPC6 sont impliqués dans la 

dérégulation de l’homéostasie calcique suite à l’activation des récepteurs à l’Interleukine1. En 

effet, un traitement à l’IL-1β augmente l’expression des canaux TRPC6 et leur suppression 

par KO réduit l’entrée calcique induite par l’IL-1β91.  

Dans les neurones des ganglions de la racine dorsale, TRPC6 et TRPC1 agissent avec 

TRPV4 dans un mécanisme impliquant la sensibilisation des nocicepteurs115. Les cellules 

PC12 traitées avec le facteur de croissance neuronal (NGF) expriment les canaux TRPC6. Ce 

modèle a été utilisé pour étudier leurs propriétés. Dans les PC12 différenciées au NGF, 

l’entrée de Fer est augmentée par rapport aux cellules non traitées. L’utilisation de la sonde 

fluorescente Calcéine a permis de montrer que cette entrée de Fer est augmentée par le DAG. 

Cette entrée de Fer qui se fait par une voie indépendante de la transferine  (NTBI non-
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transferin bound iron) est aussi accrue dans les cellules HEK293 sur exprimant TRPC6176. 

Dans les cellules PC12, l’expression de TRPC6 est stimulée par l’expression de Numb, un 

régulateur de la voie Notch (chapitre 2.3.6).  

Un lien entre les canaux TRPC6 et la maladie d’Alzheimer a été observé dans des 

cellules HEK293 sur-exprimant TRPC6 et des formes de la préséniline 2. Les mutations dans 

la préséniline 1 et 2 représentent la moitié des cas des formes familiales de la maladie 

d’Alzheimer. La co-expression des canaux TRPC6 et d’une forme mutée « perte de fonction » 

de la préséniline 2 conduit à une augmentation de l’activité des canaux en réponse à 

l’angiotensine II ou à l’OAG. La préséniline 2 semble donc influencer l’entrée calcique via les 

canaux TRPC6177. Il est intéressant de noter que l’incubation de ces cellules avec les peptides 

amyloïdes β1-40 et β1-42 ne modifie pas l’activité des canaux TRPC6.  

Le schéma suivant résume les différentes localisations et fonctions associées à TRPC6 (Figure 

18).  

 
Figure 18 Localisations et fonctions des canaux TRPC6 
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2.5.9 Les canaux TRPC6 dans les neurones corticaux embryonnaires de souris à 
E13. 

 

Expression : 

Je me suis intéressé aux propriétés et aux fonctions des canaux TRPC6 dans le cortex 

de souris. Leur présence a été montrée par RT-PCR à la fois dans le cerveau entier et dans le 

cortex des embryons de souris au stade E13 (Figure 19).  

 
Figure 19 Expression des canaux TRPC dans le cerveau entier et dans le cortex des embryons de souris à 
E13  
L’expression des TRPC est quantifiée par rapport à celle de l’ARNr18s. 
(D’après Boisseau et al., 2009, Histochemistry and cell Biology)173 
 
Ce résultat a été confirmé par des techniques d’immunohistochimie (Figure 20) et 

d’hybridation in situ (Figure 21).  

 
Figure 20 Expression des canaux TRPC6 

A,B,C,D) Double immunohistomarquage avec les anticorps anti-tuj1 (vert, marqueur de neurones) et anti-
TRPC6 (rouge). E,F,G,H) Double immunohistomarquage avec les anticorps anti-RC2 (vert, marqueur de 
cellules non neuronales) et anti-TRPC6 (rouge). (D’après Boisseau et al., 2009, Histochemistry and cell 
Biology)173 
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Figure 21 Les canaux TRPC6 sont présents dans le cerveau des embryons murins à E13 

RT-PCR sur  des ARN extraits de cerveau et de cortex d’embryon de souris à E13 puis déposés et séparés sur gel 
d’agarose. Hybridation in situ des canaux TRPC6 dans le cortex à E13.   
(D’après Tu et al., 2009, Journal of Neurochemistry)95 
 

Dans les neurones corticaux embryonnaires en culture primaire, l’application d’OAG, 

de SAG, de RHC80267 (inhibiteur de la DAG lipase) ou d’hyperforine induit une entrée de 

calcium (Figure 22). Des expériences de quench de fluorescence avec du manganèse 

confirment la présence de ces canaux fonctionnels perméables aux cations. 

 
Figure 22 Canaux TRPC6 fonctionnels dans les cultures primaires de neurones corticaux embryonnaires 

Enregistrement de la fluorescence de la sonde calcique Fluo4. A) l’OAG (100 µM) induit une entrée de calcium, 
enregistrement sur 3 cellules montrant le décours des réponses. B) L’hyperforine (10 µM) induit une 
augmentation de fluorescence en deux phases, une transitoire et une phase plateau, la phase transitoire est 
supprimée en présence de 5 µM Gadolinium.   
(D’après Tu et al., 2009, Journal of Neurochemistry)95 
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Propriétés et régulation de ces canaux activables par l’OAG et par l’hyperforine : 

Comme décrit ci-dessus, l’OAG induit une entrée de calcium. Celle-ci est inhibée par 

le Gadolinium (5 µM) et le SKF96365 (20 µM). La réponse calcique est réduite après le 

remplacement du sodium externe par le N-methyl-D-glutamine (NMDG). L’acide 

flufénamique augmente l’amplitude du courant induit par l’hyperforine et la réponse OAG 

alors que le SKF96365 les réduit considérablement. Les inhibiteurs de canaux calciques 

dépendants du voltage (Nifédipine et ω-CTx) n’ont pas d’effet sur la réponse OAG. 

L’activation ou l’inhibition de la PKC par respectivement le PMA et le GF109203X n’a pas 

d’effet sur la réponse OAG. Les inhibiteurs de tyrosines kinases (PP2 et génistéine), la 

dérégulation des rafts lipidiques par le methyl-β-cyclodextrine, ou encore l’inhibition de la 

polymérisation de l’actine par la cytochalasine D ne changent pas non plus l’amplitude des 

réponses OAG dans ces neurones (Figure 23).  

 

 
Figure 23 Régulation de la réponse OAG dans les neurones corticaux embryonnaires 

A) Imagerie calcique en utilisant la sonde Fluo4. Réponse normalisée par rapport à la réponse OAG maximale 
(n=389 cellules). Les mêmes expériences ont été réalisées avec des cellules dans un milieu sans calcium et 
supplémenté avec 0,4 mM EGTA, ou en milieu normal (2 mM Ca2+) et 5 µM Gd3+ ou 20 µM SKF-96365 ou 5 
µM nifédipine ou 1 µM ω-conotoxine (ω-CTx) ou encore 140 mM NMDG pour remplacer le NaCl. *p < 0.001 
versus controle (one-way ANOVA suivi d’un test de Tukey) B) La réponse OAG n’est pas affectée par les 
inhibiteurs de tyrosine kinase (PP2 et génistéine), ni par la dérégulation des rafts lipidiques (MβCD) ou encore 
par l’inhibition de la polymérisation de l’actine (Cyto D).  
(D’après Tu et al., 2009,  Journal of Neurochemistry)95  
 
L’ensemble de ces données montre la présence de canaux TRPC6 fonctionnels dans les 

neurones de cortex d’embryon de souris au stade E13. Leurs caractéristiques 

pharmacologiques sont présentées Figure 24.  
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Figure 24 Schéma général de la régulation des canaux TRPC6 dans les neurones corticaux embryonnaires 
+ : régulateurs positifs, - : bloqueurs, Ø: sans effet.  
 

 Les canaux TRPC6 sont les seuls TRPC décrits à ce jour comme étant perméables aux 

éléments traces. Dans les cellules PC12, l’activation des canaux TRPC6 induit une entrée de 

fer indépendante de la transferrine et de ses récepteurs. La sur-expression de TRPC6 dans les 

cellules HEK293 conduit à des résultats similaires176.  

Des expériences préliminaires d’imagerie de fluorescence avec la sonde Fura-2 ont permis de 

montrer l’existence d’une entrée de zinc dans les HEK-TRPC6 bien plus importante que dans 

les HEK en réponse à l’activation de ces canaux par le SAG. Des expériences semblables en 

utilisant la sonde FluoZin-3 spécifique au zinc montrent que l’activation de TRPC6 par le 

SAG conduit à une entrée de Zn dans les neurones corticaux (Figure 25). (Thèse Tu.P, 2009).  

PMA (activateur de PKC) 
GF 109203X (inhibiteur de PKC) 

Nifedipine (inhibiteur de canaux calciques dépendants du voltage de type L) 
Omega Ctx (inhibiteur de canaux calciques dépendants du voltage de type N) 

PP2 (inhibiteur de tyrosine kinase) 
Genisteine (inhibiteur de tyrosine kinase) 

Méthyl-beta-cyclodextrine (dérégulateur de rafts lipidiques) 
Cytochalasine D (inhibiteur de la polymérisation de l’actine) 

Gd3+      
SKF-96365      

OAG, SAG 
Hyperforine 
RHC80267 

(DAG lipase inhibitors) 
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Figure 25 Entrée du Zn dans les cellules HEK, HEK-TRPC6 et dans les neurones corticaux 
Entrée du Zn dans les cellules HEK, HEK-TRPC6 et dans les neurones corticaux embryonnaires en réponse à 
l’activation des canaux TRPC6. A) Les cellules HEK et HEK-TRPC6 sont chargées avec la sonde Fura-2 puis 
incubées en présence de Zn et en absence de Ca. L’ajout de SAG provoque une augmentation de fluorescence 
Fura-2 plus importante dans les cellules sur-exprimant les canaux TRPC6. B) Les neurones corticaux 
embryonnaires sont chargés avec la sonde FluoZin-3 et incubés en présence de Zn (50 µM) et en absence de Ca 
externe. L’ajout de SAG (50 µM) dans le milieu conduit à une augmentation de la fluorescence que le TPEN 
reverse. (Thèse P.Tu 2009, données non publiées) 
 

Ces expériences nous ont amené à nous intéresser à l’implication de TRPC6 dans le transport 

du zinc au niveau neuronal. Dans la suite du manuscrit, nous allons décrire l’importance du 

zinc dans l’organisme et plus particulièrement au niveau des cellules neuronales. Nous 

développerons notamment sa localisation tissulaire, ses fonctions, son homéostasie cellulaire 

et quelques pathologies associées à une dyshoméostasie de ce métal trace essentiel à 

l’organisme.   
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3. Le zinc 
 

3.1 Introduction 
Le zinc est un métal de transition, de numéro atomique 30 et de masse atomique 65,39 

qui a été isolé pour la première fois en 1746 par le chimiste S. Margraaf. Le zinc est 

relativement stable lorsqu’il est couplé avec l’azote, l’oxygène ou le soufre. Le zinc est 

présent dans les minerais sous forme d’oxyde de zinc (ZnO), de silicate de zinc (Zn2SIO4), de 

carbonate de zinc (ZnCO3) ou en encore de sulfure de zinc (ZnS)178 (Figure 26). 

 

 
Figure 26 Différentes roches contenant du zinc 

Roches composées de Zn et état du Zn dans ces roches. L’oxyde de zinc (ZnO) est le plus couramment utilisé 
dans l’industrie. La sphalérite (ZnS) est cependant le minerai le plus courant dans la croute terrestre. (Frassinetti 
et al., 2006g, JEPTO)178     
 

Le zinc est mobilisé et transporté dans l’environnement par l’érosion naturelle, les 

feux de forêt, les éruptions volcaniques ou encore les activités biologiques. Ces phénomènes 

naturels font que le zinc est retrouvé dans l’air, l’eau et le sol. Par exemple, la croûte terrestre 

renferme en moyenne 70 mg de zinc/kg de matière sèche, l’air contient de 0,01 à 0,2 µg 

zinc/m3 et l’eau de 0,001 à 40 µg zinc/L selon le type d’environnement178,179.  

  

Le zinc est après le fer le deuxième oligo-élément le plus abondant de l’organisme. 

Pour les nutritionnistes, c’est un micronutriment essentiel dont l’apport journalier doit être de 

7 à 15 mg selon l’âge et le sexe de l’individu179. La principale source de zinc pour 

l’organisme est l’alimentation, les apports via l’eau de boisson étant très faibles. Certains 

aliments sont riches en zinc, c’est le cas de la viande rouge, des œufs ou des produits laitiers 

(Tableau 4).  

 

Zincite : ZnO  Hemimorphite: 
Zn4Si2O7 

Smithsonite :
ZnCO3 

Sphalerite : ZnS 
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Aliments [zinc] mg/kg 
Viandes rouges 52 

Abats 52 
Noix 30 

Produits laitiers 25 
Volaille 15 
Œufs 13 

Céréales 9,9 
Pain 9,8 

Poisson 8 
Sucres 5,5 

Légumes en boîtes 4,2 
Légumes verts 3,9 

Lait 3,9 
Pomme de terre 3,3 

Fruits 0,63 
Graisse 0,5 

 

Tableau 4 Contenu en Zn dans l’alimentation. 
(D’après Frassinetti et al., 2006, JEPTO)178 

 
Le zinc joue un rôle essentiel dans l’activité de nombreuses enzymes. Chez les 

microorganismes, les plantes et les animaux, plus de 300 enzymes ont besoin du zinc pour 

exercer leurs fonctions. Le Zn participe à des fonctions catalytiques, structurales ou comme 

co-activateur. Ces enzymes incluent des phosphatases alcalines, des alcools dehydrogénases, 

la superoxide dismutase Cu-Zn, des anydrases carboniques... Les métalloenzymes à zinc 

catalysent un très grand nombre de réactions biochimiques et sont retrouvées dans toutes les 

classes d’enzymes dont les oxydoréductases, les transférases, les hydrolases, les isomérases 

ou encore les ligases. Ainsi, le zinc est impliqué dans de très nombreux processus biologiques.  

 

Outre les rôles cités ci-dessus, le Zn présent dans le tissu nerveux participe à des 

processus essentiels comme la modulation de la transmission synaptique. 

De façon plus générale, le zinc semble avoir une fonction de second messager très importante 

pour la cellule :“The number of biological functions, health implications and 

pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the 

calcium of the twenty-first century'.”180 
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3.2 Homéostasie du zinc dans le cerveau 
La concentration en zinc dans le cerveau augmente jusqu'à l’âge adulte puis reste 

constante181. Ceci est illustré sur la figure 27 ci-dessous.  

 
Figure 27 Distribution du zinc dans le cerveau chez le rat à différents âges 

Ages exprimés en jours. Echelle en fausses couleurs allant du bleu (faible concentration) au rouge (forte 
concentration). (D’après Tarohda et al., 2004, Anal Bioanal Chem)181  
 
Le zinc est présent dans le cerveau mais certaines structures comme l’hippocampe, le 

néocortex et l’amygdale sont particulièrement riches en Zn (Figure 28). 

 
Figure 28 Coupe sagittale de cerveau de rat après marquage auto métallographique 

La méthode de Timm-Danscher est utilisée pour observer les zones contenant du Zn (noires) qui marque les 
vésicules présynaptiques possédant du zinc. (s) subiculum, (h) hippocampe, (ao) bulbe olfactif, (cp) putamen 
caudal, (am) amygdale. 
(D’après Frederickson et al., 2000,  The journal of Nutrition)182 
 

Une partie du Zn (5 à 15%) est retrouvée au niveau des vésicules synaptiques (chapitre 3.2.3.1) 

de certains neurones glutamatergiques (Figure 29). Ces neurones aussi appelés 

« gluzinergiques » sont localisés dans le cervelet, le cortex cérébral, le bulbe olfactif, 

l’amygdale et l’hippocampe. La libération du Zn contenu dans les vésicules synaptiques va 
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notamment moduler la réponse post-synaptique en agissant sur les récepteurs NMDA 

(chapitre 3.2.2.5) et sur les récepteurs GABAergiques. Le Zn semble avoir pour principal 

effet de réduire l’excitabilité cellulaire lors de la transmission synaptique et donc de moduler 

la plasticité des synapses183. 

 
Figure 29 Rôles associés à la libération du Zn contenu dans les vésicules synaptiques 

Les récepteurs NMDA et GABA sont inhibés par le zinc. Celui-ci peut entrer dans la terminaison post-
synaptique par les canaux calciques dépendants du voltage (chapitre 3.2.2.3) et par certains récepteurs AMPA 
(chapitre 3.2.2.4). Dans les neurones post-synaptiques, le zinc intracellulaire peut activer les récepteurs TrkB. Le 
zinc extracellulaire peut activer le ZnR et induire une libération de calcium depuis le réticulum endoplasmique 
(chapitre 3.2.1).  
(D’après Sensi et al., 2009,  Nature reviews neuroscience)184 
 

L’importance du Zn dans la structure et l’activité de nombreuses enzymes cellulaires mais 

aussi sa toxicité impliquent que sa concentration intracellulaire soit finement régulée (Figure 

30). Cette régulation résulte d’un équilibre entre influx (transporteurs, canaux), séquestration 

(pools de Zn intracellulaire et protéines liant le Zn) et extrusion (transporteurs). 

 
Figure 30 Représentation schématique de l'effet du Zn dans les neurones 

Une déficience intracellulaire en Zn est néfaste pour la cellule et une concentration intracellulaire trop élevée est 
toxique. (D’après Colvin et al., 2003, European Journal of Pharmacology)185 
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Les rôles du Zn au niveau cellulaire mais aussi au niveau de l’organisme sont nombreux 

(Tableau 5), toute modification de l’homéostasie du Zn peut altérer la croissance et la survie 

cellulaires, notamment dans le tissu nerveux (Chapitre 4).  

 

Exemples de l’implication du zinc dans certaines fonctions et 

processus biologiques 
Références 

Activité hormonale 186,187
 

Antioxydant 188,189
 

Apoptose, nécrose 190-193
 

Apprentissage 194,195
 

Audition 196
 

Coordination motrice 197,198
 

Dépression  199,200
 

Douleur 201,202
 

Réponse immunitaire 203,204
 

Goût 205
 

Liaison de facteurs de transcription à l'ADN 206
 

Mémoire (spatiale, émotionnelle) 194,195,207
 

Migration neuronale 182
 

Neurogenèse 182
 

Neuromodulation 185,208
 

Nociception 197
 

Odorat 205,209
 

Plasticité synaptique 194,210
 

Structure protéique 183,185,211
 

Synaptogénése 212
 

Vision 213,214
 

Tableau 5 Rôle du Zn dans divers fonctions et processus biologiques 
 

Dans la suite de ce chapitre nous allons nous intéresser aux composants de la cellule 

impliqués dans l’homéostasie du Zn, les voies d’influx et d’efflux, le senseur ZnR et les pools 

intracellulaires. 
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3.2.1 Le ZnR, un récepteur sensible au Zinc  

L’existence d’un récepteur membranaire, sensible au Zn extracellulaire (ZnR) a été 

montrée dans les colonocytes, les kératinocytes, les cellules de glandes salivaires et dans les 

neurones de la région CA3 de l’hippocampe215-217. L’application de zinc dans le milieu 

extracellulaire conduit à une libération de calcium depuis un stock sensible à la thapsigargine. 

Des inhibiteurs de protéines Gαq et de PLC atténuent ce processus alors que des inhibiteurs 

de tyrosine kinase n’ont aucun effet. De plus, les autres métaux testés (Mn2+, Cu2+ ou Fe2+) 

n’ont pas d’effet sur cette activité. L’augmentation du Ca par le Zn extracellulaire est 

indépendante de l’activité du senseur de Ca (CaR). L’ensemble de ces données font donc état 

d’un récepteur couplé aux protéines Gq, sensible au zinc et qui est associé à une voie de 

signalisation impliquant les MAP kinases, les PI3 kinases et ERK1/2218. Au niveau des 

synapses hippocampiques, la libération de zinc par les vésicules synaptiques induit une 

modulation des récepteurs métabotropiques (mGluRs) qui passe par le ZnR217. Le récepteur 

orphelin couplé aux protéines G GPR39 est impliqué dans l’activité de ZnR. L’activation du 

ZnR par le Zn provoque une augmentation de l’activité de l’échangeur sodium/proton NHE1 

et pourrait participer au processus de réparation de l’épithélium219.     

 

3.2.2 Les transporteurs membranaires du Zinc  

 

3.2.2.1 Les ZnT 

Les ZnT, aussi nommés SLC30 (solute-link carrier 30), regroupent plus d’une centaine 

de membres à travers toutes les espèces vivantes. Chez les mammifères, dix ZnT ont été mis 

en évidence (ZnT1-10 ou SLC30A1-A10). Le rôle des ZnT est de diminuer la concentration 

en zinc libre du cytoplasme. Pour cela, deux mécanismes sont possibles : 1) L’efflux du zinc 

vers le milieu extracellulaire. 2) La séquestration du zinc dans les compartiments internes. 

Parmi les dix ZnT identifiés, seul ZnT1 est décrit comme impliqué dans l’efflux du 

zinc vers le milieu extracellulaire220. Deux hypothèses sont avancées pour expliquer le rôle de 

ZnT1 : 1) Il inhibe l’influx du zinc via des canaux calcique de type L. 2) ZnT1 provoque 

directement l’efflux du zinc 221-223. 

Les autres ZnT sont impliqués dans l’apport du zinc dans les compartiments 

intracellulaires comme les mitochondries (ZnT2)224, les lysosomes (ZnT2/4/5)221,222,225, les 

endosomes (ZnT2/4)221,222,225, les vésicules sécrétoires (ZnT2/5/8)226, les vésicules 

synaptiques (ZnT3)227 et l’appareil de Golgi (ZnT4/5/6/7)228-230 (Tableau 6). 
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Le rôle principal de l’ensemble de ces ZnT est de maintenir une faible concentration 

cytosolique en Zn. Ces transporteurs sont pour la plupart régulés par la quantité de zinc ingéré. 

Des régimes riches en zinc vont avoir tendance à augmenter l’expression des ZnT alors que 

des carences vont diminuer leur expression. 
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ZnT  Localisation 
tissulaire 

Localisation 
intracellulaire  Rôle Régulation par le zinc Maladies associées Références 

ZnT1 Ubiquitaire Membrane plasmique, 
vésiculaire 

Efflux du zinc vers le 
milieu extracellulaire 

Supplémentation en zinc induit 
l’expression de ZnT1 et une carence 

en zinc réduit son expression 
Non identifiée 220-223 

ZnT2 

Petit intestin, 
reins, placenta, 

testicules, prostate, 
foie, pancréas 

Endosomes, lysosomes, 
vésicules, 

mitochondries 

Influx du zinc dans les 
compartiments internes 

Supplémentation en zinc induit 
l’expression de ZnT2 dans le petit 
intestin, le foie et les reins. Une 

carence en zinc réduit son expression 
dans le petit intestin et le pancréas. 

Diminution ZnT2 
augmente la production de 

ROS� cible contre 
cellules cancéreuses ? 

221,222,224,225,231  

ZnT3 Cerveau, 
testicules Vésicules synaptiques Influx du zinc dans les 

vésicules synaptiques 

L’expression de ZnT3 ne semble pas 
être influencée par une carence en 

zinc. 
Maladie d’Alzheimer ?  221,222,225,227,232 

183,184,233 

ZnT4 Ubiquitaire 
Réseau trans-golgiens, 

vésicules, 
endosomes 

Influx du zinc dans les 
compartiments internes 

Son expression est augmentée dans 
les glandes mammaires lors d’une 

carence en zinc 
Trouble du lait létal 221,222,225 

ZnT5 Ubiquitaire 

Granules sécrétoires 
des cellules ß du 

pancréas, 
appareil de golgi, 

membrane plasmique 

Influx du zinc dans les 
compartiments internes 

Différentes selon les types cellulaires 
étudiés 

Le KO ZnT5 provoque des 
anomalies de 

développement. 
(maturation des 
ostéoblastes) 

221,222,225  
228,229 

ZnT6 Foie, cerveau, petit 
intestin, rein, poumons 

Réseau trans-golgiens, 
vésicules 

Influx du zinc dans le 
réseau trans-Golgien 

Une carence en zinc tend à diminuer 
l’expression de ZnT6 Non identifiée  221,222,225,229 

ZnT7 
Foie, cerveau, petit 
intestin, rein, rate, 
cœur, poumons 

Appareil de Golgi, 
vésicules 

Influx du zinc dans le 
Golgi 

Supplémentation en zinc induit 
l’expression de ZnT7 et une carence 
en zinc réduit son expression selon 

les types cellulaires. 

Non identifiée 221,222,225,230. 

ZnT8 Cellules ß du pancréas, 
foie Vésicules 

Influx du zinc dans les 
vésicules sécrétrices 

d’insuline 
Inconnue 

Cible des anticorps auto-
immuns dans le diabète de 

type 1. 

221,222,226 

ZnT9 Ubiquitaire Vésicules Inconnu Inconnue Non identifiée 221 

ZnT10 Cerveau et foie 
(probable) Inconnue Inconnu Inconnue Non identifiée 220,234 

Tableau 6 Tableau récapitulatif de la distribution tissulaire et subcellulaire des ZnT présents chez les mammifères ainsi que leur régulation par le zinc 
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Les ZnT sont donc nécessaires pour diminuer la concentration cytoplasmique en Zn 

(efflux ou influx dans les compartiments internes). A l’inverse, il existe des transporteurs qui 

permettent une augmentation de la concentration cytosolique en Zn. Celle-ci peut se produire 

par deux principaux mécanismes :1) L’entrée de zinc depuis le milieu extracellulaire. 2) La 

libération du zinc à partir des compartiments intracellulaires. Les ZIP sont les transporteurs 

impliqués dans ces deux mécanismes. 

 

3.2.2.2 Les ZIP 

La famille des ZIP (ou SLC39) pour Zrt-Irt-like protein regroupe plus de 100 membres 

à travers l’ensemble des espèces vivantes. Elle est divisée en deux sous-familles : La sous-

famille I qui comprend les gènes Zip des fongiques et des plantes et la sous-famille II 

composée des gènes Zip des insectes, des nématodes et des mammifères. Cette sous-famille II 

regroupe deux sous-familles, gufA et LIV-1 (incluant HKE4). Dans les cellules humaines, 

quatorze Zip ont été identifiés (ZIP1-14) (Tableau 7), certains n’ayant pas de fonction connue 

à ce jour. Certains ZIP sont exprimés de façon ubiquitaire alors que d’autres présentent des 

localisations tissulaires bien définies comme ZIP4 retrouvé uniquement dans le petit intestin, 

l’estomac, le colon et les reins (Tableau 7).  

Plusieurs ZIP (1/2/3/4/5/6/10/12 et 14) sont exprimés à la membrane plasmique et 

participent à l’entrée de zinc depuis le milieu extracellulaire vers le cytosol. Ces différents 

ZIP n’ont pas tous la même localisation tissulaire et leur régulation par la concentration 

(intracellulaire ou extracellulaire) en zinc est peu décrite.  

 Les autres ZIP (ZIP7/8/9/13) forment des voies de sortie du zinc depuis les 

compartiments internes dont les lysosomes, l’appareil de Golgi et le réticulum endoplasmique. 

D’un point de vue pathologique, les ZIP semblent avoir plusieurs rôles et notamment 

dans certains cancers du sein et de la prostate (ZIP2/3/6/7/8/10) (Tableau 7), dans les 

acrodermatites entéropathiques (ZIP4) ou encore dans le trouble de malabsorption du zinc 

chez l’embryon (ZIP4).  
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ZIP 
Localisation 

tissulaire 
Localisation 

cellulaire 
Rôle Régulation par le zinc Maladies associées Références 

hZIP1 Ubiquitaire 

Membrane 
plasmique, 
vésicules 

intracellulaires 

Influx de zinc 

Expression augmentée dans les cas 
de carence en zinc et diminuée si 
forte concentration  en Zn dans le 

milieu extracellulaire 

Non identifiée 
221,235,236 

 

hZIP2 
Prostate, épithélium 
utérin, nerf optique 

et monocytes 

Membrane 
plasmique 

Influx de zinc 
Suppresseur de tumeurs ? 

Surexprimé lors de carence en Zn Cancer de la prostate 221,237 

hZIP3 Ubiquitaire 
Membrane 
plasmique 

Influx de zinc 
Suppresseur de tumeurs ? 

Non influencé par une carence en 
Zn 

Cancer de la prostate 221,237 

hZIP4 
Petit intestin, 

estomac, colon, 
reins 

Membrane 
plasmique 

Influx de zinc 

Expression augmentée en cas de 
carence en Zn, diminuée dans le 
cas de forte concentration  en Zn 

dans le milieu extracellulaire 

Troubles de la malabsorption du zinc 
Acrodermatites Entéropathiques 

Carcinomes hépatiques et pancréatiques 

221,238-240 

ZIP5 
Reins, foie, rate, 
colon, estomac, 

pancréas 

Membrane 
basolatérale des 

cellules polarisées 
Influx de zinc 

Dégradation des protéines dans le 
cas de carence en Zn 

Non identifiée  241,242 

ZIP6 / LIV-1 Ubiquitaire Membrane 
plasmique 

Influx de zinc Inconnue Cancer du sein 235,240,243,244 

ZIP7 / HKE4 Ubiquitaire 
Réticulum 

endoplasmique, 
Golgi 

Libération du zinc depuis le 
RE et Golgi 

Inconnue 
Résistance au tamoxifen dans le cancer du 

sein 
243,245-247 

ZIP8 / 
BIGM103 

Ubiquitaire Surface apicale et 
lysosomes 

Symport (Cd, Mn, Zn) 
/HCO3

- 
Inconnue 

Résistance au faslodex dans le cancer du 
sein 

248-250 

ZIP9 Ubiquitaire Réseau trans-
golgien 

Libération de Zn depuis  les 
vésicules Golgiennes ? 

Inconnue Non identifiée  251 

ZIP10 Ubiquitaire Membrane 
plasmique 

Influx de zinc Inconnue Cancer du sein 252,253 

ZIP11 Ubiquitaire Inconnue Inconnue Inconnue Non identifiée  

ZIP12 
Poumons, cerveau, 
testicules, rétine 

Inconnue Influx de zinc Inconnue Schizophrénie, asthme 254,255 

ZIP13 Ubiquitaire Golgi 
Libération de Zn depuis le 

Golgi 
Inconnue Syndrome d’Ehlers-Danlos 256 

ZIP14 Ubiquitaire Membrane 
plasmique 

Influx de Zn, Cd, Mn, Fe. 
Impliqué dans la croissance. 

Inconnue Asthme, inflammation par l’IL-6 257-260 

Tableau 7 Les ZIP, localisations et fonctions
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Les ZIP ne constituent pas à eux seuls toutes les voies d’entrées du Zn, il en existe d’autres et 

notamment via certains canaux calciques ou récepteurs glutamatergiques. 

 

3.2.2.3 Les canaux calciques dépendants du voltage. (VGCC) 

Les VGCC constituent une voie d’entrée du Zn dans plusieurs types cellulaires261,262, 

dont les neurones corticaux embryonnaires de souris au stade E15-E16261. L’utilisation des 

sondes fluorescentes Newport Green263, mag-fura-5261, TSQ (N-(6-methoxy-8-quinolyl)- 

p–toluenesulfonamide)264 ou FluoZin-3262 a permis d’observer une entrée de Zn dans les 

cellules suite à une dépolarisation de la membrane plasmique par le KCl (en présence de Zinc 

extracellulaire). Ces signaux sont sensibles au TPEN, il s’agit donc bien d’une réponse Zn et 

non d’une réponse aspécifique des sondes fluorescentes (Figure 31A). L’utilisation de 

bloqueurs tels que le vérapamil, l’ω-conotoxine GVIA ou la nimodipine bloque complétement 

(ou partiellement) les réponses des cellules au KCl (Figure 31B). Des expériences 

d’électrophysiologie sur des neurones corticaux de souris (E15) ont montré l’implication des 

canaux calciques dépendants du voltage de type L et N dans l’entrée de Zn suite à une 

dépolarisation membranaire263. 

 

 
Figure 31 Les canaux calciques dépendants du voltage sont une voie d’entrée du Zn dans les neurones 

A) Neurones corticaux embryonnaires chargés avec la sonde fluorescente mag-fura-5. L’application seule de 90 
mM KCl ne provoque pas de signaux alors que l’application de 90 mM KCl + 300 µM Zn provoque une forte 
augmentation de la concentration de Zn intracellulare. Ce processus est totalement reversé par 50 µM de TPEN. 
(D’après Sensi et al., 1997, The Journal of Neuroscience)261. B) Expériences d’électrophysiologie sur des 
neurones corticaux embryonnaires. Les courants se produisent en présence de 2 mM Zn (et en absence d’autres 
cations divalents) suite à un saut de voltage à +10 mV. Ce courant est inhibé par 1 µM de Nimodipine. (D’après 
Kerchner et al., 2000, Journal of Physiology)263  
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3.2.2.4 Les canaux AMPA/Kainate. 

Les récepteurs AMPA sont des récepteurs glutamatergiques (GluA) qui dans le 

système nerveux central sont composés des sous unités GluA1, 2, 3 ou 4. La sous-unité 

GluA2 dicte la perméabilité du canal au calcium. Les canaux exprimant la forme GluA2 sont 

imperméables au calcium265. Les autres canaux perméables au calcium de type α-amino3-

hydroxy-5-methyl-4-isoxazolepropionic-acid (AMPA)/kainate (Ca-A/K), forment une voie 

d’entrée du Zn dans les neurones261,266-269. L’activation de ces canaux par le kainate, en 

présence de Zn extracellulaire, induit une entrée massive de Zn dans la cellule (Figure 32A). 

Elle est responsable d’une augmentation importante de la production d’espèces réactives de 

l’oxygène pouvant être neurotoxiques (Figure 32B)269,270. Ce processus passerait par une perte 

du potentiel de membrane mitochondriale. Les neurones exprimant des canaux 

AMPA/kainate perméables au Zn semblent plus sensibles lors d’un stress induit par le kainate 

en présence de Zn267. Ces flux de Zn sont abolis en présence de NBQX, un antagoniste des 

récepteurs AMPA/kainate261.  

 

 
Figure 32 Les canaux calciques AMPA/kainate sont une voie d’entrée du Zn dans les neurones et 

provoquent la production de ROS 
A) Neurones corticaux embryonnaires chargés avec la sonde fluorescente mag-fura-5. L’application seule de 100 
µM Kainate + 300 µM Zn + 10 µM NBQX ne provoque pas de signaux alors que l’application de 100 µM 
Kainate + 300 µM Zn provoque une forte augmentation de la concentration en Zn intracellulaire, ce processus 
est totalement reversé par 50 µM de TPEN. (D’après Sensi et al., 1997, The Journal of Neuroscience)261. B) 
Production de ROS suivie avec la sonde fluorescente HEt dans des neurones corticaux. Ca-A/K(+) : Neurones 
possédant des canaux AMPA/kainate perméables au calcium. Ca-A/K(-) : Neurones ne possédant pas de canaux 
AMPA/kainate perméables au calcium. Les neurones qui possèdent les canaux Ca-A/K produisent beaucoup plus 
de ROS lors d’une exposition au Zn et au Kainate que les neurones Ca-A/K(-). (D’après Sensi et al., 1999, 
PNAS)266 
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3.2.2.5 Les récepteurs NMDA 

Les récepteurs N-methyl-D-aspartate (NMDA-R) sont des récepteurs tétramériques de 

la famille des récepteurs glutamatergiques résultant d’un assemblage de sous-unités de type 

N1, N2A-D, N3A et N3B. Les NMDA-R majoritaires sont composés de deux sous unités N1 

(qui fixent la glycine) et de deux sous unités N2 (qui fixent le glutamate). Les NMDA-R 

composés de deux sous unités N1 et deux sous unités N3 sont insensibles au glutamate. Les 

NMDA-R forment une voie d’entrée du Zn dans les neurones261,271. Ils semblent surtout 

impliqués dans un processus de neurotoxicité passant par le Zn271. La perméabilité des 

NMDA-R au Zn est cependant remise en question par des études révélant une inhibition des 

NMDA-R par le Zn272,273. Les NMDA-R sont bloqués par le zinc : 1) De façon dépendante du 

voltage ([Zn]>20 µM). 2) Indépendamment du voltage membranaire ([Zn]< µM)272. Cette 

inhibition indépendante du voltage membranaire est différente selon la composition des 

NMDA-R et selon la concentration en zinc : Le zinc inhibe les NMDA-R (IC50 de l’ordre du 

nanomolaire) composés des sous-unités N1/N2A. Des concentrations en zinc de l’ordre du 

micromolaire inhibent ceux de sous-unités N1/N2B et des concentrations supérieures à 10 µM 

inhibent les NMDA-R de sous-unités N1/N2C et N1/N2D.  

Les NMDA-R composés des sous-unités N2A sont donc très sensibles au zinc 

extracellulaire (nM). Cette faible concentration en Zn est présente à l’état de trace dans le 

milieu extracellulaire donc en condition basale ces récepteurs sont partiellement inhibés par 

ce zinc contaminant. Le site de haute affinité du zinc se situe sur le domaine N-terminal de la 

sous unité N2A. La sous-unité N2B possède quant à elle un site de fixation au zinc de faible 

affinité, ce qui explique les différences de concentrations de zinc inhibitrices des NMDA-R. 

Ils constituent donc une cible importante pour le zinc libéré des vésicules synaptiques 

glutamatergiques et pourrait limiter les processus d’excitotoxicité induits par la sur-activation 

des récepteurs glutamatergiques. 

 

3.2.2.6 L’échangeur Na+/Zn2+ 

Dans les cellules HEK293, la présence d’un échangeur Na+/Zn2+ a été mis en évidence 

par des techniques d’imagerie de fluorescence avec la sonde Fura-2 et l’emploi du TPEN. En 

présence de sodium dans le milieu extracellulaire, l’échangeur permet un efflux de Zn et 

lorsque ces expériences sont reproduites en absence de sodium extracellulaire (donc gradient 

de sodium inverse), l’échangeur permet un influx de Zn dans la cellule274. Des résultats 

similaires sont obtenus sur des neurones corticaux en  culture en utilisant la ouabaïne dans un 
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milieu extracellulaire sans sodium, ces conditions provoquent une entrée de Zn visible en 

imagerie avec la sonde FluoZin-3275. A noter que l’entrée de Zn observée ne passe pas par 

l’échangeur Na+/Ca2+ 274,275. 

Les acteurs impliqués dans l’efflux et dans l’influx de Zn permettent à la fois 

d’augmenter le Zn cytoplasmique mais aussi, comme nous avons pu le décrire sommairement 

facilitent le remplissage de certains compartiments (pools) qui stockent du Zn.  

Dans le chapitre suivant nous allons décrire ces différents compartiments qui stockent 

du Zn et quels sont leurs rôles dans l’activité cellulaire. 

 

3.2.3 Les pools de zinc intracellulaires 

 

La concentration intracellulaire de zinc libre est de l’ordre du picomolaire233,276,277 

pour une quantité cellulaire totale d’environ 100 à 150 µM. Nous allons voir dans ce chapitre 

que la majeure partie du Zn est donc fixée à des protéines notamment dans le cytoplasme. 

Décrit dans le chapitre 4.1, une augmentation du Zn libre dans la cellule peut constituer un 

signal proapoptotique. Ce pool de zinc libre est donc très finement régulé. 

 

3.2.3.1 Le zinc dans les vésicules synaptiques glutamatergiques 

Entre 5 et 15% de la quantité totale du Zn du cerveau est séquestrée dans les vésicules 

synaptiques278. La concentration en Zn dans les vésicules serait de l’ordre du µM et le 

transporteur ZnT3 est à l’origine de l’accumulation du Zn dans ce compartiment227. Les 

vésicules synaptiques contenant du Zn sont retrouvées dans les neurones glutamatergiques 

que l’on appelle aussi gluzinergiques. Le Zn stocké dans les vésicules synaptiques est relargué 

suite à la fusion vésiculaire lors de la transmission synaptique. La concentration en Zn dans la 

fente synaptique peut alors augmenter et atteindre des concentrations de l’ordre du 

micromolaire279. La libération de ce Zn influence l’activité des récepteurs et canaux de la 

membrane post-synaptique (chapitre 3.2.2). Ce pool de Zn ne semble cependant pas interagir 

avec les autres pools de zinc mobilisables de la cellule. L’existence de ces pools de zinc hors 

des vésicules synaptiques dans les neurones a été mise en évidence par l’utilisation de la 

sonde fluorescente Zinquin. La présence de zones ponctiformes fluorescentes de petites tailles 

dans les neurones en culture en condition basale est observée grâce à cette sonde (Figure 33). 

L’entrée massive de zinc grâce au pyrithione conduit à une augmentation importante de la 
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fluorescence. Ce phénomène est absent en présence du TPEN (chélateur spécifique du Zinc) 

et dépend du pH extracellulaire280. 

 

 
Figure 33 Images de neurones corticaux en présence de zinquin 

A) Fluorescence en présence de 25 µM zinquin après un pré-traitement de 20 minutes avec 25 µM TPEN puis 
ajout de 30 µM Zn à pH 6,0. B) même conditions que (A) à pH 7,4. C) même conditions que (B) mais ajout de 
pyrithione pendant 5 minutes. Par cette expérience, les auteurs montrent l’existence de pool de zinc hors des 
vésicules synaptiques mais aussi l’importance du pH extracellulaire dans le transport du zinc.  
(D’après Colvin, 2002, Am J Physiol Cell Physiol)280 
 

Ces signaux Zn ne sont pas d’origine mitochondriale mais seraient plutôt associés à des 

structures de type endosomale, des zincosomes281.  

3.2.3.2 Le pool de zinc mitochondrial 

La présence de zinc dans les mitochondries a été démontrée par l’utilisation de la 

sonde fluorescente RhodZin-3 dans les neurones (Figure 34). Cette sonde s’accumule dans la 

mitochondrie et permet d’observer spécifiquement les variations de zinc de ce 

compartiment282,283.  

 

 
Figure 34 Colocalisation de la sonde RhodZin-3 et du MitoTracker green 

Microscopie confocale sur une culture de neurones corticaux 1.A) marqués avec le MitoTracker Green 
(fluorescence verte) ou 2) incubés avec la sonde fluorescente RhodZin-3 (fluorescence rouge). 3) Superposition 
de (1) et (2), la couleur jaune signifiant une colocalisation de la sonde RhodZin-3 et du MitoTracker.  
(D’après Sensi et al., 2003, PNAS)283 
 

Les signaux mesurés sont sensibles au TPEN, résultat confirmé dans une étude plus récente 

employant la sonde ratiométrique-pericam-mt (RPmt)284. Les mitochondries semblent donc 

former un pool de zinc dans les neurones corticaux embryonnaires. Le mécanisme de 
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remplissage de ce pool de zinc serait dépendant de l’uniporteur calcique et d’un mécanisme 

indépendant qui impliquerait le transporteur ZnT2. Le rouge de ruthénium est un inhibiteur de 

l’uniporteur calcique (MCU) et a permis de mettre en évidence l’importance de celui-ci dans 

le transport du Zn vers la mitochondrie285,286. L’entrée du zinc via ZnT2 dans les 

mitochondries a fait l’objet d’une étude dans des cellules d’épithélium mammaire mais pas 

encore dans les neurones. ZnT2 est exprimé dans la membrane interne de la mitochondrie où 

il serait impliqué dans l’import de Zn dans cette organelle. Ce travail présente pour la 

première fois l’implication d’un transporteur à Zn de la famille des ZnT dans la 

mitochondrie224. Il serait à présent très intéressant de savoir si ce processus existe dans les 

cellules neuronales.  

L’accumulation de Zn dans les mitochondries peut cependant avoir des conséquences 

pouvant être très néfastes pour la cellule. En effet, cette accumulation peut conduire à une 

perte du potentiel de membrane mitochondrial (∆Ψm), une inhibition de la consommation de 

l’O2, une augmentation de la production d’espèces réactives de l’oxygène (ROS) par 

l’inhibition de l’activité du complexe III de la chaine de transport des électrons287 ou encore 

une déformation des mitochondries288. Le Zn peut aussi induire l’ouverture du « pore de 

transition mitochondrial » (MPT), un pore très large pouvant laisser passer des molécules 

jusqu'à 1,5 kDa et pouvant induire les signaux de mort cellulaire. Les conséquences de 

l’activation de ce pore sont la libération de calcium, de glutathion, de cytochrome c ou encore 

du facteur induisant l’apoptose (AIF)288-290.  

La mitochondrie constitue un pool de Zn mobilisable, labile, dans les neurones. Ce concept a 

été proposé suite à des expériences employant la sonde FluoZin-3 hautement spécifique du Zn 

(Kd = 15 nM). Le Zn présent dans les mitochondries peut facilement être déplacé vers le 

cytoplasme sous l’effet  du FCCP283. Le FCCP est un protonophore qui induit une 

dépolarisation de la membrane mitochondriale et provoque une libération de Ca, de Zn ou 

encore de cytochrome c119,291. La mitochondrie semble se charger en zinc suite à une entrée 

massive de ce métal dans les neurones via les récepteurs AMPA/Kainate269. La mitochondrie 

serait donc un compartiment de stockage du Zn intracellulaire283. Ce pool mitochondrial 

semble insensible aux agents oxydants comme le DTDP (2-2’ Dithiodipyridine) ou l’H202
286. 

Ce stock de zinc mobilisable est capable d’interagir avec un autre pool de zinc dans les 

neurones (celui-ci sensible aux agents oxydants) présent dans le cytoplasme283. 
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3.2.3.3 Les métallothionéines  

 

Structure des métallothionéines (MTs) 

Les MTs de mammifères sont des petites protéines de 6 à 7kDa, sans activité 

enzymatique et qui comptent entre 61 et 68 acides aminés. Leur composition en acides aminés 

est très singulière car elles contiennent un tiers de cystéines (donc sont très riches en soufre). 

Elles ne contiennent pas d’acides aminés aromatiques ou d’histidine. Des motifs particuliers 

sont présents dans leur séquence d’acides aminés : les motifs Cys-X-Cys, Cys-X-Y-Cys et 

Cys-Cys où X et Y sont des acides aminés autres que des cystéines. Chez les mammifères, 4 

isoformes distinctes ont été identifiées, MT-I, MT-II, MT-III et MT-IV 185,292-295. L’isoforme 

MT-I a des sous types, nommés MT-1A, MT-1B, MT-1E, MT-1F, MT-1G, MT1-H et MT1-

X296. In vivo, ces protéines riches en résidus cystéine ont la propriété de fixer les métaux 

comme le zinc, le cuivre, le cadmium et le mercure (7 ions Zn ou Cd, 8 à 12 ions Cu et jusqu'à 

18 ions Hg). Les MT-I et MT-II sont exprimées dans tous les tissus alors que les MT-III sont 

principalement exprimées dans le cerveau et notamment dans les régions riches en Zn 

vésiculaire comme l’hippocampe, le cortex ou l’amygdale297,298. MT-IV est exprimée dans les 

cellules d’épithéliums stratifiés de la langue et de la peau299. 

 

Régulation de l’expression des métallothionéines par les métaux. 

L’expression des MT-I et MT-II est régulée par une variété de stimuli dont les métaux, 

les cytokines, les agents oxydants et l’inflammation.  

Nous allons nous intéresser plus particulièrement à l’induction de l’expression des MTs par 

les métaux. Les gènes codant pour MT-I et MT-II sont hautement inductibles par le Zn, le Cd 

et, plus faiblement par le Hg, et par le Cu alors que les gènes codant pour MT-3 et MT-4 ne 

semblent pas être induits par ces différents métaux300. La régulation transcriptionnelle des 

MTs par les métaux est possible grâce à la présence de la séquence MRE (Metal Responsive 

Element) « CTNTGC(G/A)CNCGGCCC » au niveau du promoteur de tous les gènes codant 

pour les MTs301. La régulation de l’expression des MTs par le Zn passe par le senseur de Zn 

cytoplasmique MTF-1 (Metal responsive elements binding transcription factor 1). MTF-1 est 

une protéine qui se fixe au MRE mais qui a besoin d’un niveau élevé de Zn dans le 

cytoplasme pour fonctionner206. Ce senseur du Zn est exprimé de façon ubiquitaire et 

constitutive, le KO du gène codant pour MTF-1 est létal. Seul le Zn permet à MTF-1 de se 

fixer à l’ADN et de jouer son rôle de facteur de transcription des gènes codant pour les MTs. 

Cependant, le Cd induit aussi une augmentation de l’expression des MTs sans augmenter la 
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liaison de MTF-1 à l’ADN, ce qui suggère une activation indépendante du couple MRE/MTF-

1302. Les mécanismes participant à la régulation de l’expression de MT-III et MT-IV sont 

moins connus. MT-III semble être surtout régulée par des dommages tissulaires (réponses 

inflammatoires et stress oxydant)303-305.  

 

Localisation subcellulaire des MTs. 

Les MTs ont été principalement décrites au niveau du cytoplasme mais elles sont aussi 

présentes dans certains compartiments intracellulaires comme les mitochondries, le noyau et 

les lysosomes. 

 

Mitochondrie 

Une étude sur des mitochondries isolées de foie (organe où l’expression des MTs est la 

plus forte) a permis de préciser leur présence dans ce compartiment où les MTs se retrouvent 

au niveau de l’espace inter membranaire mitochondrial306. 

Noyau 

Les MT-I et MT-II peuvent rapidement transiter vers le noyau et notamment au 

moment de la phase précoce S de différentiation307 ou lors d’un stress oxydant308. La petite 

taille des métallothionéines leur permet de passer à travers les pores nucléaires et l’expression 

d’ARNm des MTs en périphérie du noyau contribuerait aussi à faciliter l’import des MTs vers 

ce compartiment308. Sur des fibroblastes traités avec des métaux tels que le Zn, le Cu ou le Fe, 

les MTs sont retrouvées à la fois dans le cytoplasme et dans le noyau. Les MTs dans le noyau 

pourraient avoir un rôle de protection de l’ADN et donc de protection de la cellule contre 

l’apoptose (chapitre 4.1). Les MTs du noyau constituerait un pool de Zn pour les 

métalloprotéines ou les facteurs de transcription294.  

Lysosomes / Endosomes 

Dans les lysosomes, les MTs semblent couplées soit avec du Cu soit avec du Cd suite 

à leur internalisation par endocytose. Dans ce compartiment acide, le métal serait libéré de la 

MT et la forme Apo-MT serait libérée du lysosome vers le cytoplasme. Il n’y a pas d’autres 

rôles connus associés à la présence des MTs dans ces compartiments acides309,310. 
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Fonctions des métallothionéines. 

Les MTs sont impliquées dans de nombreuses fonctions intracellulaires telles que le 

stockage et le transport des métaux (Cu et Zn), la transmission de ces métaux aux autres 

métalloprotéines ou facteurs de transcription, la protection des cellules face à la toxicité des 

métaux, la protection des cellules contre les espèces réactives de l’oxygène et de l’azote (ROS 

et RNS), la réparation cellulaire ou encore la protection des cellules dans le cas de maladies 

neurodégénératives. 

1) Rôle des métallothionéines dans la protection contre la toxicité des métaux.  

L’importance des MTs dans la détoxification a été très étudiée. Les modèles de souris 

transgéniques ou les lignées cellulaires ont été utilisés pour démontrer le rôle des MTs dans la 

protection contre la toxicité induite par le Cd ou l’Hg311,312. En premier lieu, la protection des 

cellules contre la toxicité des métaux a été attribuée aux MT-I et MT-II puis MT-III a été 

aussi proposée pour jouer un rôle dans ce processus313. Les MTs sont impliquées dans la 

protection des cellules contre des stress Zn, Cu, Fe, Pb, Hg et As314. Plusieurs mécanismes 

sont proposés comme la réduction du métal lors de son entrée dans la cellule, la séquestration 

et l’augmentation de son export. Ces propriétés semblent surtout être obtenues grâce aux 

nombreux résidus soufrés qui composent les MTs et qui induisent une stabilité des liaisons 

avec les métaux315.      

 

2) Les métallothionéines sont des antioxydants 

Les MTs sont des anti-oxydants non enzymatiques. Elles sont capables de réagir avec 

les anions superoxydes, les radicaux hydroxyles, les radicaux phénoxyles et les oxydes 

nitriques294,316. Ces propriétés sont permises grâce aux nombreuses cystéines qui forment des 

clusters de thiolates de métaux assurant un passage rapide entre la MT (souvent du Zn) et les 

radicaux libres315,317.    

 

3) Les métallothionéines, réservoir et transporteurs du Zn dans la cellule. 

La mobilisation du zinc depuis les métallothionéines lors d’un stress oxydant peut 

constituer un processus au cours duquel du Zn pourrait être relocalisé dans la cellule ou utilisé 

pour les défenses antioxydantes de la cellule315,318. Par exemple, sur des fibroblastes 

pulmonaires, l’application de S-nitrocystéine provoque une augmentation de Zn intracellulaire 

(détectée par la Zinquin) dans les cellules contrôles et ne provoque pas de réponse dans les 

fibroblastes KO pour les MTs319. La migration du Zn depuis les MTs vers les enzymes 

impliquées dans la protection des cellules contre le stress oxydant et vers les facteurs de 
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transcription nucléaires (cf paragraphes précédents) montre aussi l’importance de ce pool de 

Zn dans l’activité générale de la cellule. Cependant, les souris KO pour MT-I ou MT-II n’ont 

pas de phénotypes anormaux au niveau de leur croissance et de leur développement301. En 

revanche ce pool de Zn est impliqué dans la protection des cellules dans des conditions de 

stress (in vitro) mais n’est pas la première ligne de défense de l’organisme face à un stress 

métallique. Les mécanismes d’efflux des métaux semblent former cette première ligne de 

protection.  

3.2.3.4 Le zinc dans le noyau 

L’injection de 65Zn par voie intra péritonéale provoque une augmentation du Zn 

nucléaire dans les hépatocytes de rats320. Cependant aucun transporteur de Zn n’a été décrit 

pour ce compartiment, le Zn semblant entrer dans le noyau suite à une translocation des MTs 

depuis le cytoplasme321,322.  

 

3.2.3.5 Le zinc dans l’appareil de Golgi. 

L’utilisation de la sonde fluorescente Zirpyr-3 sur des neurones a permis de mettre en 

évidence la présence de Zn dans l’appareil de Golgi. La fluorescence mesurée est sensible au 

TPEN323. Plusieurs transporteurs ZIP (7 et 9) et ZnT (5 et 7) ont été identifiés dans le Golgi et 

dans les compartiments vésiculaires. L’importance de ces transporteurs sur l’homéostasie du 

Zn a été caractérisée dans les cellules rénales de rat229, dans plusieurs tissus et cellules chez la 

souris230 ou encore dans des lignées cellulaires324. 

 

3.2.3.6 Le zinc dans le réticulum endoplasmique. 

Peu de travaux ont montré la présence de Zn dans le réticulum endoplasmique. Dans 

les mastocytes, une libération de Zn est enregistrée grâce à la sonde Newport Green DCF 

depuis une zone péri-nucléaire qui inclut le réticulum endoplasmique. Les signaux enregistrés 

sont sensibles au TPEN et insensibles aux chélateurs de fer, cuivre ou manganèse325. Dans 

une étude récente sur des cultures primaires de neurones de rat, du zinc est directement 

observé dans le réticulum endoplasmique de ces cellules en utilisant de l’IP3 ou de la 

thapsigargine326. Cependant ce résultat semble dépendre du modèle animal ou de la sonde 

utilisée puisque sur des cultures primaires de neurones corticaux embryonnaires de souris, 

l’application de thapsigargine ne provoque pas d’augmentation de fluorescence de la sonde 

FluoZin-3 (hautement spécifique au Zn)123.  
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Le schéma suivant (Figure 35) résume l’ensemble des acteurs qui régulent l’homéostasie du 

zinc dans les cellules. 

Diverses pathologies dont des neuropathologies se caractérisent par une altération des 

processus homéostatiques du Zn. Nous allons aborder quelques exemples de neuropathologies 

dans lesquelles le Zn serait impliqué.    



Introduction 

 67 

 
Figure 35 Représentation schématique des acteurs cellulaires participant à l’homéostasie du Zn 

   
( ) 
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4. Zinc, maladies neurologiques et troubles de l’humeur 
 

Avant de décrire quelques neuropathologies dans lesquelles le Zn pourrait être 

impliqué, nous allons aborder le rôle du zinc dans la mort cellulaire. 

4.1 Le rôle du zinc dans l’apoptose et la nécrose 
De nombreux processus cellulaires participent à la toxicité du Zn (Figure 36). Une 

augmentation de la concentration intracellulaire en Zn va accroître la production d’espèces 

réactives de l’oxygène, inhiber le métabolisme énergétique en modulant le potentiel 

mitochondrial, induire l’autophagie ou encore inhiber les canaux chlore KCC2. Une 

déficience en Zn va aussi avoir des conséquences délétères pour la cellule en induisant un 

stress oxydant, en altérant la dynamique du cytosquelette et en modulant l’expression de 

facteurs de transcription190,327. Le Zn intracellulaire est maintenant décrit comme un second 

messager capable de réguler un grand nombre de voies de signalisation et notamment celles 

impliquées dans la mort cellulaire. 

 
Figure 36 Le zinc active diverses voies conduisant à la mort neuronale 

Le Zn est impliqué dans de nombreux processus conduisant à la mort de la cellule, soit par apoptose, soit par 
nécrose soit par autophagie. L’apoptose peut être induite suite à la perte du potentiel de membrane mitochondrial 
et la libération du facteur d’induction de l’apoptose et du cytochrome c (chapitre 3.2.3.2). L’inhibition des 
canaux chlore KCC2 ou l’activation des récepteurs p75NTR par le zinc confère aussi un signal proapoptotique. 
La nécrose des cellules neuronales par le zinc implique la production d’espèces réactives de l’oxygène et de 
l’azote notamment par la mitochondrie mais aussi en activant les NADPH oxydases et l’oxyde nitrique 
synthétase neuronale (nNOS). L’autophagie serait induite par l’ouverture des membranes lysosomales en 
réponse à l’augmentation du 4-hydroxy-2-nonenal (HNE). (D’après Sensi et al., 2009, Nature reviews 
neuroscience)184. 
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4.2 Le zinc dans la maladie d’Alzheimer 
La maladie d’Alzheimer est caractérisée par l’accumulation extracellulaire de peptides 

β-amyloïdes et par l’accumulation intracellulaire de la protéine tau hyperphosphorylée. Les 

dépôts de peptides β-amyloïdes se situent principalement au niveau de la synapse. Etant 

donné la libération importante de Zn au niveau des synapses lors de la transmission 

synaptique dans certaines structures cérébrales, la question de la relation entre le Zn et la 

maladie d’Alzheimer se pose (Figure 37). In vitro et in vivo, le Zn facilite l’agrégation des 

peptides β-amyloïdes. Les souris tg2576 (modèle de souris Alzheimer) ZnT3-/-, donc 

déficientes en Zn dans les vésicules synaptiques, présentent une amélioration de leur 

fonctions cognitives par rapport aux souris ZnT3 sauvages. D’autres effets sont associés au 

Zn dans la maladie d’Alzheimer comme la fixation du Zn sur la sous-unité N2B du récepteur 

NMDA et une perturbation de la LTP (Long term potentiation) par une action sur ZnR 

(GPR39) et sur TrkB. Au niveau cellulaire, le Zn induit l’hyper phosphorylation de tau et 

provoque une augmentation des enchevêtrements neurofibrillaires. Des traitements basés sur 

la chélation du Zn (avec des chélateurs comme le clioquinol, ou le PBT2) sont en cours 

d’essais cliniques avec notamment des effets visibles sur les fonctions cognitives des patients 

(revues183,184,233). 

 

 
Figure 37 Le zinc dans la maladie d'Alzheimer 

Représentation schématique de l’action du Zn dans la maladie d’Alzheimer au niveau de la synapse. Le Zn libéré 
depuis les vésicules synaptiques pourrait inhiber les récepteurs NMDA, TrkB et ZnR. Le Zn facilite l’agrégation 
des peptides β-amyloïdes. (D’après Sensi et al., 2009, Nature reviews neuroscience)184 
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4.3 Le zinc dans la sclérose latérale amyotrophique (ALS) 
L’ALS est une maladie neurodégénérative qui affecte les neurones moteurs de la 

moelle épinière, du tronc cérébral et du cortex cérébral moteur. Dans les formes familiales de 

l’ALS, des mutations « gain de fonction » au niveau de la superoxyde dismutase SOD1 ont 

été identifiées. SOD1 est une enzyme antioxydante présente dans le cytosol et qui catalyse la 

dismutation de l’O2
- en H2O2 et O2. Cette enzyme constitue la première ligne de défense de 

l’organisme face au stress oxydant328. La SOD1 fixe du Zn nécessaire à sa structure et les 

formes mutées ont un défaut dans cette fixation du Zn. Plusieurs hypothèses sont proposées 

pour expliquer en quoi ces mutations confèrent des lésions dans les neurones moteurs : 1) Les 

neurones présentent des anomalies de gestion des radicaux libres. 2) Il y aurait une agrégation 

anormale des protéines ou 3) Une augmentation de la sensibilité à l’excitotoxicité. Une 

déficience en Zn tend à accélérer la maladie qui peut être stoppée par une supplémentation en 

Zn183,233. Toutefois, chez les modèles animaux et chez les patients atteints d’ALS aucune 

différence de concentration en Zn n’a été décelée329. En revanche, l’expression des MTs du 

cerveau et du foie de ces patients est considérablement élevée. Ces données indiquent qu’une 

altération de l’homéostasie du Zn pourrait expliquer (au moins en partie) les dommages 

observés chez les patients atteints d’ALS. 

 

4.4 Zinc et ischémie 
L’ischémie cérébrale intervient suite à un accident vasculaire cérébral. Cette 

diminution de l’apport sanguin au niveau du cerveau peut avoir des effets irréversibles. Au 

niveau cellulaire, l’ischémie provoque une diminution de l’expression de la sous unité GluA2 

qui compose les canaux calciques A/K (AMPA/Kainate chapitre 3.2.2.4) facilitant donc 

l’entrée du calcium et du zinc notamment au niveau des neurones de CA1. Dans les modèles 

animaux, l’inhibition des canaux calciques A/K ou la chélation du Zn (Ca-EDTA) protègent 

de l’action du Zn lors d’ischémie183. Il est probable que l’action néfaste du Zn lors d’ischémie 

se traduise aussi par une dérégulation de l’activité mitochondriale266,269,330.       

 

4.5 Zinc et épilepsie 
 Le zinc est décrit comme un pro-convulsivant. L’importance du zinc synaptique lors 

de crises d’épilepsies a été montrée dans les modèles animaux murins331. La concentration en 

zinc de l’hippocampe de ces animaux épileptiques est nettement diminuée par rapport aux 

animaux sains332. Le traitement de ces animaux par du zinc réduit les crises épileptiques 
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tandis qu’une alimentation déficiente en zinc augmente la susceptibilité de ces animaux aux 

crises333. Chez les patients atteints d’épilepsie, deux principaux changements sont observés au 

niveau de la structure et de la distribution de certains récepteurs au niveau de l’hippocampe : 

1) La composition des récepteurs GABAA (GABAR) des cellules granulaires du gyrus denté 

est modifiée et présente un niveau faible d’expression de sous-unité α1 de GABAR associé 

aux sous-unités γ2 et donc une sensibilité accrue au zinc qui se traduit par un blocage des 

GABAR. 2) Les fibres moussues terminales sont réorganisées et viennent innerver le gyrus 

denté. Ces deux observations indiquent qu’une activité intense des fibres moussues conduit à 

une large libération du glutamate et de zinc, ce zinc en bloquant les GABAR diminue les 

effets inhibiteurs du GABA, facilitant la génération de crises au niveau du gyrus 

denté183,334,335. 

 

4.6 La dépression 
La dépression se traduit par une variété de symptômes dont des perturbations du 

sommeil et de l’appétit, une perte d’intérêt et de plaisir, des pensées négatives, une sensation 

de fatigue et des difficultés à se concentrer. La dépression serait responsable de 50 à 70 % des 

suicides. Aux Etats-Unis, environ 9 millions de personnes sont diagnostiquées chaque année 

comme ayant un état dépressif, ce qui représente un coup estimé d’environ 43 milliards de 

dollars de perte de productivité et de dépenses en traitement336. Celui-ci implique 

principalement l’utilisation d’antidépresseurs ; la thérapie comportementale et cognitive ou 

l’emploi de chocs électroconvulsifs (ECS) sont également utilisés.  

 

Les antidépresseurs : 

Les processus neurobiologiques responsables de la maladie dépressive sont encore 

débattus. L’hypothèse la plus couramment rencontrée dans la littérature considère que les 

troubles de l’humeur seraient associés à une perturbation de la neurotransmission. Les 

premiers médicaments antidépresseurs synthétiques étaient des inhibiteurs de la monoamine 

oxydase et des inhibiteurs de la recapture de la sérotonine. Ceci a contribué à forger la théorie 

monoaminergique de la dépression ; théorie selon laquelle les médicaments antidépresseurs 

agiraient en augmentant les taux de sérotonine et noradrénaline.  

Il existe plusieurs classes d’antidépresseurs : 

- Les inhibiteurs sélectifs de la recapture de la sérotonine  

- Les inhibiteurs sélectifs de la recapture de la noradrénaline 
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- Les inhibiteurs non sélectifs de la recapture de la sérotonine et de la noradrénaline 

- Les inhibiteurs des monoamines oxydases 

- Les antidépresseurs tricycliques 

Cependant, leur simple action sur les monoamines ne suffit pas à expliquer leur efficacité car 

d’autres drogues comme la cocaïne ou les amphétamines (agissant sur les monoamines) sont 

sans effets chez les patients dépressifs337-339. Depuis les années 1950 et la mise sur le marché 

de ces médicaments, de nouvelles familles d’antidépresseurs ont vu le jour et certains 

exercent leur action via le système glutamatergique ou GABAergique, mettant à mal 

l’hypothèse monoaminergique de la dépression338.   

 

Neurobiologie de la dépression  

De nombreuses hypothèses et observations ont été faites pour identifier les bases 

cellulaires et moléculaires de la dépression : la neurodégénération, la diminution de taux de 

monoamines, la diminution du taux de BDNF et de la neurogenèse, ou encore la diminution 

de la concentration en zinc. 

Il semblerait que les patients dépressifs présentent des altérations dans la plasticité et 

la structure de leurs synapses. Ces patients ont une réduction du nombre, de la densité et de la 

taille des cellules neuronales et gliales dans le cortex frontal et dans l’hippocampe ainsi 

qu’une diminution de l’épaisseur du cortex parahippocampique340-343. Ces défauts 

morphologiques s’accompagnent de changements dans les circuits synaptiques : il y aurait 

une diminution de l’activité et de la connectivité entre le lobe frontal et les autres régions du 

cerveau ou encore une altération de la morphologie des dendrites des neurones de 

l’hippocampe344,345. La dépression a un impact négatif sur les capacités d’apprentissage et de 

mémoire. Le stress (principal facteur dans la dépression et le suicide) retarde les performances 

mnésiques dépendantes de l’hippocampe et diminue la potentiation à long terme (LTP) de 

l’hippocampe346. Ces travaux montrent clairement les détériorations structurales et 

fonctionnelles mais finalement la nature cellulaire et moléculaire de la dépression reste à 

déterminer.  

Certains signaux extracellulaires peuvent moduler l’activité du système nerveux 

central. Parmi ces signaux, les neurotrophines jouent des rôles essentiels dans la survie, la 

prolifération, la migration et la différentiation des cellules neuronales lors du 

développement347. A l’âge adulte, ces neurotrophines sont nécessaires aux fonctions 

cellulaires, à l’intégrité structurale des neurones, à la plasticité synaptique et à la 

neurogenèse348. Il existe plusieurs neurotrophines : le facteur de croissance du nerf (NGF), le 
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facteur neurotrophique dérivé du cerveau (BDNF) et les neurotrophines 3, 4 et 5. La plupart 

de leurs actions sont réalisées grâce aux récepteurs tropomycine kinases (Trk) de la famille 

des récepteurs tyrosine kinase. Le NGF se fixe sur TrkA, le BDNF et NT4 se fixent sur TrkB 

et NT3 se fixe sur TrkA, B et C. Toutes les neurotrophines peuvent aussi activer p75NTR 349. 

La fixation des neurotrophines sur leurs récepteurs va conduire à la dimérisation et la 

transphosphorylation des résidus tyrosines des domaines intracellulaires des Trk et conduire à 

l’activation de voie de signalisation cytoplasmique349. 

 Le BDNF semble être impliqué dans la dépression. Cette constatation vient du fait que 

les traitements avec des antidépresseurs augmentent l’expression du BDNF dans le cerveau et 

diminue l’effet délétère du stress sur le taux de BDNF339. Dans la plupart des cas, cette 

augmentation d’expression du BDNF se produit plutôt lors de traitements chroniques que lors 

de traitements aigus, bien que quelques études montrent une augmentation du BDNF dans le 

cortex et une diminution dans l’hippocampe lors de traitements aigus350. L’injection de BDNF 

chez le rongeur conduit à des effets identiques aux antidépresseurs dans les tests de 

dépression (test de nage forcée)351. De plus, des analyses post-mortem chez l’Homme ont 

montré que les patients dépressifs traités aux antidépresseurs avaient un taux de BDNF 

supérieur aux patients dépressifs non traités352. Plus d’une centaine d’études a traité de 

l’action de traitement contre la dépression sur le taux de BDNF et l’expression de son 

récepteur TrkB chez le rat339.  

L’action des antidépresseurs (inhibiteurs de monoamines oxydase, antidépresseurs 

tricycliques ou les inhibiteurs sélectifs de recapture de la sérotonine) sur le taux de BDNF 

semble multifactorielle (type d’espèces, temps de traitement, dose) alors que les données sur 

les traitements électroconvulsifs sont plus homogènes et vont dans le sens d’une augmentation 

de l’expression du BDNF dans quasiment toutes les études339.  

 

Zinc et dépression  

Plusieurs données expérimentales démontrent que des traitements chroniques avec des 

antidépresseurs comme les inhibiteurs sélectifs de la recapture de la sérotonine ou les 

tricycliques augmentent la concentration sérique en zinc. Ces molécules entrainent aussi une 

augmentation de la concentration en Zn dans l’hippocampe. Les ECS augmentent aussi le Zn 

vésiculaire dans l’hippocampe353. Le Zn semble avoir des effets antidépresseurs dans les 

modèles animaux testés (test de nage forcée ou test de suspension par la queue) et dans le cas 

de stress chronique modéré chez le rat. Chez l’Homme, des analyses post-mortem ont montré 

que les patients dépressifs ont un taux sérique de Zn très inférieur à la normale199. Toutefois, 
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la sévérité de la maladie ne semble pas être corrélée avec le taux de Zn sérique. Toujours chez 

l’Homme, une supplémentation en Zn augmente l’efficacité thérapeutique des antidépresseurs 

classiques.  

Les mécanismes d’action du zinc pour expliquer son rôle bénéfique dans le traitement de la 

dépression sont multiples : 

1) Le Zn agit sur les récepteurs glutamatergiques et module la plasticité synaptique: le Zn 

est un antagoniste des récepteurs NMDA et des récepteurs métabotropiques du groupe 

I et II (mGlu). A de faibles concentrations, le Zn potentie l’activité du récepteur 

AMPA dans certains types cellulaires354. 

2) Le Zn inhibe la glycogène synthase kinase 3 (GSK-3)355. Cette enzyme désactive la 

glycogène synthase (GS) en la phosphorylant, or la GS inhibe CREB. Une inhibition 

de GSK-3 a donc pour conséquence une augmentation de l’activité de CREB et une 

augmentation de l’activité du BDNF.  

3) Le Zn augmente l’activité du BDNF. Une diminution de la concentration en BDNF a 

été observée chez les patients dépressifs. Des traitements chroniques avec du Zn 

augmentent le taux de BDNF dans le cortex et l’hippocampe. Le Zn augmente aussi la 

phosphorylation de TrkB en induisant la phosphorylation des kinases de la famille Src 

(Src et Fyn)194. Les récepteurs TrkB sont notamment impliqués dans la sensibilité aux 

antidépresseurs au niveau des cellules neuronales progénitrices de l’hippocampe. 

L’ablation de TrkB dans ces cellules a permis de montrer leur implication dans la 

prolifération et la neurogénèse356, deux processus qui sous-tendraient l’action 

thérapeutique des antidépresseur, toutefois ceci est discuté (cf Article 5). 

La figure 38 résume les effets du Zn pouvant intervenir dans le traitement de la dépression 

(revues183,199,200). 

 
Figure 38 Zn vs Antidépresseur dans le traitement de la dépression 

Représentation schématique des mécanismes moléculaires du Zn dans le traitement de la dépression. Le signe + 
signifie excitation / augmentation de l’activité. Le signe – signifie inhibition. 
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Le BDNF et TrkB seraient donc deux acteurs importants pour expliquer la dépression au 

niveau cellulaire. Cependant, des souris qui expriment un dominant négatif de TrkB (TrkB.T1) 

ne présentent pas de symptômes de type dépressif et ont les mêmes résultats aux tests de nage 

forcée que les souris sauvages357. Des souris hétérozygotes pour BDNF (BDNF+/-) ne 

présentent aucune différence au niveau des tests d’anxiété ou de stress par rapport aux souris 

BDNF+/+358. De plus, la suppression de l’expression du BDNF dans les neurones de l’aire 

tegmentaire ventrale (neurones dopaminergiques) exerce une action antidépressive chez des 

souris subissant des agressions répétées359. Ces données montrent qu’à eux seuls l’expression 

du BDNF et de TrkB ne suffisent pas à expliquer les processus complexes mis en jeu dans la 

dépression au niveau cellulaire. 

 

 5. L’Hyperforine  

 
L’hyperforine est un des composants bioactifs des feuilles et des fleurs du millepertuis 

(St john’s Wort ou Hypericum perforatum, Figure 39). Les extraits de millepertuis sont 

composés de plusieurs éléments naturels comme des flavonoides, des proanthocyanidines, des 

naphtodianthrones (hypericine) et des acylphloroglucinols (hyperforine, Figure 40). C’est 

principalement dans les parties supérieures de la plante que ces composés sont retrouvés en 

plus fortes proportions360. 

 
Figure 39 Fleur d'Hypericum perforatum 

 

Les extraits de millepertuis sont utilisés depuis des siècles dans le traitement de divers 

troubles et maladies comme l’anxiété, la dépression et autres troubles de l’humeur361. En 2001, 

la vente de produits issus du millepertuis perforé s’estimait à 210 millions de dollars362. 

L’intérêt a premièrement été porté sur l’hypéricine qui, contrairement à l’hyperforine, 

n’est pas sensible à l’air et à la lumière360,363. L’hypéricine a en effet été décrite comme une 

molécule ayant des propriétés de type antidépresseur chez le rat364. Sur la base d’études 
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expérimentales, on considère maintenant que l’hyperforine a des effets antidépresseurs plus 

puissants que l’hypéricine. Nous allons nous intéresser aux différentes propriétés associées à 

l’hyperforine. 

 
Figure 40 Formule chimique de l’hyperforine 

 

5.1 Une molécule avec des actions antidépressives.  
 Il a été démontré que des extraits de millepertuis possédant 5% d’hyperforine sont plus 

efficaces pour traiter la dépression que des extraits en contenant 0,5%365. L’hyperforine 

semble donc avoir un rôle non négligeable dans la réponse antidépressive des extraits de 

millepertuis. Nous allons décrire à présent les actions in vitro et in vivo de l’hyperforine qui 

pourraient expliquer ses propriétés antidépressives.  

In vitro 

L’hyperforine agit sur de nombreuses cibles, affectant la recapture de sérotonine, de 

dopamine, de noradrénaline, de GABA et de glutamate361,366,367. L’hyperforine est donc une 

molécule qui inhibe de façon non-spécifique la recapture des neurotransmetteurs, ce qui 

suppose une action différente de celle des inhibiteurs de monoamine oxydase. Plusieurs 

explications ont été proposées pour expliquer ce processus d’inhibition non-spécifique de la 

recapture des neurotransmetteurs : 1) L’hyperforine conduit à une augmentation de la 

concentration sodique intracellulaire qui a pour effet de réduire le gradient de sodium entre la 

cellule et le milieu extracellulaire368. La recapture des neurotransmetteurs implique un 

transport dépendant du gradient sodique369. Une diminution de ce gradient a donc comme 

effet une diminution de la recapture des neurotransmetteurs et ce de façon aspécifique. 2) Il a 

été montré que l’hyperforine diminue le pH cytosolique et donc modifie le gradient pH au 

niveau vésiculaire. Cette modification de pH induit une libération des neurotransmetteurs 

(vers le cytoplasme) 370-372. 3) L’hyperforine inhibe les récepteurs GABA, NMDA et AMPA 
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et favorise l’ouverture des canaux calciques pré-synaptiques favorisant la libération des 

neurotransmetteurs373. 

In vivo 

 Les données sur l’action de l’hyperforine en traitement aigu sur le taux de 

monoamines du cerveau sont controversées. Il a été montré dans un premier temps qu’une 

injection intra péritonéale de 9,3 mg d’hyperforine/kg n’a pas d’effet sur les taux de 

monoamines374. L’injection intra péritonéale de 10 mg d’hyperforine/kg chez le rat semble 

cependant augmenter le taux de dopamine, de noradrénaline et de sérotonine dans le locus 

coeruleus375.  

Les données d’essais cliniques concernent généralement des patients traités avec des 

extraits de millepertuis contenant une quantité plus ou moins importante d’hypéricine et 

d’hyperforine. Plusieurs études ont montré un effet bénéfique de l’hyperforine en traitement 

chronique (versus placebo) chez des individus dépressifs légers376. En revanche, ces extraits 

sont inefficaces contre les dépressions sévères377. L’hyperforine est toutefois décrite comme 

ayant de nombreuses interactions avec d’autres médicaments rendant son utilisation limitée 

dans certains cas. L’hyperforine est notamment un inducteur des enzymes du cytochrome 

P450 (CYP3A4)378 et affecte les P-glycoprotéines379. L’activation de ces protéines a pour 

conséquence de réduire l’absorption de divers médicaments (antiviraux, anticoagulants, 

contraceptifs, antiepileptiques etc…) lors d’une administration par voie orale378.  

Lors d’un épisode dépressif, le taux de BDNF (Brain-Derived Neurotrophic Factor) 

sérique des patients diminue. Une récente étude clinique sur 962 personnes montre que les 

patients dépressifs sous traitement avec des inhibiteurs de recapture de sérotonine (selective 

serotonine reuptake inhibitors et Hypericum perforatum) ont un taux de BDNF plus élevé que 

celui des patients non traités. Les patients traités avec des extraits de millepertuis sont ceux 

qui possèdent le plus fort taux de BDNF sérique en comparaison avec les autres patients 

traités. Cependant, les patients avec le plus fort taux de BDNF sérique sont aussi les patients 

avec les formes de dépressions les plus sévères380. Chez le rat âgé, un traitement de 21 jours 

avec des extraits de millepertuis augmente l’expression de CREB et de P-CREB. Ces 

augmentations sont corrélées avec une amélioration des capacités cognitives de ces rats381,382. 

Les extraits de millepertuis semblent agir sur la plasticité synaptique notamment en 

empêchant la sous-expression de la neuromoduline et de la synaptophysine lors d’un stress. 

Un prétraitement par ces extraits améliore la mémoire spatiale des animaux382. Des 

expériences de neurogénèse adulte chez des souris traitées 3 semaines avec un extrait de 

millepertuis suite à un stress à la corticostérone montrent une augmentation du nombre de 
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cellules BrdU positives et double cortine (DCX) positives dans la couche granulaire du gyrus 

denté. Ce résultat suggère donc un effet de cet extrait sur la prolifération et la maturation des 

neurones de l’hippocampe383. L’hyperforine semble donc avoir un rôle bénéfique au niveau de 

l’apprentissage et de la mémoire384 et semble utile dans le traitement de maladies affectant ces 

fonctions comme dans la maladie d’Alzheimer. 

 

5.2 L’hyperforine comme traitement contre la maladie d’Alzheimer. 
La maladie d’Alzheimer est caractérisée par le dépôt en plaque de peptides β amyloïde 

(Aβ) et par l’agrégation de la protéine Tau hyperphosphorylée conduisant à une atrophie 

corticale et un déclin des fonctions cognitives. In vitro, l’hyperforine diminue l’agrégation des 

peptides Aβ1-42
367. De plus, l’hyperforine agit sur l’APP (beta amyloïde precursor protein). Il 

semble que l’hyperforine diminue la concentration intracellulaire en APP en augmentant son 

taux de sécrétion385. Ces résultats sont à confirmer et à étayer pour estimer si l’hyperforine 

pourrait avoir un rôle thérapeutique dans la maladie d’Alzheimer.  

 

5.3 Propriétés anti-inflammatoires et pro-inflammatoires  
L’hyperforine a un effet inhibiteur sur les réponses et la prolifération des lymphocytes 

T. Il a été montré que l’hyperforine pouvait être un bon traitement contre les dermatites386. De 

plus, l’hyperforine est un inhibiteur de la cyclooxygenase-1 et de la 5-lipoxygenase387. 

L’hyperforine interfère avec d’autres réponses pro-inflammatoires des leucocytes dont 

l’inhibition de la production de ROS et la libération des élastases388.  

L’hyperforine induit aussi la sécrétion d’interleukine 8 par les cellules épithéliales 

intestinales et d’induit l’expression d’ICAM-1 impliquée dans l’inflammation. Cette induction 

est dépendante de l’activation d’AP-1 (facteur de transcription) et de l’activation des kinases 1 

et 2 (ERK1/2)362. 

 

5.4 Un effet antibactérien  
L’hyperforine présente une activité antibactérienne sur Staphylococcus aureus et sur 

d’autres bactéries à Gram positif. Elle n’a cependant pas d’action contre la  croissance des 

bactéries à Gram négatif ou sur Candida albicans389. 
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5.5 Des effets anti-tumoraux  
L’hyperforine a de nombreux effets anti-tumoraux en agissant à la fois par des effets 

anti-carcinogènes, antiprolifératifs, pro-apoptotiques, anti-invasifs, anti-métastatiques et anti-

angiogéniques122,390-392. Des précautions sont néanmoins à prendre quant à son utilisation car 

récemment des travaux ont montré que l’hyperforine augmente l’expression du facteur de 

croissance de l’endothélium vasculaire (essentiel à l’angiogenèse) dans des cellules 

cancéreuses du système nerveux central (médulloblastomes et glioblastomes)393.   

 

L’ensemble de ces données (Figure 41) montrent toute la complexité dans la compréhension 

des modes d’action des extraits de millepertuis. 

 
Figure 41 Effets biologiques associés à l’hyperforine et voies biologiques potentiellement impliquées 
(D’après Medina et al., 2006, Life Sciences)361  
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1. Matériels 
 

1.1. Animaux 
Les souris utilisées sont des C57BL6/J (Charles River, France). Ces souris ont été 

gardées dans des conditions standards avec un cycle jour/nuit de 12 heures et un accès libre à 

l’eau et à la nourriture. Toutes les expériences nécessitant l’emploi de ces animaux ont été 

approuvées par le comité d’éthique de Grenoble (ComEth, France) et par le comité d’éthique 

de la région Rhône-Alpes.  

 

1.2. Culture de cellules HEK293 
Les cellules HEK293 proviennent d’ATCC (LGC Promochem, France), les cellules 

HEK293 exprimant de façon stable les canaux TRPC6 ont été fournies par G. Boulay 

(Université de Sherbrooke, Canada)69 et les HEK293 exprimant TRPC3 ont été données par 

M. Zhu (Université de Columbus, Ohio, USA)394. Les cellules sont cultivées dans du milieu 

DMEM (GIBCO) supplémenté avec 10 % de sérum de veau fœtal et 1 % de 

pénicilline/streptomycine. Du G418 (Euromedex) (50 µg/ml) a été ajouté pour les cultures de 

HEK293-TRPC6 et HEK293-TRPC3. Ces conditions de culture sont détaillées dans l’article 1. 

 

1.3. Cultures primaires  
Nous avons utilisé des cultures primaires de neurones corticaux embryonnaires de 

souris au stade E13. Ces neurones ont été conservés in vitro dans du milieu Neurobasal 

(GIBCO) contenant 2 % de B27 (GIBCO), 1 % de pénicilline/streptomycine et 500 µM de 

glutamine (GIBCO). La procédure d’obtention de ces cultures primaires est décrite dans 

l’article 1.  

 

1.4. Mitochondries isolées de cerveau 
Les mitochondries ont été isolées à partir de cerveaux de souris nouveau-nés âgés de 1 

à 5 jours. Toute la méthode d’isolement se déroule à 4°C. Brièvement, après homogénéisation 

des cerveaux de souris, des centrifugations successives ont été réalisées jusqu'à l’obtention 

d’un culot contenant les organelles. Ce culot a ensuite été repris et conservé à 4°C. La 

méthode d’obtention de ces mitochondries est détaillée dans l’article 3.  
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2. Méthodes 
 

2.1. Imagerie de fluorescence du calcium 
Les sondes Fura-2/acétoxyméthyl ester (AM) (Molecular Probes) et Fluo4/AM 

(Molecular Probes) ont été utilisées pour mesurer les variations de la concentration en 

calcium libre dans le cytoplasme des cellules. Ces sondes pénètrent dans les cellules où le 

groupement AM subit une dé-estérification qui piège la sonde dans le milieu intracellulaire. 

Les temps d’incubation et la composition des milieux dans lesquels les sondes ont été utilisées 

sont décrits dans les articles 1, 2, 3 et 4. Les lamelles de verre sur lesquelles sont cultivées les 

cellules ont été placées dans une chambre de perfusion (RC-25F, Warner Instruments, 

Phymep, France) sur un microscope inversé Axio Observer A1 (Carl Zeiss, France) équipé 

d’un objectif à immersion à l’huile 40x de type Fluar et d’ouverture numérique 1.3 (Carl Zeiss, 

France). Le dispositif expérimental est composé d’une source de lumière de type DG-4 

(Princeton Instruments, Roper scientific, France), d’une caméra CCD à refroidissement rapide 

(CoolSnap HQ2 Princeton Instruments, Roper scientific, France) et d’un ordinateur équipé du 

logiciel METAFLUOR (Universal Imaging, Roper scientific, France) pour analyser les 

enregistrements. L’ensemble des caractéristiques concernant l’acquisition des données et des 

filtres utilisés est détaillé dans les articles 1, 2, 3 et 4. 

 

2.2. Imagerie de fluorescence du zinc 
La sonde FluoZin-3/AM (Molecular Probes), spécifique du zinc (Kd de 15 nM395), a 

été utilisée pour enregistrer les variations de la concentration en zinc libre dans le cytoplasme 

des cellules. Les conditions expérimentales sont les mêmes que celles décrites dans le 

paragraphe ci-dessus et sont présentées dans les articles 1, 3 et 4. 

 

2.3. Imagerie synchrotron 
Brièvement, les cellules ont été cultivées sur un support spécial composé de Si3N4 puis 

cryo-fixées à -160°C dans de l’isopentane refroidi à l’azote. Le protocole utilisé permet de 

conserver la morphologie et la distribution des éléments chimiques de la cellule. L’imagerie 

au rayon X a été réalisée sur la ligne ID22NI de l’installation européenne de rayonnement 

synchrotron (ESRF, Grenoble, France). La méthode est détaillée dans l’article 1. 
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2.4. Mesure de l’efflux de calcium et de zinc des mitochondries 
Les mitochondries ont été préparées selon le protocole décrit précédemment (partie 1.3) 

et conservées dans un milieu contenant (en mM) : 5 L-acide glutamique, 270 sucrose, 10 Tris 

et 1 Pi (KH2PO4/K2HPO4), pH 7,35 (KOH). Les flux de calcium et de zinc sont mesurés 

respectivement avec les formes non-perméantes du Fluo4 (0,25 µM) et du FluoZin-3 (0,25 

µM) (Molecular Probes) à 25°C avec un spectrophotomètre Fluoromax (Spex). Ce protocole 

est décrit dans l’article 3. 

 

2.5. Dosage des métaux cellulaires et tissulaires 
La détermination des contenus en zinc et en soufre des cellules HEK, HEK-TRPC6, 

HEK-TRPC3 et des tissus a été réalisée par ICP-OES (Inductively Coupled Plasma-Optical 

Emission Spectrometry) avec un appareil Varian Vista MPX. Les valeurs mesurées ont été 

normalisées en fonction de la concentration protéique des échantillons ou en fonction du 

poids sec des tissus. Les détails concernant cette technique sont abordés dans l’article 1. 

La détermination du contenu en cuivre et en fer a été réalisée par spectrométrie d’absorption 

atomique après homogénéisation des culots cellulaires dans de l’hydroxyde de 

tétraméthylammonium. Les teneurs en métaux ont été normalisées en fonction de la 

concentration protéique de chaque échantillon. Les détails concernant cette technique sont 

présentés dans les articles 1 et 4. 

 

2.6. Electrophysiologie 
Les courants ioniques ont été enregistrés avec la technique du patch-clamp en 

configuration cellule entière396. Les pipettes de patch ont été réalisées à partir de capillaires en 

verre borosilicaté (Harvard Apparatus). Le milieu intra-pipette contient (en mM) : 140 CsCl, 

10 HEPES, 4 ATP, 0.1 GTP (pH 7,2 CsOH). Ces pipettes ont une résistance de 3 à 5 MΩ. Les 

cellules ont été placées dans un milieu contenant (en mM) : 140 N-methyl D-glucamine, 10 

HEPES, 5 glucose, 10 CaCl2 ou 10 ZnCl2 (pH 7,15). Le potentiel de membrane a été fixé à     

-60 mV avec un amplificateur Axoclamp 200B. Les courants mesurés sont filtrés à 1-2 kHz et 

analysés avec le logiciel pClamp (Version 9.0, Axon Instruments). Cette approche est décrite 

dans l’article 1.  

2.7. Mesure de la production d’espèces réactives de l’oxygène 
La sonde fluorescente 5-(et 6)-chloromethyl-2’,7’-dichlorodihydrofluorescein 

diacetate acetyl ester (CM-H2DCFDA) (Molecular Probes) a été utilisée pour mesurer la 
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production d’espèces réactives de l’oxygène. Les cellules HEK, HEK-TRPC6 et HEK-TRPC3 

ont été cultivées dans des plaques 96 puits et chargées 20 minutes avec 5 µM de sonde 

pendant 20 minutes. Les cellules ont été ensuite excitées à 495 nm et la fluorescence émise a 

été collectée à 527 nm avec un lecteur multi-plaque Tecan Infinite M200. (article 1) 

 

2.8. Test de toxicité MTT 
L’activité mitochondriale a été utilisée comme indicateur de la viabilité cellulaire397. 

Les cellules ont été cultivées dans des plaques 96 puits puis incubées en présence de l’agent à 

tester. Celui-ci a ensuite été lavé et 24 heures après les cellules ont été incubées en présence 

de 0,5 mg/ml de MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] 

(Sigma) à l’abri de la lumière pendant 3 h à 37°C. Le milieu a ensuite été lavé et les cristaux 

formés ont été dissous dans du DMSO. La densité optique a été mesurée à 570 nm avec un 

lecteur multi-plaque Tecan Infinite M200. Les résultats sont présentés en pourcentage de mort 

cellulaire avec les cellules traitées au Triton X-100 comme valeur de 100% de mort cellulaire 

(article 1). 

 

2.9. Mesure du potentiel de membrane mitochondrial 
Les mitochondries ont été préparées selon le protocole décrit dans la partie 1.3. Les 

changements de potentiel de membrane ont été mesurés avec la sonde fluorescente cyanine 

3,3’-dipropylthiodicarbocyanine [diS-C3-(5)] (Molecular Probes) à 10 µM. Les expériences 

ont été réalisées à l’aide d’un spectrophotomètre Fluoromax (Spex) (excitation à 622 nm, 

émission à 670 nm). (article 3) 

  

2.10. Mesure de l’expression génique (RT-PCR et qPCR) 
Les ARN totaux ont été isolés à partir de cultures primaires de neurones avec le kit 

Quick RNA cells and tissues (Talent, Trieste, Italie). Les ARN totaux des tissus ont été isolés 

avec le kit Nucleospin RNA/protein (Macherey-Nagel, France). La concentration des ARN a 

été mesurée au spectrophotomètre NanoDrop ND1000. Un échantillon de 100 ng d’ARN 

totaux a été rétro-transcrit en utilisant des amorces DT18 et la M-MulV Reverse transcriptase 

(Euromedex, France). Les niveaux d’expression des ADNc ont été déterminés par PCR 

quantitative en temps réel par la méthode du SYBR en utilisant le MESA Blue qPCR 

Mastermix plus for SYBR assay (Eurogentec) et un appareil BioRad CFX 96. Les données 

ont été analysées avec le logiciel BioRad CFX Manager (Version 2.0). Toutes les amorces 
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PCR ont été dessinées avec le logiciel en ligne NCBI Primer3/BLAST. Les amorces utilisées 

sont détaillées dans l’article 4. Deux gènes de référence ont été utilisés pour normaliser les 

expressions : l’actine et la GAPDH.  

 

2.11. Mesure de l’expression protéique (Western blot) 
Les cellules en culture ont été récoltées et centrifugées à 3000 rpm pendant 5 minutes. 

Le surnageant a été jeté et le culot a été resuspendu dans un tampon de lyse contenant (en 

mM) : 10 HEPES, 3 MgCl2, 40 KCl, glycerol 2,5 %, Triton-X-100 1 %, cocktail d’inhibiteur 

de protéases 1% (Sigma), pH 7,5 (KOH). Les échantillons ont ensuite été placés dans la glace 

pendant 30 minutes puis centrifugés à 15000 rpm, 30 minutes à 4°C. Le surnageant contient 

les protéines, il a été conservé à -80°C. Les protéines ont été extraites des tissus à partir du kit 

Nucleospin RNA/protein (Macherey-Nagel, France) puis par une phase de précipitation à 

l’éthanol 100%. Les échantillons ont ensuite été placés dans la glace pendant 30 minutes puis 

centrifugés à 15000 rpm, 30 minutes à 4°C. Le culot contient les protéines, il a été resuspendu 

dans un tampon RIPA contenant 150 mM NaCl, 1 % Triton-X-100, 0,1 % SDS, 0,24 % Tris-

HCl et 0,5 % Déoxycholate. La suspension de protéines a été conservée à -80°C.  

Les concentrations protéiques ont été dosées avec le Bio-Rad DC protein Assay. La gamme 

étalon a été réalisée à partir d’un échantillon de BSA (Bovin Serum Albumine) concentré à 

1,5 µg/µl. Des échantillons de 50 µg de protéines ont été utilisés pour réaliser les expériences 

de Western Blot. Les échantillons ont été dénaturés dans du milieu Lämmli contenant 5 % de 

β-mercaptoéthanol pendant 10 minutes à 95°C puis refroidi dans la glace. Les protéines 

dénaturées ont été placées dans un gel d’acrylamide composé d’une partie dite de 

concentration (gel à 4 % d’acrylamide) et d’une partie dite de séparation (gel à 8 % 

d’acrylamide). La migration a été réalisée dans un tampon Tris-Glycine-SDS pH 8,5 

(Euromedex, France). Les protéines ont ensuite été transférées sur une membrane de PVDF 

préalablement imbibée dans de l’éthanol 100 % et dans du tampon de transfert Tris-Glycine 

pH 8,5 + 20 % méthanol pendant 15 minutes. Le transfert a été réalisé dans un système semi-

sec V10-SDB (Fisher Bioblock Scientific). Après deux lavages au PBS, la membrane a été 

bloquée avec une solution de PBS contenant 5 % de lait pendant 2 heures à température 

ambiante. Elle a ensuite été incubée une nuit à 4°C avec les anticorps primaires dirigés contre 

les protéines d’intérêt. Les anticorps ont été utilisés aux dilutions suivantes : Anti-TrkB 1/500 

(Millipore), anti-P-TrkB 1/200 (tebu-bio), anti-CREB 1/1000 (Millipore), anti-P-CREB 

1/1000 (Milipore), anti-Actine 1/250 (Sigma). La membrane a ensuite été lavée 4 fois au 
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PBS-lait 5 % puis incubée avec l’anticorps secondaire couplé à la HRP (horseradish 

peroxydase) 1 h à température ambiante. La révélation de la membrane a été effectuée par le 

kit ECL (Pierce) en utilisant un appareil Fusion Fx7 (Vilbert Lourmat). Les quantifications 

des Western Blot ont été effectuées avec le logiciel de traitement d’image ImageJ (article 5). 

 

2.12. Traitement chronique des souris à l’hyperforine 
L’hyperforine provient de l’entreprise pharmaceutique Willmar Schwabe GmbH & Co 

(Karlsruhe, Allemagne). Le produit est un mélange d’hyperforine et de son homologue 

l’adhyperforine (ratio 8:2) préparé sous forme de sel de sodium. 

Des souris mâles C57BL6/J (Charles River, France) ont été utilisées pour les 

expériences de traitement chronique à l’hyperforine. Ces animaux âgés de 5 mois ont été 

gardés dans des conditions standard avec un cycle jour/nuit de 12 heures et un accès libre à 

l’eau et à la nourriture. Huit animaux ont reçu une injection intra-péritonéale journalière de 4 

mg d’hyperforine/kg pendant 4 semaines. La solution d’hyperforine a été préparée 

quotidiennement dans du NaCl 0,9 % stérile juste avant l’injection. Sept animaux ont reçu une 

injection intra-péritonéale journalière de NaCl stérile pour le groupe contrôle. Après ces 4 

semaines de traitement, le cerveau a été rapidement prélevé et placé dans une solution saline à 

4°C. Les tissus ont ensuite été utilisés pour l’extraction d’ARN, de protéines et pour la 

quantification des métaux par ICP-OES. (articles 4 et 5) 

 

2.13. Neurogénèse adulte 

 

Perfusion intracardiaque 

Après anesthésie au pentobarbital (75 µl/animal), les souris ont été perfusés par voie 

intracardiaque avec un fixateur (paraformaldéhyde à 4 % dans du tampon phosphate à 0,1 M, 

pH=7,3 ; 50 mL par souris). Les cerveaux ont ensuite été post-fixés pendant deux semaines. 

 

Préparation des tissus 

Les cerveaux ont été coupés au moyen d’un vibratome (Leica). Des coupes frontales 

sériées de 40 µm d’épaisseur ont ainsi été obtenues. Les coupes flottantes ont été récupérées 

dans du tampon phosphate (PB) (0,1 M pH=7,4). 
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Immunohistochimie 

Les coupes flottantes ont été lavées (4x10 minutes) dans du tampon (PBS à pH=7,4) 

puis traitées pendant 30 minutes dans une solution de méthanol contenant 0,5 % de H2O2 afin 

de bloquer l’activité des péroxydases endogènes. Elles ont ensuite été lavées pendant 4x10 

minutes. Pour révéler la BrdU, une étape supplémentaire est nécessaire pour démasquer les 

sites antigéniques. Dans ce but, les coupes ont été traitées avec de l’acide chlorhydrique (2 N) 

pendant 30 minutes à 37°C afin de dissocier les brins d’ADN. Elles ont ensuite été lavées 

avec du tampon PBS (4x10 minutes). Puis, pour tous les immunomarquages, les coupes ont 

été incubées pendant 45 minutes à température ambiante avec du tampon PBS contenant 0,3 

% de triton X-100 et du sérum normal de l’espèce produisant l’anticorps secondaire afin de 

saturer les sites non spécifiques (3 % pour BrdU et HH3 et 5 % pour DCX). Après élimination 

de la solution dite de « blocage », les coupes ont été incubées avec l’anticorps primaire dilué 

dans du tampon contenant 0,3 % de triton X-100 et du sérum normal pendant 72 h à 4°C sous 

agitation constante (1 % pour BrdU, 3 % HH3 et 5 % pour DCX). Les anticorps primaires 

suivants ont été utilisés : anticorps monoclonaux de rat anti-BrdU (1/1000) dans du PBS 

contenant 1 % de sérum normal de chèvre (Accurate), anticorps polyclonaux de lapin anti-

HH3 (1/1000) dans du PBS contenant 3 % de sérum normal de chèvre (Upstate) et anticorps 

polyclonaux de lapin anti-DCX (1/7000) dans du PBS contenant 5 % de sérum normal de 

chèvre (Sigma)  

A l’issue de cette incubation et après lavage dans du tampon PBS (4x10 minutes), les 

coupes ont été incubées 1 h 30 avec l’anticorps secondaire biotinylé de chèvre dirigé contre 

les anticorps primaires de rat (1/1000 dans du PBS contenant 1 % de sérum normal de chèvre) 

ou contre les anticorps primaires de lapin (1/1000 dans du PBS contenant 3 % de sérum 

normal de chèvre et 1/7000 dans du PBS contenant 5 % de sérum normal de chèvre). Les 

coupes ont ensuite été lavées (4x10 minutes) et incubées avec une solution de 

streptavidine/biotine à 0,5 % pendant 1 h 30. Après lavages successifs dans du tampon PBS 

(2x10 minutes) puis du tampon Tris (pH=7,4), l’activité péroxydasique a été révélée en 

employant la 3,3-diaminobenzidine (DAB ; 50 mg/100 mL) comme chromogène. Les coupes 

ont été incubées avec la DAB et 1,2 % de H2O2 sous contrôle visuel. Les coupes ont enfin été 

lavées dans du tampon Tris (2x10 minutes) puis du tampon Tris-NaCl (2x10 minutes) avant 

d’être montées sur lames gélatinées (5 g/L). Elles ont ensuite été déshydratées par plusieurs 

bains successifs de concentrations croissantes d’éthanol et un bain d’histosol. Enfin, elles ont 

été recouvertes d’une lamelle recouverte de Shandon. Les cellules immunoréactives pour 

l’antigène X seront notées X-IR.  
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Etude quantitative du nombre cellules immunoréactives 

Le nombre total de cellules immunoréactives dans le gyrus denté (GD) a été évalué par 

analyse stéréologique. Brièvement, le nombre total de cellules X-IR dans le GD gauche a été 

estimé en utilisant une version modifiée de l’optical fractionator sur un échantillonnage 

randomisé systématique d’une coupe de cerveau sur dix le long de l’axe septo-temporal de 

l’hippocampe. Sur chaque coupe, toutes les cellules X-IR ont été comptées dans les couches 

subgranulaires et granulaires du GD en utilisant un objectif x100. Le nombre total de cellules 

X-IR a été multiplié par l’inverse de la probabilité d’échantillonnage (1/ssf=20). Dans le cas 

de marqueurs peu fréquents (BrdU et HH3), le nombre de cellules immunoréactives a été 

compté bilatéralement. Dans ce cas, la probabilité d’échantillonnage (ssf) est donc égale à 

1/10 (Article 5). 
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Article 1 : Implication des canaux TRPC6 dans l’homéostasie du Zinc 

 

Introduction 

 

Les canaux TRPC6 sur-exprimés dans des cellules HEK (HEK-TRPC6) et dans des 

cellules PC12 différenciées au NGF forment une voie d’entrée du fer indépendante de la 

transferrine176. Les auteurs n’ont pas étudié si le Fer s’accumulait dans leur modèles 

cellulaires suite à la sur-expression des canaux TRPC6 (modèle HEK) ou à l’induction de son 

expression dans les cellules PC12. Au laboratoire, Peng Tu a étudié ce point et a observé que 

les cellules HEK-TRPC6 ne contenaient pas plus de fer que les HEK sauvages (Cf thèse Peng 

Tu, 2009). En revanche, les données d’ICP-OES (Inductively Coupled-Optical Emission 

Spectrometry) montrent que la sur-expression des canaux TRPC6 conduit à une augmentation 

du contenu en zinc et en soufre ainsi qu’à une diminution du contenu en cuivre de ces cellules.  

Dans ce premier chapitre, nous tenterons de préciser les liens entre les canaux TRPC6 

et le contenu en zinc des HEK. Nous comparerons les données obtenues avec celles des 

cellules sauvages et des cellules qui sur-expriment les canaux TRPC3. La régulation fine de la 

concentration intracellulaire en zinc est primordiale pour la cellule car une augmentation 

importante en zinc libre peut conduire à la mort cellulaire (Chapitre 4.1). Nous étudierons si 

la sur-expression des canaux TRPC6 dans les HEK293 modifie la sensibilité des cellules à un 

stress oxydant. Pour répondre à cette question nous utiliserons des tests de quantification de la 

mort cellulaire (MTT et Bleu Trypan) ainsi qu’un test de quantification de la production 

d’espèces réactives de l’oxygène. Dans un second temps, nous tenterons d’observer, par des 

techniques d’imagerie de fluorescence du zinc, la perméabilité des canaux TRPC6 à ce métal 

car ceci pourrait en partie expliquer la plus grande quantité de zinc observée dans ces cellules. 

Des résultats antérieurs obtenus au laboratoire ont montré que les canaux TRPC6 sont 

exprimés de façon endogènes dans les neurones corticaux embryonnaires de souris à E1395. 

Nous tenterons de préciser le rôle de ces canaux dans l’homéostasie du zinc au niveau 

neuronal. Nous étudierons aussi les autres voies d’entrée du zinc décrites dans les neurones 

dont les canaux calciques dépendants du voltage, les récepteurs AMPA et les récepteurs 

NMDA. Pour cela, nous utiliserons principalement des méthodes d’imagerie de fluorescence 

et d’électrophysiologie. 
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TRPC6 channels favour the intracellular accumulation of zinc and regulate the 
pools of mobile zinc 

 
 



U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

1 The over-expression of TRPC6 channels in HEK-293 cells favours the intracellular
2 accumulation of zinc

3 JulienQ1 Gibon a,b,l, Peng Tu a,b,l,1, Sylvain Bohic c,d, l, Pierre Richaud e,f,g, Josiane Arnaud h,i, Mike Zhu j,
4 Guylain Boulay k, Alexandre Bouron a,b, l,⁎

5 a UMR CNRS 5249, Grenoble, France
6 b CEA, DSV, IRTSV, Grenoble, FranceQ3
7 c Inserm U 836, Grenoble Institut des Neurosciences, Grenoble, FranceQ4
8 d ESRF, Grenoble, FranceQ5
9 e CEA, DSV, iBEB, Laboratoire des Echanges Membranaires et Signalisation, F-13108 St Paul les Durance, France
10 f CNRS, UMR 6191, F-13108 St Paul les Durance, France
11 g Université Aix-Marseille, F-13108 St Paul les Durance, France
12 h Département de Biologie Intégrée, CHU, Grenoble, FranceQ6
13 i Inserm U884, LBFA, Grenoble, FranceQ7
14 j Center for Molecular Neurobiology, Ohio State University, Columbus, OH, USA
15 k Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
16 l Université Joseph Fourier, Grenoble, FranceQ8

17

18

a b s t r a c ta r t i c l e i n f o

19 Article history:
20 Received 9 May 2011
21 Received in revised form 8 August 2011
22 Accepted 9 August 2011
23 Available online xxxx
242526
27 Keywords:
28 Brain
29 Oxidative stress
30 TRPC channel
31 Zinc
32 TRPC6

33TRPC6 are plasmamembrane cation channels. Bymeansof live-cell imaging and spectroscopicmethods,we found
34that HEK cells expressing TRPC6 channels (HEK-TRPC6) are enriched in zinc and sulphur and have a reduced
35copper contentwhen compared toHEK cells andHEK cells expressing TRPC3 channels (HEK-TRPC3). Hence,HEK-
36TRPC6 cells have larger pools ofmobilizable Zn2+ and aremore sensitive to an oxidative stress. Synchrotron X-ray
37fluorescence experiments showed a higher zinc content in the nuclear region indicating that the intracellular
38distribution of this metal was influenced by the over-expression of TRPC6 channels. Their properties were
39investigated with the diacylglycerol analogue SAG and the plant extract hyperforin. Electrophysiological
40recordings and imaging experiments with the fluorescent Zn2+ probe FluoZin-3 demonstrated that TRPC6
41channels form Zn2+-conducting channels. In cortical neurons, hyperforin-sensitive channels co-exist with
42voltage-gated channels, AMPA and NMDA receptors, which are known to transport Zn2+. The ability of these
43channels to regulate the size of the mobilizable pools of Zn2+ was compared. The data collected indicate that the
44entry of Zn2+ through TRPC6 channels can up-regulate the size of the DTDP-sensitive pool of Zn2+. By showing
45that TRPC6 channels constitute a Zn2+ entry pathway, our study suggests that they could play a role in zinc
46homeostasis.
47© 2011 Published by Elsevier B.V.

4849

50

51

52 1. Introduction

53 Transient receptor potential channels of C type (TRPC) form Ca2+-
54 conducting non selective cation channels. Seven isoforms (TRPC1–
55 TRPC7) have been characterized so far. Although a detailed molecular
56 understanding of theirmode of activation is still lacking, some TRPC, like
57 TRPC6, can be activated by the second messenger diacylglycerol (DAG)
58 or its analogues 1-oleoyl-2-acetyl-sn-glycerol (OAG) and 1-stearoyl-2-
59 arachidonoyl-sn-glycerol (SAG) [1,2]. TRPC6 is widely expressed

60including in the brain [3]. In the hippocampus, they are predominantly
61found in post-synaptic densities and participate in the formation of
62excitatory synapses [4]. In the cortex, TRPC6 channels are found in
63astrocytes [5], neurons and progenitor cells [6,7]. In cortical astrocytes,
64pro-inflammatory cytokines up-regulate the entry of Ca2+ by enhancing
65the expression of TRPC6 channels [5]. In cell lines (HEK-293 and PC12
66cells), TRPC6 channels promote the entry of iron via a mechanism
67independent of the transferrin receptor [8]. Besides these reports, only a
68few studies have addressed the question of their physiopathological
69importance in brain cells.
70The goal of the present work was to determine whether the
71heterologous expression of TRPC6 channels into HEK-293 cells confers
72new properties upon these host cells. The data shown in the present
73report indicate that the stable over-expression of TRPC6 channels in
74HEK-293 cells (HEK-TRPC6) is associated with an intracellular
75accumulation of zinc and sulphur, and a reduction of the copper
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76 content. Furthermore, HEK-TRPC6 cells are more sensitive to an
77 oxidative insult thanwild-type HEK cells. This seems specific to TRPC6
78 channels because HEK-293 cells stably over-expressing TRPC3
79 channels (HEK-TRPC3) behave like wild-type HEK-293 cells. Live-
80 cell imaging experiments conducted with the fluorescent Zn2+ probe
81 FluoZin-3 show that TRPC6 channels allow the entry of Zn2+ even in
82 the presence of a physiological concentration of Ca2+. This finding is
83 confirmed by electrophysiological recordings showing that TRPC6
84 channels can give rise to Zn2+ currents. This property is also shared by
85 native TRPC6 channels of cortical neurons where the entry of Zn2+

86 through these channels influences the size of the internal pools of
87 mobilizable Zn2+. Several types of Ca2+-conducting channels like
88 voltage-gated Ca2+ channels and glutamatergic receptors of NMDA
89 and AMPA/kainate types can allow the transport of Zn2+ through the
90 plasma membrane [9–11]. It is proposed that TRPC6 channels could
91 constitute another Zn2+ entry pathway in neurons. In this cell type,
92 Zn2+ ions can be buffered by mitochondria and metallothioneins, and
93 in some neuronal populations, in synaptic vesicles. Although not
94 known with certainty, the cellular concentration of Zn2+ is in the
95 order of 150–250 μM.

96 2. Materials and methods

97 2.1. Culture of HEK-293 cells

98 HEK-293 cells (purchased from ATCC, LGC Promochem, France)
99 and HEK-293 cells stably expressing the cation channels TRPC6 (HEK-
100 TRPC6) [3] and TRPC3 (HEK-TRPC3) [12] were platted at a density of
101 30,000 cells/mL and grown in a DMEM medium supplemented with
102 10% foetal bovine serum and 1% penicillin/streptomycin. G418
103 (50 μg/mL) was added to the culture medium for the HEK-TRPC6
104 and HEK-TRPC3 cells [3,12].

105 2.2. Primary cell cultures

106 Cortical cells were dissociated from cerebral cortices isolated from
107 E13 embryos from (vaginal plug was designated E0) C57BL6/J mice
108 according to [13]. Briefly, brains of E13 C57BL6/J embryonicmicewere
109 placed in an ice-cold Ca2+- and Mg2+-free Hank's solution containing
110 33 mM glucose, 4.2 mM NaHCO3, 10 mM HEPES, 1% penicillin/strep-
111 tomycin. For each culture, 8 to 10 E13 cortices (isolated from 4 to 5
112 E13mice) weremechanically minced by repetitive aspirations though
113 a sterile and fire-polished Pasteur pipette. The cell suspension was
114 filtered through a 40 μm cell strainer (BD Falcon). Glass cover-slips
115 (Marienfield, Germany) were treated with poly-L-ornithine (2 h at
116 37 °C) and washed twice with sterile water before plating the cells.
117 Cells were grown in a Neurobasal medium containing 2% B27, 1%
118 penicillin/streptomycin and 500 μM glutamine. Three days after the
119 plating of the cells, half of this culture medium was removed and
120 replacedwith a freshmedium. The procedures usedwere approved by
121 the Ethical Committee of Rhône-Alpes Region (France) and the Ethical
122 Committee of Grenoble (ComEth) (protocol 7_IRTSV-LCBM-AB-01).

123 2.3. Zinc imaging experiments with FluoZin-3

124 Changes in the intracellular concentration of free Zn2+ were
125 recorded with the fluorescent Zn2+ indicator FluoZin-3 [14]. The
126 experimental conditions were as follows: after removal of the culture
127 medium, cells werewashed twicewith a saline solution containing (in
128 mM): 140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose, pH 7.4
129 (NaOH) and incubated for 20 min (at room temperature in the dark)
130 in the above solution supplemented with 5 μM FluoZin-3/AM.
131 Afterwards, cells were washed twice with a FluoZin-3/AM-free
132 solution and kept at room temperature ≥20 min to allow the de-
133 esterification of the dye. When the experiments were conducted on
134 HEK, HEK-TRPC3 and HEK-TRPC6 cells, 1 mMprobenicidwas added to

135the saline solution. Glass cover-slips, inserted into a perfusion
136chamber (RC-25F,Warner Instruments, Phymep, France), were placed
137on the stage of an Axio Observer A1 microscope (Carl Zeiss, France)
138equipped with a Fluar 40× oil immersion objective lens (1.3 NA) (Carl
139Zeiss, France). Light was provided by the DG-4 wavelength switcher
140(Princeton Instruments, Roper Scientific, France). The excitation light
141for FluoZin-3 was filtered through a 470–495 nm excitation filter and
142the emitted light was collected through a 525 nm filter. The images
143were acquired with a CCD CoolSnap HQ2 camera (Princeton In-
144struments, Roper Scientific, France) and analyzed with the MetaFluor
145software (Universal Imaging, Roper Scientific, France). Images were
146captured at a frequency of 0.2 Hz. The baseline FluoZin-3 fluorescence
147was recorded for ≥1 min before the addition of any agent (e.g. Zn
148acetate, SAG, or hyperforin) and averaged (F0). Unless otherwise
149indicated, the changes in FluoZin-3 fluorescence as a function of time
150were expressed as F/F0, with F being the FluoZin-3 fluorescence.

1512.4. Calcium imaging experiments with Fura-2

152The experiments were conducted according to protocols previ-
153ously described [7]. Cells grown on glass cover-slips were incubated in
154a saline solution (see above) containing 2.5 μM Fura-2/AM for 15 min
155at room temperature in the dark. Cells were washed twice and bathed
156in a Fura-2-free saline solution. The experimental setup was the same
157as described above except a dual excitation at 340 and 380 nm was
158used, and emission was collected at 515 nm. Images were collected at
159a frequency 0.5 Hz and Fura-2 signals (F340 nm/F380 nm) were
160analyzed off-line using the software MetaFluor (Universal Imaging,
161Roper Scientific, France). All the Ca2+ and Zn2+ imaging experiments
162were conducted at room temperature. FluoZin-3 values are reported
163as means±SEM, with n indicating the number of cell bodies analyzed.
164The depolarising medium used to activate voltage-gated Ca2+

165channels contained (in mM): 91 NaCl, 50 KCl, 2 CaCl2, 1 MgCl2, 10
166HEPES, 10 glucose, pH 7.4 (NaOH).

1672.5. Electrophysiological recordings

168Hyperforin-activated currents were recorded at room temperature
169using the standard tight-sealwhole-cell configurationof thepatch clamp
170technique [15]. Patch pipettes were pulled from borosilicate glass
171capillaries. Theywerefilledwith a solution containing (inmM)140 CsCl,
17210HEPES, 4 ATP, 0.1 GTP (pH7.2, CsOH) and had a resistance of 3–5 MΩ.
173Unless otherwise indicated, the bath recording medium had the
174following composition (in mM): 140 N-methyl D-glucamine, 10
175HEPES, 5 glucose, 10 CaCl2 or ZnCl2. The pH of this recording solution
176wasadjusted at 7.15 inorder to obtain anon-precipitatingZn2+solution.
177Themembrane potential was held at−60 mVbymeans of an Axoclamp
178200B amplifier. Currents recorded in response to the bath application of
17910 μMhyperforinwerefiltered at 1–2 kHzandanalysed off-linewith the
180pClamp software (version 9.0, Axon Instruments) [7]. Whole-cell
181currents, recorded at room temperature 1 to 3 days after the plating of
182the cells, were triggered from a holding potential of 0 mV at a frequency
183of 0.2 Hz by 200 ms voltage ramps from−100 to +100 mV. Capacitive
184transients were cancelled and the cell capacitance value was read from
185the Axoclamp 200B amplifier dials. The hyperforin-induced currents
186shown in thepresent study are smaller than theones reported before [7].
187We previously noticed that the size of the hyperforin-induced Ca2+

188responses differed from one batch of hyperforin to the other [16].

1892.6. Determination of the metal content of HEK, HEK-TRPC3 and HEK-
190TRPC6 cells

191HEK-293 cells, HEK-TRPC3 or HEK-TRPC6 cells were harvested by
192gentle pipetting and washed twice with PBS and once with PBS
193supplemented with 5 mM EDTA to remove metals non-specifically
194bound to membranes. The total protein concentration of each sample
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195 wasmeasured according to the Bio-Rad DC Protein Assay. Pellets were
196 dried by heating and vacuum and mineralized by incubation
197 overnight in 70% nitric acid at 50 °C, before analysis with Inductively
198 Coupled Plasma-Optical Emission Spectrometry (ICP-OES) with a
199 Varian, Vista MPX instrument [17]. The zinc and sulphur contents
200 were normalised to the amount of protein in each pellet. The
201 intracellular contents of copper and iron were determined by atomic
202 absorption spectroscopy. Dried pellets were homogenized by incu-
203 bation overnight in tetramethylammonium hydroxide before analysis
204 by electrothermal atomic absorption spectroscopy using external
205 calibration curve and Zeeman background correction (Hitachi model
206 8270, Tokyo, Japan). The copper and iron contents were normalised to
207 the amount of protein in each pellet.

208 2.7. Colorimeric MTT assay

209 Mitochondrial activity was measured as an indicator of cell viability
210 [18]. HEK, HEK-TRPC3 and HEK-TRPC6 cells were plated in 96-wells
211 culture plates. After 1 day in vitro cellswere incubatedwith 50 μMDTDP
212 for 1 hr at 37 °C. The oxidantwaswashed away and24 h later 0.5 mg/mL
213 MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide]
214 was added for 3 h at37 °C in the dark. Themediumwas removed and the
215 dark blue crystals formed were dissolved by adding 100 μl DMSO/well.
216 The optical density wasmeasured at 570 nmwith a Tecan InfiniteM200
217 microplate reader (Tecan, France). Results are presented as the
218 percentage of survival with DTDP-untreated (control) cells as 100%
219 and Triton-X100-treated cells as 0%.

220 2.8. Measurement of the production of reactive oxygen (ROS) species

221 The ROS-sensitive fluorescent probe 5-(and-6)-chloromethyl-2′,7′-
222 dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA) was
223 used to detect ROS production in HEK, HEK-TRPC3 andHEK-TRPC6 cells.
224 Cells, plated in 96-well plates, were loaded with 5 μM CM-H2DCFDA for
225 20 min at room temperature. Cells were excited at 495 nm and the
226 emitted fluorescence was collected at 527 nm using a Tecan Infinite
227 M200 microplate reader (Tecan, France).

228 2.9. Synchrotron microbeam X-ray fluorescence

229 HEK and HEK-TRPC6 cells were grown on Si3N4 membranes
230 (3×3 mm2, thickness 500 nm, Silson Ltd., England). They were first
231 coated with poly-L-lysine (0.0025% in H2O, 90 min at 37 °C), following
232 bypoly-L-ornithine(0.0033% inH2O, 90 minat37 °C). Si3N4membranes
233 were washed twice with sterile deionized water. The cell suspension
234 was added to the membrane and incubated under 95% O2/5% CO2 at
235 37 °C for 48 h. Cells were then rinsedwith PBS, cryofixed at−160 °C by
236 plunge-freezing into isopentane chilled with liquid nitrogen, further
237 freeze dried at−65 °C in vacuum, and stored at room temperature in a
238 desiccator prior to synchrotron nanoanalysis. The protocol applied
239 preserved the cellular morphology and the chemical element distribu-
240 tion integrity [19]. X-ray fluorescence nanoanalyses were performed at
241 the nanoimaging end station ID22NI of the European Synchrotron
242 Radiation Facility (ESRF, Grenoble, France). Dynamically bent graded
243 multilayers set in the Kirkpatrick–Baez geometrywere used to focus the
244 X-ray beam from an undulator source to a spot size of approximately
245 100 (H)×130 (V) nm2 on the specimen. Incident photon energy of
246 17.5 keV was used, with a monochromaticity of 2% and a flux of
247 5×1011 photons/s. The sample, mounted in air at room temperature on
248 a nanopositioner stage, was raster-scanned with a step size of 100 nm
249 through the focal plane while the spectrum of the emitted fluorescence
250 was recorded with an energy dispersive silicon drift diode collimated
251 detector (SII Nanotechnology Vortex 50 mm2) placed in the horizontal
252 plane at 75° from the incident beam. The integration time per scan point
253 was 0.3 s. Elemental maps were created by PyMCA software [20] by
254 fitting the recorded spectrum in every scan point to determine the

255fluorescence signal for each element. The quantitative evaluation
256provided elemental area concentration (μg/cm2) [21]. The standardisa-
257tion to convert thefluorescence signal to anelemental area concentration
258was achieved by fitting spectra against the signal derived from thin-film
259standards SRM-1832a, SRM-1833a (National Bureau of Standards,
260Gaithersburg, MD, USA). The data shown were collected from 4 to 5
261independent cultures.

2622.10. Materials

263Fura-2/AM, FluoZin-3/AM and 5-(and-6)-chloromethyl-2′,7′-
264dichlorodihydrofluorescein diacetate acetyl ester were from Molecular
265Probes (Invitrogen, France). Tissue culture media were obtained from
266Invitrogen (France). All other reagents were from Sigma-Aldrich
267(France). Hyperforin was a kind gift from Dr. Willmar Schwabe GmbH
268& Co (Karlsruhe, Germany). The extract is a mixture of hyperforin with
269its homologue adhyperforin (ratio 8:2), prepared as sodium salts [7].

2703. Results

2713.1. Expression of TRPC6 channels increases the intracellular content of
272Zn and S

273The effect of the expression of TRPC6 channels on the total cellular
274content of various elements was determined. When compared to HEK
275cells and HEK-TRPC3 cells, HEK-TRPC6 cells were enriched in zinc and
276sulphur, whereas their copper content was reduced (Table 1). No
277significant differences were seen with the other elements tested (iron,
278sodium, potassium, magnesium, phosphorus) (supplementary data,
279Table 1). Similarly to TRPC6, TRPC3 can form DAG-sensitive cation
280channels. However, HEK-TRPC3 cells had the same zinc, copper and
281sulphur content as HEK cells (Table 1) (supplementary data, Table 1).
282Thus, the expression of TRPC6 (but not TRPC3) channels gives rise to
283specific changes in the cellular content of biologically relevant elements.

2843.2. Expression of TRPC6 channels increases the size of the mobilizable
285pool of Zn2+

286An oxidative stress increases the intracellular concentration of free
287Zn2+ ([Zn2+]i) [22]. Since HEK-TRPC6 cells have a large zinc content,
288when compared to HEK (and HEK-TRPC3) cells, we checked whether
289oxidative conditions could give rise to larger changes in [Zn2+]i in HEK-
290TRPC6 cells. This hypothesiswas tested byusing thefluorescent indicator
291FluoZin-3. It is a highly specific Zn2+probehaving aKdof 15 nM[14]. The
292oxidant 2,2′-dithyodipyridine (DTDP) which can mobilise Zn2+ from
293internal pools [22] was used to assess the size of the mobilizable pool of
294Zn2+. DTDP elicited larger FluoZin-3 signals in HEK-TRPC6 cells when
295compared toHEKandHEK-TRPC3cells (Fig. 1A). The additionof theZn2+

296chelator TPEN completely abolished theDTDP-induced FluoZin-3 signals,
297confirming that DTDP affected [Zn2+]i (Fig. 1A).

2983.3. HEK-TRPC6 cells are more sensitive to an oxidative stress

299Zinc ions are known to influence the cellular redox state and can
300thus alter cell survival [23]. In the following set of experiments it was

Table 1 Q2

t1:1HEK-293 cells HEK-TRPC6 cells HEK-TRPC3 cells

t1:2Zn 302±23 429±25 ** 218±5
t1:3S 7081±477 13,215±701 ** 8155±206
t1:4Cu 11.9±1.8 7.8±0.2 * 10.3±0.1

The results are expressed as μg of metal/g of proteins. Means±sem are given for n=3
to 11 independent measures. Differences between groups were determined using an
ANOVA followed by a Tukey's test (for S and Zn) and a Dunn's test (for Cu), with *
pb0.05 and ** pb0.001, when compared to HEK cells. t1:5
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301 determined whether HEK-TRPC6 cells are more sensitive to an
302 oxidative insult than HEK cells. To this aim, HEK, HEK-TRPC3 and
303 HEK-TRPC6 cells were incubated with 50 μM DTDP for 1 h at 37 °C.

304The oxidant was washed away and the colorimetric MTT test was
305employed. Reduction of MTT is an index of mitochondrial activity and
306an indicator of cell viability. In these experiments, the concentration

Fig. 1. HEK-TRPC6 cells have a large pool of mobilizable Zn2+. HEK, HEK-TRPC3 and HEK-TRPC6 cells were loaded with FluoZin-3/AM. Panel A shows the increase of the FluoZin-3
fluorescence (F/F0) in response to theapplicationofDTDP (50 μM). TPEN(5 μM)reversed theDTDP-induced FluoZin-3signals. DTDP andTPENwere addedwhen indicatedby thehorizontal
bars. The numberof cells anddishes usedwas: 166/4 (HEKcells), 207/5 (HEK-TRPC3 cells) and109/4 (HEK-TRPC6cells).Mean±sem.Whennot visible, error bars are smaller than symbols.
For the sakeof clarity only every twopoints is shown.Panel B themitochondrial activity ofHEK,HEK-TRPC3andHEK-TRPC6cellswasmeasured as an index of cell viability. Cellswere grown
in96-wells culture plates and incubatedwith 50 μMDTDP for 1 hr at 37 °C. Twenty four hours later 0.5 mg/mlMTTwas added for3 hours at 37 °C. In someexperiments, the culturemedium
of HEK-TRPC6 cells was supplemented with 2 mMGSH, added 2 h before DTDP (and still present during the DTDP challenge). The effect of the Zn2+ chelator TPEN (0.2 μM)was tested on
HEK-TRPC6 cells. It was added 10min before DTDP and remained present during the DTDP treatment. However, TPEN did not protect HEK-TRPC6 cells. Results are presented as the
percentage of cell death with DTDP-untreated (control) cells as 0% and Triton-X-100 treated cells as 100%. Mean±sem from 3 to 6 independent experiments. NS: the difference was not
statistically significant (pN0.05); * pb0.05, onewayANOVA followedby aHolm-Sidak test. Panel C:ADTDP treatment alters themorphologyofHEK-TRPC6 cells. HEK,HEK-TRPC3andHEK-
TRPC6 cellsweremaintainedwithout or transiently treatedwith 50 μMDTDP for 1 h at 37 °C (same protocol as in Fig. 1B).Microphotographswere obtained24 h after thewashout of DTDP.
The treatment altered the morphology of the cells, particularly HEK-TRPC6 cells (arrowheads). The fluorescent probe CM-H2DCFDA was used to monitor the production of ROS. CM-
H2DCFDA-loaded cells were kept for 30 min at room temperature without or with 50 μM DTDP (D) or without or with 1 mM H2O2 (E). The ability of TPEN (0.2 μM) to reverse the DTDP-
induced production of ROS was also tested. The chelator was added 10 min before DTDP and remained present during the DTDP treatment. The presence of TPEN did not prevent the
production of ROS in HEK-TRPC6 cells. Mean±sem from three independent experiments. * pb0.05, Student's t test.
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307 of DTDP used (50 μM) induced the death of 15%, 5% and 30% of the
308 HEK, HEK-TRPC3 and HEK-TRPC6 cells, respectively (Fig. 1B). Pre-
309 incubating HEK-TRPC6 cells with 2 mM GSH attenuated the DTDP-
310 induced cell death whereas TPEN (0.2 μM) failed to prevent the DTDP
311 response (Fig. 1B). Larger concentrations of this chelator could not be
312 used because at concentrations ≥0.4 μM TPEN alone could provoke a
313 cell loss (not shown). In contrast to HEK and HEK-TRPC3 cells where
314 only a few cells were affected, DTDP profoundly modified the
315 morphology of HEK-TRPC6 cells (Fig. 1C). The effect of a DTDP
316 challenge on the viability of the cells was assayed bymeans of the vital
317 dye trypan blue (Fig. 1C). Without DTDP treatment, the number of
318 trypan blue-positive cells was ~1% in all group of cells, namely HEK,
319 HEK-TRPC3 and HEK-TRPC6 cells (n=3 measurements). However,
320 the DTDP treatment increased the number of trypan blue-positive
321 HEK-TRPC6 cells to 19±3% (n=6) whereas the number of dead HEK
322 and HEK-TRPC3 cells was 8±1% and 7±1% (n=6), respectively
323 (Fig. 1C). The production of reactive oxygen species (ROS) induced in
324 response to the application of the oxidants DTDP and H2O2 was
325 monitored with the ROS-fluorescent probe CM-H2DCFDA. The
326 production of ROS evoked by 50 μM DTDP (Fig. 1D) or 1 mM H2O2

327 (Fig. 1E) was larger in HEK-TRPC6 cells when compared to HEK cells.
328 This DTDP-dependent production of ROS was not prevented by TPEN
329 (Fig. 1D). Altogether, it seems that HEK cells expressing TRPC6
330 channels are more sensitive to an oxidative stress than HEK cells or
331 cells expressing TRPC3.

332 3.4. Analysis of the sub-cellular distribution of zinc by X-ray fluorescence

333 Synchrotron X-ray fluorescence nanoprobe was applied for the
334 topographic and quantitative analyses of zinc in HEK and HEK-TRPC6
335 cells. When determined by this approach, the total average zinc
336 content of HEK-TRPC6 cells was larger than in HEK cells (0.56
337 ±0.045 μg/cm2, n=5, vs 0.38±0.06 μg/cm2, n=4, pb0.05, Student's
338 t test). These results are thus in line with our previous measurements
339 with ICP-OES (Table 1). The cellular calcium content was quantified
340 using this technique. The values found for HEK and HEK-TRPC6 cells
341 (1.18±0.2 μg/cm2, n=4, vs 0.95±0.13 μg/cm2, n=5, pN0.05,
342 Student's t test) indicate that the over-expression of the channel did
343 not influence the cellular Ca load. Fig. 2 shows representative two-
344 dimensional mappings of the intracellular distribution of zinc in HEK
345 (Fig. 2A) and HEK-TRPC6 cells (Fig. 2B). The metal was found rather
346 homogenously distributed all over the cell with a stronger density in
347 the thickest part of the cells, probably the nucleus. The data gained
348 with a spatial resolution of 100 nm indicate that the expression of

349TRPC6 channels influences the intracellular distribution of Zn2+ and
350favours its enrichment in the nuclear region.

3513.5. TRPC6 channels permit the entry of Zn2+ in HEK cells

352Since TRPC6 channels are non-selective cation channels [1], and their
353over-expression in HEK cells affects their zinc status, experiments were
354carried out to determine whether TRPC6 channels could permit the
355uptake of Zn2+. For this purpose, 1-stearoyl-2-arachidonoyl-sn-glycerol
356(SAG), a DAG analogue known to activate TRPC6 channels [7,24] was
357used. HEK, HEK-TRPC3 or HEK-TRPC6 cells were first loaded with
358FluoZin-3 and kept in a Ca2+ (2mM)-containing saline. The bath
359addition of Zn2+ (50 μM) was accompanied by an elevation of the
360FluoZin-3 fluorescence, indicating the existence of a basal entry of Zn2+

361into these cells (Fig. 3A). A subsequent addition of SAG (100 μM), still in
362the presence of Zn2+, gave rise to larger FluoZin-3 signals. When
363compared to HEK cells, the SAG-dependent entry of Zn2+ was more
364important in HEK-TRPC6 cells (Fig. 3A). Fig. 3B summarises these
365experiments and shows the maximal FluoZin-3 signals measured at the
366end of the recording in each condition. The FluoZin-3 signals of HEK-
367TRPC3 cells were not different from the ones recorded on HEK cells,
368further showing that the expression of TRPC3 and TRPC6 channels does
369not elicit the same cellular responses. Electrophysiological experiments
370were conducted to further examine the ability of TRPC6 channels to
371transport Zn2+ ions. Cells were placed in a medium containing 10 mM
372CaCl2 and no added K+ and Na+ ions (replaced by the impermeant
373organic cation N-methyl-D-glucamine). The bath application of hyper-
374forin provokes a Ca2+ entry in HEK-TRPC6 cells but not in HEK or HEK-
375TRPC3 cells (see Supplementary data, Fig. 1). This confirms that
376hyperforin can trigger the opening of TRPC6 channelswithout activating
377the other TRPC isoforms [25]. When voltage-clamped at a membrane
378potential of −60 mV, HEK-TRPC6 cells developed a transient Ca2+

379current in response to the application of hyperforin (Fig. 3C) as already
380demonstrated [25]. Its mean peak amplitude was 161±30 pA (n=12).
381In the presence of 10 mM ZnCl2 (instead of 10 mM CaCl2), hyperforin
382was still able to induce a transient inward current but of smaller
383amplitude (89±14 pA, n=12) (p=0.035 when compared to Ca2+

384currents, Student's t test). Representative I-V plots fromdistinct cells are
385shown in Fig. 3D. In both instances (Ca or Zn), hyperforin gave rise to
386inward and outward currents having a reversal potential of ~0 mV
387(Fig. 3D). Similar experiments were conducted with 1 mM ZnCl2.
388Reducing the external concentration of Zn2+ diminished the amplitude
389of the hyperforin-activated currents (trace c, grey line, Fig. 3E and F).
390Complexing Zn2+ with the impermeant chelator tricine (N-tris(hydro-
391xymethyl)methylglycine) [26] markedly reduced the amplitude of the
392hyperforin-induced inward currents (Fig. 3E–F). These electrophysio-
393logical recordings show that, at−60mV, amembrane potential close to
394the resting membrane potential, TRPC6 channels of HEK-293 cells allow
395the permeation of cations like Ca2+ and Zn2+.

3963.6. DAG-sensitive channels of cortical neurons permit the entry of Zn2+

397TRPC6 channels are found in many organs including the brain [1].
398For instance, in the embryonic murine cortex, astrocytes and neurons
399express functional DAG-sensitive TRPC6 channels [5–7]. Experiments
400were conducted on cortical neurons in culture to determine whether
401endogenous DAG-sensitive channels of brain cells could permit the
402uptake of Zn2+. FluoZin-3-loaded cortical neurons were exposed to
403Zn2+ (100 μM) alone or to Zn2+ (100 μM)+the channel activator
404SAG. In the absence of SAG, a weak FluoZin-3 signal was observed,
405reflecting amodest basal uptake of Zn2+ (Fig. 4A). Activating channels
406with SAG elicited a clear FluoZin-3 response that was suppressed by
407the cation channel blocker Gd3+ (Fig. 4A). Thus, cortical neurons
408express DAG-sensitive channels [7] allowing the entry of Zn2+.
409Several concentrations of Zn2+were tested (2, 50 and 100 μM). Fig. 4B
410shows that the amplitude of the FluoZin-3 signal was dependent of

Fig. 2. Intracellular distribution of zinc in HEK and HEK-TRPC6 cells. Representative 2D
maps of zinc in HEK cells (A) and in HEK-TRPC6 cells (B) were obtained with
synchrotron X-ray fluorescence nanoprobe. The rainbow colour scales on the right
show the range of concentration of zinc in the samples (elemental concentrations are
given in micrograms per cm2). Scale bars: 5 μm. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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411 the external concentration of Zn2+. It is important to mention
412 that these experiments were conducted with a saline solution
413 containing 2 mM CaCl2. Some experiments were performed with a
414 nominally Ca2+-free solution and the channels were activated with
415 either SAG (Fig. 4C) or hyperforin (Fig. 4D). Hyperforin elicited much
416 robust FluoZin-3 signals than SAG.Whatever the channel agonist used
417 (SAG or hyperforin), the FluoZin-3 signals were larger with a Ca2+-
418 free solution when compared to the 2 mM Ca2+ saline solution
419 (Fig. 4E). Control experiments were conducted during which
420 hyperforin or SAG was added alone (without Zn2+). As already
421 shown [27], hyperforin increases [Zn2+]i. This response was however
422 not influenced by the external concentration of Ca2+ (Fig. 4E). If SAG

423was added without Zn2+, it did not elicit any FluoZin-3 response
424indicating that SAG alone does influence the homeostasis of Zn2+.
425Thus, the hyperforin-dependent FluoZin-3 signals recorded when
426cells were bathed in a Zn2+-containing solution have a dual origin:
427they reflected the entry of Zn2+ via hyperforin-sensitive channels and
428the release of Zn2+ from mitochondria [27].
429Next, electrophysiological experiments were conducted on cul-
430tured cortical neurons to see whether the hyperforin-sensitive
431channels of brain cells could transport Zn2+. In neurons, the
432hyperforin-induced inward currents were of smaller amplitude than
433in HEK-293 cells over-expressing TRPC6 channels. However, the
434permeation of Ca2+ (or Zn2+) yields a clear inward current through

Fig. 3. TRPC6 channels of HEK cells allow the entry of Zn2+. A HEK, HEK-TRPC3 and HEK-TRPC6 cells were loadedwith FluoZin-3.When bath applied, 50 μMZn acetate elicited aweak
increase of the FluoZin-3 fluorescence in the three cell types. A subsequent addition of 100 μM SAG (still in the presence of Zn2+) augmented the uptake of Zn2+ in HEK-TRPC6 cells
whereas HEK and HEK-TRPC3 cells poorly responded to SAG. Number of cells and dishes used: 265/5 (HEK), 151/4 (HEK-TRPC3) and 125/4 (HEK-TRPC6). Mean±sem. For the sake
of clarity only one point out of four is shown. The recordingmedium contained 2 mMCaCl2. Panel B is a bar graph representing the amplitude of the FluoZin-3 (F/F0) signals (Mean±
sem). Isochronal measurements were made 580 s after the beginning of the recording with ** pb0.01 (one way ANOVA followed by a Dunns’ test); NS: not significant (pN0.05). In
panel C are shown superimposed whole-cell patch recordings from 2 different HEK-TRPC6 cells. The holding membrane potential was set at −60 mV and 10 μM hyperforin was
added when indicated (arrow). The bath recording medium contained either 10 mM CaCl2 or 10 mM ZnCl2. D representative current-voltage relationships from 3 distinct cells in
response to the application of voltage ramps elicited from a holding potential of 0 mV. The external medium contained either 10 mM CaCl2, 10 mM ZnCl2 or consisted of a Ca2+- and
Zn2+-free solution. Panel E shows I-V plots from different cells obtained with or without tricine (10 mM). The external medium contained 1 mM ZnCl2 (grey lines) or 10 mM ZnCl2
(black lines). F is a summary plot showing themean (±sem) peak current density (−pA/pF)measured at−60 mV. The number of cells used in each condition was 12 (10 mMCa), 9
(1 mM Zn), 4 (1 mM Zn+10 mM tricine), 12 (10 mM Zn) and 4 (10 mM Zn+10 mM tricine). * pb0.05, Student's t-test.
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435 the hyperforin-sensitive channels (Fig. 4F). In contrast to HEK-TRPC6
436 cells, substituting Ca2+ by Zn2+ ions did not affect the size of the
437 hyperforin-sensitive currents (30±4 pA, n=10, in 10 mM CaCl2, and
438 30±5 pA, n=10, in 10 mM ZnCl2) (Fig. 4G). HEK-TRPC6 cells and
439 cortical neurons had comparable values of cell capacitance (19.8±
440 1.4 pF, n=41, for HEK-TRC6 cells, and 18.4±1.4 pF, n=20, for the

441neurons, pN0.05, Student's t test) (Fig. 4G). Consequently, HEK-TRPC6
442cells had hyperforin-sensitive currents of larger density than neurons
443(Fig. 4H). In both types of cells (HEK-TRPC6 cells and neurons), the
444application of hyperforin can give rise to an influx of Zn2+ ions. This
445finding further adds support to the idea that TRPC6 channels could
446transport Zn2+.

Fig. 4. TRPC6 channels of neurons cells allow the entry of Zn2+. A. Cortical neurons in culturewere loadedwith FluoZin-3. The graph shows FluoZin-3 responses obtained in thepresence of
Zn2+ (50 μM)added (arrow)without orwith 50 μMSAG, orwith 50 μMSAG+5 μMGd3+. Number of cells and dishes used: 120/5 (Zn2+without SAG), 264/10 (Zn2++SAG), and 250/10
(Zn2++SAG+Gd3+).Mean±sem.Whennot visible, error bars are smaller than symbols. Panel B is a summary graph of the experiments depicted inA. FluoZin-3 loaded cortical neurons
were exposed to either 2, 50 or 100 μMZn2+(Zn acetate)without orwith SAG (50 μM). For each cell, the FluoZin-3fluorescencewasmeasured250 s after the addition of SAG (either alone
or togetherwith Zn acetate). For each condition, the number of cells usedwas 73–264 cells from 3 to 10 independent experiments. Mean±sem. Of note, the recordingmedium contained
2 mMCa2+. *** pb0.001,Mann–Whitney test. PanelC showsFluoZin-3 loadedcorticalneurons kept inaCa2+-free (thin lines)or innormal (2 mMCa2+) saline solution (thick lines).When
indicated (arrow) either 100 μMZn2+alone or 100 μMZn2++50 μMSAGwas added (and remainedpresent throughout the recording). Shown are representative FluoZin-3 responses. D,
same experiments as in C except native channels of cortical neurons were activated with 10 μM hyperforin. Cells were maintained in a Ca2+-free or in a normal (2 mM Ca2+) recording
solution. Panel E is a summarygraph of the experiments illustrated inpanels C andD. Thenumberof cells anddishes usedwas 120/5 (Zn2+−Ca2+), 103/3 (Zn2++Ca2+), 264/10 (Zn2++
SAG,−Ca2+), 101/3 (Zn2++SAG,+Ca2+), 84/3 (Zn2++hyperforin,−Ca2+), 73/4 (Zn2++hyperforin,+Ca2+). The bar graph also shows the FluoZin-3 signals observed in the presence
of hyperforin and SAG added alone, without Zn2+. For each cell, the FluoZin-3 fluorescence was measured 250 s after the addition of Zn2+, Zn2++SAG, Zn2++hyperforin, hyperforin or
SAG.Mean±sem. *** pb0.001 (Student's t test). Hyperforin-activated currents from cortical neurons are shown in F. Cells were bathed in a recordingmedium containing 140 mMNMDG
plus either10 mMCaCl2 orZnCl2.Hyperforin (10 μM)wasaddedwhen indicated (arrows).G is a bar graphof themean (±sem)of themaximal peak inwardcurrents elicitedbyhyperforin.
The number of cells usedwas 10 in each condition. Panel H is a summary graph reporting the density of thehyperforin-activated current. This graphwas obtained bydividing, for each cell,
its peak current amplitude (pA) by its cell capacitance (pF). Mean±sem. * pb0.02, Student's t test. HEK-TRPC6 cells: same data as in Fig. 3F.
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Fig. 5. Zn2+ entry through TRPC6 channels and pools of mobilizable Zn2+. A is a representative Fura-2 recording showing the coexistence of various types of Ca2+-conducting
channels in a E13 cortical neuron grown 3 days in culture. The cell was sequentially challenged with a depolarising medium containing 50 mM KCl (instead of 5 mM KCl), 50 μM
AMPA, 300 μMNMDA+100 μMglycine. In the latter case, the cortical neuron was transiently bathed in a nominally Mg2+-free medium. Hyperforin (10 μM)was added at the end of
the recording to activate TRPC6 channels. The horizontal black bars indicate when KCl, AMPA, NMDA (+glycine) and hyperforin were added. In panels B to F are shown FluoZin-3
recordings (F/F0) from cortical neurons kept in a bathing saline solution contained 2 mM CaCl2. B When indicated (arrow), 100 μM Zn acetate was added either alone (n=89 cells,
from 4 dishes) or together with 50 mM KCl (n=102 cells from 4 dishes), 300 μM NMDA (+100 μM glycine in a Mg2+-free medium) (n=101 cells from 4 dishes), 50 μM AMPA
(n=81 cells from 4 dishes), or with 50 μM SAG (n=119 cells from 4 dishes). In panel C, DTDP (100 μM) was applied (horizontal black bar) to mobilise Zn2+ from internal pools
(grey triangles, n=451 cells from 16 dishes). In some instances, prior to the DTDP challenge, cells were transiently treated (horizontal grey bar) either with 15 μM Zn2+ (open
squares, n=358 cells from 10 dishes), 15 μM Zn2++KCl (50 mM) (filled circles, n=231 cells from 7 dishes), 15 μM Zn2+ + AMPA (50 μM) (grey circles, n=190 cells from 6
dishes), or 15 μMZn2++SAG (50 μM) (open circles, n=72 cells from 6 dishes). KCl, AMPA, SAG and Zn2+werewashed away before the application of DTDP. D, same experiments as
in C, except Zn2+was omitted. This graph shows the FluoZin-3 responses (F/F0) induced by DTDP (100 μM) alone (grey triangles, n=451 cells from 16 dishes, same data as in C), and
after a prepulse during which 50 μMAMPA (grey circles, n=283 cells from 10 dishes), or 50 mMKCl (filled circles, n=261 cells from 9 dishes), or 50 SAG (open circles, n=153 cells
from 5 dishes) was applied (and washed away). In E and F, the size of the mitochondrial pool of mobilizable Zn2+was assessed bymeans of the protonophore FCCP (2 μM, horizontal
black bar). E and F, same experimental procedures as in C and D, respectively. E: FCCP (grey triangles, n=332 cells from 10 dishes), 15 μM Zn2+ (open squares, n=329 cells from 9
dishes), 15 μM Zn2++KCl (50 mM) (filled circles, n=151 cells from 4 dishes), 15 μM Zn2++AMPA (50 μM) (grey circles, n=131 cells from 4 dishes), 15 μM Zn2++SAG (50 μM)
(open circles, n=232 cells from 6 dishes). KCl, AMPA, SAG and Zn2+ were washed away before the application of FCCP. Note that the FCCP-dependent FluoZin-3 signals are much
smaller than the DTDP-sensitive signals and they are poorly affected by the entry of Zn2+ through plasma membrane Ca2+-conducting channels, except voltage-gated Ca2+

channels: the entry of Zn2+ via these channels up-regulates the size of the FCCP-sensitive pool of Zn2+. F: FCCP (2 μM) alone (grey triangles, n=332 cells from 10 dishes, same data
as in E), and after a preceding prepulse during which 50 μM AMPA (grey circles, n=114 cells from 4 dishes), or 50 mM KCl (filled circles, n=155 cells from 5 dishes), or 50 μM SAG
(open circles, n=134 cells from 5 dishes) was applied. Mean±sem, error bars are smaller than symbols. B–F: for the sake of clarity only one point out of 4 is shown. Throughout
these experiments (A–F) cells were bathed in a Ca2+ (2 mM)-containing solution.
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447 3.7. Cortical neurons express several types of Ca2+-conducting channels

448 Fig. 5A is a Fura-2 recording during which a cultured cortical
449 neuronwas activated by the sequential application of a potassium rich
450 (50 mM) solution (to depolarise the membrane potential and activate
451 voltage-gated Ca2+ channels), AMPA, NMDA (two agonists of distinct
452 glutamatergic receptors), and finally hyperforin (to activate TRPC6
453 channels). In each instance, these manoeuvres elicited a Fura-2
454 response. This shows the co-existence, even at E13, of several types of
455 functional Ca2+-conducting channels within the plasmamembrane of
456 cortical neurons. At the embryonic age of E13, cortical neurons also
457 possess store-operated Ca2+ channels (SOC) (supplementary data,
458 Fig. 2) [13,16], a family of plasma membrane Ca2+ channels activated
459 in response to the emptying of the Ca2+ stores of the endoplasmic
460 reticulum. Of interest, voltage-gated Ca2+ channels and glutamatergic
461 receptors of NMDA and AMPA/kainate types are known to permit the
462 transport of Zn2+ through the plasma membrane [9,10]. On the other
463 hand, depleting Ca2+ stores of cortical neurons with thapsigargin did
464 not elicit the entry of Zn2+ through SOC (supplementary data, Fig. 3).
465 Of note, Zn2+ ions are known to strongly block SOC [28] (see also
466 supplementary data Fig. 2). Thus, beside SOC all the other Ca2+-
467 conducting channels of E13 cortical neurons tested (namely voltage-
468 gated Ca2+ channels, AMPA, NMDA, and SAG-sensitive channels)
469 allowed the uptake of Zn2+ (Fig. 5B). When comparing the various
470 agents used, SAG and KCl were the ones that gave rise to the most
471 potent FluoZin-3 signals.

472 3.8. Zn2+ entry through Ca2+-conducting channels and size of the
473 mobilizable pool of DTDP-sensitive Zn2+

474 E13 cortical neurons possess pools of mobilizable Zn2+ [27] from
475 where this metal can be recruited. For instance, oxidants like DTDP
476 can mobilise Zn2+ from internal pools [22] as illustrated in Fig. 1A. In
477 the following set of experiments we compared the consequence of an
478 entry of Zn2+ through the Ca2+-conducting channels depicted in
479 Fig. 5A on the size of the DTDP-sensitive pool of Zn2+. Since the
480 NMDA-dependent FluoZin-3 signals were much smaller than the
481 responses evoked by AMPA, KCl and SAG, only the 3 latter types of
482 channels (AMPA receptors, voltage-gated Ca2+ channels and TRPC6
483 channels) were considered. Fig. 5C shows the FluoZin-3 signals
484 induced in response to the application of DTDP. It produced a time-
485 dependent elevation of the FluoZin-3 fluorescence (Fig. 5C, filled
486 triangles). In some instances, cells were transiently pre-treated with
487 either 15 μM Zn2+ alone or 15 μM Zn2+ + one of the following agent:
488 AMPA, KCl, or SAG, prior to the application of DTDP. As illustrated,
489 maintaining cells for a few minutes in a zinc-rich medium enhances
490 the size of the DTDP-sensitive pool of Zn2+ (Fig. 5C). However, the
491 size of this pool can be evenmore up-regulated after the entry of Zn2+

492 through KCl-, AMPA- and SAG-sensitive channels, with the largest
493 FluoZin-3 signals seen in response to the activation of voltage-gated
494 Ca2+ channels and SAG-sensitive channels (Fig. 5C). As a control,
495 similar experiments were repeated but in the absence of added Zn2+

496 (Fig. 5D). In this latter case, the DTDP-dependent FluoZin-3 responses
497 were larger when cells were transiently stimulated with AMPA (and
498 no added Zn2+) and almost not influenced if pre-stimulated with KCl
499 or SAG (Fig. 5D). Previous data showed that the entry of Ca2+

500 triggered after glutamate receptor activation mobilises Zn2+ from
501 internal pools [29]. Of note, stimulating hippocampal neurons with
502 glutamate causes the release a Zn2+ from mitochondria [30]. Such
503 mechanisms could explain the AMPA- and, to a lesser extent, the
504 modest KCl- and SAG-dependent up-regulation of the DTDP-sensitive
505 responses seen in Fig. 5D. To check whether the entry of Ca2+ through
506 Ca2+-conducting channels of E13 cortical neurons influenced the size
507 of the DTDP-sensitive pool of Zn2+, additional experiments were
508 performed. Chelating extracellular Zn2+ with CaEDTA and removing
509 extracellular Ca2+ abolished the AMPA-dependent potentiation of the

510DTDP-sensitive response (supplementary data, Fig. 4). The determi-
511nation of the zinc content in our solutions by means of ICP-OES shows
512that the concentration of Zn in the external saline solution and the
513neurobasal medium was, respectively, in the order of 15 nM and 1–
5142 μM, illustrating that this metal is present as a contaminant in saline
515solutions [31]. From these experiments, we propose that stimulating
516AMPA receptors permits the entry of Ca2+ (and Zn2+), this, in turn,
517via a glutamatergic-dependent release of Zn2+ from mitochondria
518[30], could change the Zn2+ load [29].

5193.9. Zn2+ entry through Ca2+-conducting channels and size of the
520mitochondrial pool of FCCP-sensitive Zn2+

521Mitochondria of cortical neurons have a pool of mobilizable Zn2+.
522For instance, it can be recruited in response to the application of the
523protonophore FCCP [27,32,33]. This agent was used to assess the size
524of the mitochondrial pool of mobilizable Zn2+ in E13 cortical neurons.
525FCCP elicited FluoZin-3 signals but of much smaller amplitude than
526DTDP (Fig. 5E). When the FCCP challenge was preceded by a short
527treatment with Zn2+ alone, or Zn2+ + either AMPA or SAG, this
528weakly influenced the amplitude of the FCCP-dependent FluoZin-3
529signals (Fig. 5E). However, the entry of Zn2+ through voltage-gated
530Ca2+ channels had a positive effect on the FCCP-dependent FluoZin-3
531signals (Fig. 5E). This indicates that the entry of Zn2+ through voltage-
532gated Ca2+ channels augments the size of the mitochondrial pool of
533mobilizable Zn2+ in contrast to Zn2+

fluxes through AMPA receptors
534and SAG-sensitive channels. As above, control experiments were
535conducted on cells not pre-treated with Zn2+. Under these conditions,
536a transient application of KCl, AMPA or SAG did not affect the FCCP-
537dependent FluoZin-3 responses (Fig. 5F).

5384. Discussion

539Zinc is a vital cation participating in many biological processes.
540Depending on the cell type, its cellular concentration in Eukaryotic
541cells is in the order of 150–250 μM [34,35]. Wild-type HEK-293 cells
542have a total zinc content of ~300 μg/g protein. However, the stable
543over-expression of TRPC6 channels enhances this total zinc load by
544~40% (when expressed in μg/g protein and measured by ICP-OES)
545(Table 1) and by 47% (when quantified with synchrotron X-ray
546fluorescence). In comparison, HeLa cells have a zinc content of
547174 μg/g protein and the zinc-resistant subclone HZR have a total
548quantity of zinc of N3500 μg/g protein [36]. The zinc overload of HEK-
549293 cells stably over-expressing TRPC6 channels observed by two
550independent experimental approaches, namely spectroscopic
551methods and cellular imaging with synchrotron X-ray fluorescence,
552is accompanied by an increased sulphur content. This latter finding
553probably reflects an enhanced expression of thiol-containing proteins.
554Besides zinc, copper was also affected since HEK-TRPC6 cells have less
555copper than wild-type HEK-293 cells. Clarifying the mechanism(s) by
556which the zinc status of HEK-293 cells influences their cellular copper
557content was beyond the scope of the present study and this aspect
558was thus not investigated further. It is however of interest to note
559that, in humans, the competition between zinc and copper is well
560documented. Zinc overload may provoke copper deficiency by
561decreasing copper absorption [37]. This can lead to neurologic
562abnormalities as cases of central nervous system demyelination
563associated with high zinc and low copper have been described [38].
564The results reported above, namely the alteration of the cellular
565content of some elements (Zn, S, Cu), could be unrelated to TRPC6
566channels but could instead be a consequence of the transfection
567procedure. However, HEK-293 cells stably expressing TRPC3 channels,
568another member of the TRPC family which are DAG (or DAG
569analogues)-sensitive [2] and hyperforin-insensitive [25] (Supplemen-
570tary data, Fig. 1), do not have the same phenotype as HEK-TRPC6 cells.
571Based on the analysis of microarray data, it was recently shown that
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572 the over-expression of TRPM7 channels in HEK cells altered the
573 transcription of 951 genes [39]. This up- or down regulates the
574 expression of various proteins playing roles in cellular growth and
575 proliferation, cell death, cellular morphology and movement [39].
576 Based on this finding we cannot exclude the possibility that, similarly
577 to TRPM7 channels, the over-expression of TRPC6 influences the
578 expression of proteins such as proteins participating in the cellular
579 homeostasis of Zn. For instance, TRPC6 over-expression in HEK cells
580 could alter the expression of metallothioneins (MTs). This is of
581 interest because previous studies showed that MTs can have a dual
582 action: they can function as an important zinc buffering system but
583 they can also be a source of toxic zinc [40]. Whatever the molecular
584 mechanisms involved, HEK-293 cells stably expressing TRPC6
585 channels have distinct properties as wild-type HEK-293 cells (and
586 HEK-TRPC3 cells). This observation is reminiscent to a previous study
587 showing that the expression of TRPC3 channels in HEK-293 cells
588 reduces the size of the mobilizable pool of Ca2+ [41]. Therefore, our
589 results as well as data from another laboratory [41] show that over-
590 expressing TRPC channels changes the cellular content of biologically
591 relevant cations which, in turn, can profoundly modify the properties
592 of the cells. For instance, the over-expression of TRPC6 channels
593 influences the intracellular distribution of zinc, enhances the size of
594 the mobilizable pool of Zn2+ and thus affects the sensitivity of cells to
595 an oxidative insult. Although the colorimetric MTT test cannot clearly
596 distinguish injured from dead cells, it is a convenient method used to
597 check for the cytotoxicity of a drug [42]. The data presented in Fig. 1B-
598 E reveals that the expression of TRPC6 channels (but not TRPC3
599 channels) modifies the ability of cells to respond to an oxidative
600 stress: the application of DTDP perturbs the mitochondrial activity, as
601 illustrated by the MTT test and, in addition, alters the morphology of
602 TRPC6-expressing cells. The production of ROS and Zn2+ homeostasis
603 seem interdependent [29]. In neurons, oxidative conditions can
604 release Zn2+ from intracellular stores which, in turn, can cause
605 neuronal apoptosis [22]. Zn2+ indirectly influences the production of
606 ROS via its ability to inhibit the mitochondrial activity [43].
607 Throughout this study, the activity of TRPC6 channels was
608 controlled by means of two pharmacological tools: SAG and
609 hyperforin. TRPC6 channels can indeed open in response to DAG or
610 DAG analogues like SAG or OAG [1,2]. Cortical neurons express SAG-
611 sensitive channels. The entry of Ca2+ through these SAG-sensitive
612 channels is enhanced by flufenamic acid [7]. To our knowledge, TRPC6
613 is the only TRPC positively regulated by flufenamic acid, an agent
614 known to block the other TRPC channels [44,45]. Like DAG and DAG
615 analogues, the plant extract hyperforin is able to trigger the opening
616 of TRPC6 channels, leaving the other TRPC isoforms unaffected
617 [25,46]. The results shown in Supplementary data Fig. 1 confirm
618 that this antidepressant gives rise to a Ca2+ entry only in cells
619 expressing TRPC6 channels whereas wild type HEK-293 and HEK-
620 TRPC3 cells do not generate an influx of Ca2+ in response to the
621 application of hyperforin. This observation is perfectly in line with
622 previous data [25]. Although hyperforin has several cellular targets, it
623 is important to mention that TRPC6 channels are the only known
624 plasmamembrane channels activated by this agent. The application of
625 hyperforin could depolarize cells and thus promote the entry of Zn2+

626 via voltage-gated Ca2+ channels. However, in cortical neurons, the
627 entry of Ca2+ through SAG- or hyperforin-sensitive channels is not
628 inhibited by nifedipine and ω-conotoxin [7], two blockers of voltage-
629 gated Ca2+ channels. Furthermore, in FluoZin-3-loaded cells, the
630 entry of Zn2+ triggered by SAG is not affected by nifedipine (not
631 shown). Altogether, these data indicate that voltage-gated Ca2+

632 channels are not involved in the entry of Zn2+ observed in response to
633 the application of hyperforin. As an alternative possibility, it could be
634 envisaged that hyperforin triggers the entry of Zn2+ via glutamatergic
635 receptors but we are not aware of any report showing that hyperforin
636 opens AMPA/kainate or NMDA channels. On the contrary, hyperforin
637 (10 μM) inhibits NMDA-induced calcium influx into cortical neurons

638[47]. We thus propose that the entry of Zn2+ occurring after the
639application of hyperforin (or SAG) is attributable to TRPC6 channels.
640This entry regulates the size of the DTDP-sensitive pool of Zn2+. The
641activity of the serine/threonine protein kinase (PKC), another cellular
642target of DAG and DAG analogues, can influence Zn2+ signals [48].
643Therefore, the SAG-dependent stimulation of PKC could modulate the
644size of the pools of mobilizable Zn2+. However, clarifying the role
645played by PKC is complicated by the fact that this kinase regulates
646TRPC6 activity and thus influences the movements of cations through
647these channels [49].
648The data obtained with the live-cell imaging experiments indicate
649that TRPC6 channels whether heterogeneously expressed (in HEK cells)
650or endogenous (in cultured cortical neurons) can form a Zn2+ entry
651pathway. In the presence of micro-molar concentrations of Zn2+ (e.g.
6522 μM), DAG-sensitive channels of cortical neurons permit the uptake of
653thismetal, evenwhen cells aremaintained in a Ca2+(2 mM)-containing
654recording medium. There is however a competition between Ca2+ and
655Zn2+ as evidenced by the larger uptake of Zn2+ when Ca2+ is omitted.
656The electrophysiological recordings confirm that TRPC6 channels
657expressed in HEK-293 cells can transport Zn2+ ions. An equimolar
658substitution of Ca2+ by Zn2+ reduces the amplitude of the hyperforin-
659sensitive currents by 44% inHEK-TRPC6 cells but thismanoeuvre has no
660effect in cortical neuronswhere the amplitude of the current is the same
661regardless of the cation present, Zn2+ or Ca2+. This difference between
662HEK-TRPC6 cells and neurons indicates that over-expressed TRPC6
663channels and native TRPC6 channels of cortical neurons have distinct
664properties or distinct heteromeric compositions.Whatever the origin of
665this difference, the electrophysiological recordings and the live-cell
666imaging experiments carried outwith FluoZin-3 support the hypothesis
667that TRPC6 channels can favour the uptake of Zn2+.
668Certain neurons of the central nervous system accumulate Zn2+

669into their synaptic vesicles via a process involving the vesicular
670transporter ZnT-3 [50]. Although this point is still debated [51], many
671experimental data show that zinc is co-released during exocytosis of
672the neurotransmitter [52,53]. Its concentration in the synaptic cleft,
673not known with certainty, may reach up to 100 μM [54]. When
674present in the external medium, Zn2+ modulates the activity of
675various ion channels [55]. In the hippocampus, a brain structure
676particularly rich in Zn2+, TRPC6 channels are present in post-synaptic
677densities of excitatory synapses [4]. Once released in the synaptic
678cleft, Zn2+ could enter post-synaptic hippocampal neurons via TRPC6
679channels. It is important to mention that, in neural tissue, the
680extracellular concentration of Ca2+ ([Ca2+]o) is not constant but
681exhibits dynamic changes. For instance, a repetitive electrical activity,
682application of amino acids, or pathological insults like periods of
683anoxia or epileptic seizures reduce [Ca2+]o [56–59]. Any of these
684conditions could thus facilitate the entry of Zn2+ through activated
685TRPC6 channels.
686Several members of the TRP super-family are able to transport Zn2+

687like TRPA1 [60], TRPM3 [61], TRPM7 [62], TRPML1, TRPML2 [63] and
688TRPV6 [64]. Based on the data shown in the present report, TRPC6
689appears as another TRP member participating in the transport of Zn2+.
690By regulating the intracellular distribution and content of zinc, TRPC6
691channels could alter the sensitivity of cells to oxidative insults and
692influence cell fate and survival.
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701 (programme Longévité Vieillissement), and Rhône-Alpes Region
702 (Cluster 11).

703 Appendix A. Supplementary data

704 Supplementary data to this article can be found online at doi:10.
705 1016/j.bbamem.2011.08.013.
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Gibon et al. 

TRPC6 CHANNELS PROMOTE THE INTRACELLULAR ACCUMULATION OF ZINC 

 

 

Supplementary Table 1 

 

 HEK-293 cells   HEK-TRPC6 cells  HEK-TRPC3 cells 

Fe 127 +/- 5   101 +/- 15   96.6 – 106.6 

Na 2,860,373 +/- 377,735  2,533,162 +/- 116,020 2,121,073 +/- 246,808 

K 390,316 +/- 74,181  329,236 +/- 31,841  289,920 +/- 47,612 

Mg 3,003 +/- 298   2,856 +/- 310   2,056 +/- 30 

P 442,645 +/- 76,518  397,600 +/- 39,885  346,906 +/- 60,587 

 

The results are expressed as µg of metal/g of proteins. Means ±- sem are given for n= 5 to 14 

independent measures, except for the determination of the iron content of HEK-TRPC3 cells 

where n=2. 

. 
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Supplementary Figure 1: Hyperforin promotes the entry of Ca2+ in HEK-TRPC6 cells 

but not in HEK cells and HEK-TRPC3 cells. 

Cells were loaded with Fura-2 and 10 µM hyperforin was added when indicated (black bar). 

The graph shows the changes (∆F) of the ratio (F340/F380 nm) of the Fura-2 fluorescence as 

a function of time. Hyperforin elicited a transient Ca2+ response in HEK-TRPC6 cells as 

already illustrated (Tu et al. 2009). However, in HEK cells and HEK-TRPC3 cells, the 

application of hyperforin gives rise to a weaker and sustained signal. This latter type of 

response reflects the hyperforin-dependent release of Ca2+ and Zn2+ from mitochondria (Tu et 

al. 2010). In any case HEK cells and HEK-TRPC3 cells exhibited the same phenotype as 

HEK-TRPC6 cells, an observation which is perfectly in agreement with a previous report 

demonstrating that hyperforin activates TRPC6 channels without activating the other TRPC 

isoforms (Leuner et al. 2007).
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Supplementary Figure 2: The depletion of the stores stimulates the uptake of Ca2+. 

A: Cortical neurons were loaded with 1.25 µM of the fluorescent Ca2+ probe Fluo-4 to 

monitor cytosolic Ca2+ changes (Tu et al. 2010). Cells were bathed in a nominally Ca2+-free 

medium and the Ca2+ pools of the endoplasmic reticulum were then depleted with 

thapsigargin (Tg, 1 µM, grey bar). This caused a transient Fluo-4 signal reflecting the release 

Ca2+ out of these stores and their extrusion. Tg was washed away before perfusing cells with a 

Ca2+ (2 mM)-containing recording medium (black bar). This manoeuvre permits the entry of 

Ca through the store deletion-activated channels. The figure shows two representative 

recordings from 2 different cortical neurons. In one case (arrow), 50 µM Zn2+ (Zn acetate) 

was added. It caused a potent inhibition of the Tg-dependent Ca2+ entry (black line). Similar 

data were obtained with: Tg alone, n=31 cells ; Tg + Zn acetate, n= 30 cells. 
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Figure 3 
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Supplementary Figure 3: The depletion of the stores does not stimulate the uptake of 

Zn2+. 

B: Cortical neurons were loaded with the fluorescent Zn2+ probe FluoZin-3 (see Methods 

section). The graph shows FluoZin-3 signals (F/F0) as a function of time. Cells were 

maintained in a nominally Ca2+-free solution. When indicated by the horizontal grey bar 

thapsigargin (Tg, 1 µM) was added to empty the Ca2+ pools of the endoplasmic reticulum 

(ER). This procedure did not elevate the FluoZin-3 fluorescence (Tu et al. 2010). Tg was 

washed away and the cells were superfused with the Ca2+-free medium supplemented with 50 

µM Zn2+ (Zn acetate) (horizontal black bar). Depleting the Ca2+ pools of the ER activates 

store-operated Ca2+ channels. The entry of Zn2+ through these channels should be 

accompanied by an elevation of the FluoZin-3 fluorescence. Mean +/- sem, n= 66 cells. This 

experiment was repeated two other times on two different cultured cells (total number of cells 

tested, n=109). In each instance, the Tg-dependent depletion of the stores failed to activate a 

FluoZin-3 response. When not visible, error bars are smaller than the symbols. For the sake of 

clarity only one point out of two is shown. 
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Figure 4 
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Supplementary Figure 4: The entry of cations through AMPA receptors modulates the 

size of the DTDP-sensitive mobilizable pool of Zn2+ 

In this set of experiments cortical neurons were loaded with FluoZin-3. DTDP (100 µM) was 

added when indicated by the horizontal black bar. This produced a time-dependent elevation 

of the FluoZin-3 fluorescence (F/F0) (open circles, n=451 cells from 16 dishes). In some 

experiments, AMPA (100 µM, horizontal grey bar) was added (and washed away) prior to the 

DTDP challenge (filled circles, 283 cells from 10 dishes). This latter protocol was repeated 

but with a recording medium (2 mM Ca2+) supplemented with 1 mM CaEDTA (grey squares, 

n=116 from 4 dishes), or with a nominally Ca2+-free medium containing 1 mM CaEDTA 

(open triangles, n=111 cells from 4 dishes). Mean +/- sem. The error bars are smaller than the 

symbols. One point out of 4 is shown. 
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Conclusion et perspectives 

Les analyses en ICP-OES et les expériences d’imagerie synchrotron mettent en 

évidence que les cellules HEK sur-exprimant les canaux TRPC6 (HEK-TRPC6) sont 

enrichies en zinc et en soufre tandis que leur contenu en cuivre est diminué. Les cellules 

HEK-TRPC3 ne présentant pas ce phénotype, cela suggère que la méthode de transfection 

stable n’est probablement pas à l’origine des résultats obtenus. Le zinc et le cuivre sont après 

le fer, respectivement, les deuxième et troisième plus abondants métaux traces de l’organisme. 

Comme le zinc, le cuivre est impliqué dans la structure et les propriétés catalytiques de 

plusieurs enzymes dont la superoxyde dismutase cuivre/zinc (SOD1)335. Les causes possibles 

d’un appauvrissement en cuivre de l’organisme sont diverses mais l’ingestion d’une quantité 

élevée de zinc ou des traitements médicaux basés sur une supplémentation en zinc peuvent 

conduire à des carences en cuivre et à des cas d’anémies et de neutropénies398. La diminution 

de la concentration en cuivre dans les cellules HEK-TRPC6 peut traduire une augmentation 

de l’efflux ou une diminution de l’influx de ce métal. Il serait donc intéressant de mesurer 

l’expression des protéines impliquées dans l’import et l’export du cuivre dans les HEK et 

HEK-TRPC6, nous pensons notamment aux protéines ATP7A, ATP7B ou encore CTR1399. 

La compréhension des processus conduisant à un appauvrissement en cuivre des HEK-

TRPC6 n’a pas été abordée et demeure à préciser. 

Les expériences d’imagerie de fluorescence FluoZin-3 montrent que le pool de zinc 

sensible au 2-2’dithiodipyridine (DTDP) est de taille plus grande dans les HEK-TRPC6 que 

dans les HEK ou HEK-TRPC3. Les métallothionéines (MTs) permettent de tamponner le zinc 

cellulaire mais fixent aussi le cuivre. Elles possèdent de nombreux groupement thiols et sont 

donc des cibles potentielles d’agents tels que le DTDP. La régulation de la taille du pool 

sensible au DTDP (observé en imagerie du FluoZin-3) peut donc s’expliquer soit par à une 

augmentation du nombre de protéines possédant des acides aminés soufrés (dont MTs) soit 

par un déplacement du cuivre (qui est aussi fixé au MTs) par le zinc188. Compte tenu des 

résultats sur la teneur en soufre des cellules HEK-TRPC6 (augmentée de plus de 40 %), nous 

postulons que le pool de métallothionéines dans les HEK-TRPC6 est augmenté mais ceci 

devra être vérifié en mesurant leur expression par qRT-PCR ou par Western Blot.  

Nous avons donc démontré par trois méthodes différentes que les cellules HEK-

TRPC6 sont enrichies en zinc (ICP-OES, imagerie synchrotron et imagerie FluoZin-3) et 

notamment au niveau du noyau (imagerie synchrotron). 

Le zinc étant un second messager pouvant conduire à l’apoptose ou à la nécrose 

(Chapitre 4.1), une augmentation de sa concentration cellulaire pourrait donc augmenter la 
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sensibilité des cellules à un stress oxydant. Le DTDP est un agent oxydant qui libère du zinc à 

partir de groupements thiols. Les cellules HEK-TRPC6 sont plus sensibles à cet agent 

oxydant que les cellules HEK ou HEK-TRPC3. Toutefois, l’ajout d’un chélateur spécifique de 

zinc ne protège pas les HEK-TRPC6 contrairement à l’ajout de GSH. Le fait que le TPEN ne 

protège pas les cellules suggère que la libération du zinc induite par le DTDP n’est pas 

impliquée dans l’augmentation de la sensibilité des cellules au stress oxydant. L’utilisation 

d’un stress au péroxyde d’hydrogène (H2O2) permet d’observer que les cellules HEK-TRPC6 

produisent plus d’espèces réactives de l’oxygène (ROS) que les HEK face à ce stress. Une 

augmentation de la production de ROS peut expliquer la plus forte sensibilité des cellules au 

stress oxydant. De la même manière, le TPEN n’influe pas sur la production de ROS lors du 

stress de ces cellules, il semble donc que nous soyons face à un mécanisme indépendant du 

zinc intracellulaire. La compréhension des mécanismes moléculaires impliqués dans 

l’accroissement de la sensibilité des HEK-TRPC6 au stress oxydant reste à élucider. Plusieurs 

hypothèses peuvent être avancées dont une diminution de l’activité des enzymes protégeant la 

cellule comme la superoxyde dismutase (SOD), la catalase ou encore la glutathion peroxydase. 

Des mesures d’expressions (ARNm ou Western Blot) ainsi que des mesures d’activité de ces 

enzymes permettraient de mieux appréhender les mécanismes mis en jeu dans le phénotype 

des HEK-TRPC6 face au stress oxydant.  

 Nous proposons que les canaux TRPC6 surexprimés de façon stable dans les HEK 

favorisent l’entrée de zinc. Nous avons vérifié cette hypothèse par deux techniques : 

l’imagerie de fluorescence et l’électrophysiologie. En imagerie de fluorescence (sonde 

FluoZin-3), l’entrée de zinc dans les cellules HEK-TRPC6, en présence d’activateur des 

canaux, est plus importante que dans les HEK et HEK-TRPC3. En électrophysiologie, activer 

les canaux TRPC6 par l’hyperforine en présence de zinc induit un courant entrant sensible à 

la tricine (chélateur extracellulaire de zinc). Le fait de ne pas totalement abolir le courant 

induit par l’hyperforine en présence de 1 µM Zn et 10 mM tricine peut s’expliquer par la 

présence de NMDG dans les solutions. Le NMDG est utilisé pour remplacer le NaCl car il est 

imperméant. Il a cependant été montré que l’hyperforine affecte la fluidité membranaire372. Le 

NMDG peut passer à travers certains canaux400 dont TRPV1 et TRPA1401. Toutefois, nos 

résultats expérimentaux montrent une diminution conséquente du courant mesuré en présence 

de tricine dans le milieu extracellulaire, cela indique donc qu’une grande partie du courant 

mesuré provient de l’entrée de zinc dans les cellules 

 L’activation des canaux TRPC6 endogènes par le SAG ou l’hyperforine dans les 

neurones corticaux embryonnaires provoque une entrée de zinc qui dépend de la 
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concentration extracellulaire en zinc. Cette entrée, sensible au gadolinium, se fait en 

compétition avec l’entrée de calcium. Dans les neurones, la substitution équimolaire du 

calcium par le zinc n’influence pas l’amplitude des courants mesurés. En revanche dans les 

HEK-TRPC6, le courant calcique est plus grand que le courant zinc. Ceci suggère que les 

canaux natifs et surexprimés ont des propriétés différentes qui peuvent traduire des 

compositions tétramériques distinctes. Dans les HEK-TRPC6, la présence d’homotétramères 

de TRPC6 est certainement majoritaire. Dans les neurones corticaux embryonnaires, les 

canaux TRPC1 et TRPC5 sont les plus exprimés (au niveau ARN). La composition 

tétramériques des canaux TRPC6 dans ces cellules est probablement à l’origine des 

différences observées entre ces deux types cellulaires. La caractérisation moléculaire des 

canaux TRPC6 dans les neurones corticaux embryonnaires à E13 reste à déterminer. 

L’expression des TRPC6 dans ces cellules étant faible, la caractérisation des interactions par 

immunoprécipitation semble promise à des difficultés importantes et notamment en matière 

de quantité de matériel biologique. Des études de co-localisation par imagerie confocale 

pourraient apporter des éléments de réponse. L’utilisation de siRNA dirigé contre les 

différents TRPC aiderait à mieux appréhender leur composition. L’effet bloquant d’anticorps 

dirigés contre des TRPC spécifiques pourrait être vérifié en électrophysiologie et aider à 

déterminer la composition moléculaire des canaux natifs. L’emploi de souris KO pour 

différents TRPC pourrait être intéressant. Cependant les souris KO pour TRPC6 ne présentent 

pas de dysfonctionnements majeurs (hormis une augmentation du tonus vasculaire402) ce qui 

suppose une compensation de l’action de TRPC6 par d’autres canaux et probablement des 

canaux TRPC3 et TRPC7 qui sont surexprimés dans les souris KO pour TRPC6402.  

 Au niveau neuronal, l’entrée de zinc en réponse à l’activation des canaux TRPC6 

augmente la taille du pool de zinc sensible au DTDP sans modifier la taille du pool de zinc 

mitochondrial (sensible au FCCP). Ces pools de zinc ont été identifiés par des techniques 

d’imagerie de fluorescence avec du FluoZin-3123 et du RhodZin3403. Par ces expériences, nous 

montrons que le zinc est rapidement pris en charge par la cellule et que différentes voies 

d’entrée de ce métal sont déjà présentes dès les premiers stades de la neurogenèse corticale 

chez la souris. En effet, les canaux calciques sensibles au voltage, les récepteurs NMDA, les 

récepteurs AMPA, les canaux SOC et TRPC6 coexistent à E13. 

 A la lumière des résultats obtenus, il serait très intéressant d’aborder les liens entre 

canaux TRPC6 et le zinc au niveau des cellules rénales affectées de FSGS (chapitre 2.5.6). En 

effet dans ces cellules, les mutations sur le gène de TRPC6 provoquent un « gain de 

fonction » des canaux TRPC6 et augmentent l’entrée calcique. Ceci est perçu par la cellule 
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comme un signal pro-apoptotique. Il est possible qu’une augmentation de l’entrée de zinc 

dans ces cellules soit aussi à l’origine d’un signal de mort cellulaire programmée au niveau 

rénal.  

Au niveau cérébral, les canaux TRPC6 sont exprimés dans les neurones post-

synaptiques hippocampiques. Lors de la neurotransmission synaptique, des vésicules 

glutamatargiques libèrent une quantité importante de zinc dans la fente synaptique279. Les 

canaux TRPC6 pourraient former une voie d’entrée de ce zinc dans les neurones post-

synaptiques.  

Les études in vitro réalisées à ce jour montrent que les canaux TRPC6 sont des canaux 

cationiques non sélectifs perméables à de nombreux cations, dont le Ca, Na, Mn, Ba, Fer et le 

Zn. D’autres TRP sont aussi perméables à des métaux traces et à des métaux toxiques tels que 

le zinc, le nickel, le cobalt, le cadmium, le manganèse ou le fer. Ces TRP se situent soit au 

niveau de compartiments intracellulaires soit au niveau de la membrane plasmique. 

 

Canaux dans les compartiments intracellulaires 

Les seuls canaux de la famille des TRP connus pour être impliqués dans l’homéostasie 

des métaux au niveau intracellulaire sont les canaux TRPML1 et TRPML2404. Ils sont 

exprimés de façon ubiquitaire hormis dans le colon et dans le thymus. TRPML1 est une 

glycoprotéine de la membrane des lysosomes et des endosomes. Il est impliqué dans la 

biogénèse des lysosomes et dans les trafics membranaires lors de l’endocytose405. Des 

expériences d’électrophysiologie et des mesures d’entrée de fer marqué (55Fe2+) ont montré le 

rôle de TRPML1 et TRPML2 dans l’export du fer depuis les endosomes et les lysosomes. Ces 

canaux sont aussi perméables au zinc, au manganèse, au calcium, au magnésium, au cobalt, au 

cadmium et au baryum mais imperméables au fer3+ et au cuivre. Les patients atteints de 

mucolipidose de type IV (MLIV), une maladie autosomale récessive causée par une mutation 

génétique de TRPML1406,407, ont des complications au niveau visuel, moteur et cognitif. Les 

fibroblastes de ces patients possèdent plus de fer lysosomal que des patients sains. Les 

modifications dans la perméabilité de TRPML1 au fer chez les patients atteints de MLIV est 

peut-être à l’origine des complications associées à cette maladie404. 

 

Canaux de la membrane plasmique, la famille s’agrandit…  

Ces dernières années, un nombre sans cesse croissant de travaux a révélé l’implication 

de certains TRP dans le transport d’éléments traces à travers la membrane plasmique, parmi 
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ceux-ci TRPM7408, TRPM6409, TRPM3410, TRPV6411, TRPA122 et les canaux TRPC6176. Leur 

implication est décrite ci-dessous: 

 

TRPM7  

Les canaux TRPM7 sont exprimés dans presque tous les tissus ou types cellulaires. 

Des expériences d’électrophysiologie sur des cellules HEK transfectées avec les canaux 

TRPM7 de souris ont démontré la perméabilité de ces canaux à différents métaux. La 

séquence de perméabilité aux cations est la suivante : Zn2+ = Ni2+ >> Ba2+ > Co2+ > Mg2+ > 

Mn2+ > Sr2+ > Cd2+ > Ca2+ 408. L’activation des canaux TRPM7 est sous contrôle du Mg2+ et 

de l’ATP, et ils s’activent en absence de calcium et de magnésium dans le milieu externe. 

Cependant la perméation de ces canaux par le zinc, le cobalt, le nickel se produit aussi en 

présence de calcium et de magnésium. TRPM7 semble donc être une voie d’entrée non-

négligeable des ions divalents dans les cellules. Ces canaux ne sont perméables ni au 

gadolinium ni au lanthane408. Des expériences d’imagerie de fluorescence sur des cultures 

primaires de neurones corticaux ont confirmé l’implication des TRPM7 dans le transport du 

zinc. L’ajout de zinc dans un milieu ne contenant pas de Ca2+ et de Mg2+ (donc favorable à 

l’activation des TRPM7) provoque une neurotoxicité plus importante qu’en présence de Ca2+ 

et de Mg2+. L’activation des canaux TRPM7 provoque une accumulation intracellulaire de 

zinc qui est supprimée après utilisation de sh-RNA dirigés contre TRPM7412. Par des 

techniques de siRNA et des mesures d’incorporation de Cd109 il a été démontré l’implication 

des canaux TRPM7 dans l’entrée de cadmium dans une lignée cellulaire d’ostéoblastes 

(MC3T3-E1). Le Ca2+ et le Mg2+ inhibent cette entrée de cadmium et donc empêchent 

l’accumulation de ce métal toxique413. 

 

TRPM6  

Les canaux TRPM6, exprimés au niveau de la membrane apicale des cellules de 

l’épithélium du tubule rénal et du petit intestin, interviennent dans le processus d’absorption 

du magnésium414. Des expériences d’électrophysiologie ont permis de déterminer la 

perméabilité de ces canaux à différents cations dans des cellules HEK293 sur-exprimant soit 

TRPM6, soit TRPM6 et TRPM7. La séquence des courant mesurés pour l’entrée de cation via 

TRPM6 est la suivante : Zn> Ba > Mn > Ca > Mg> Sr > Cd > Ni. La sur-expression des 

TRPM6 + TRPM7 modifie légèrement la taille des courants observés avec la séquence 

suivante : Zn > Mg > Ba > Ca > Sr > Cd > Ni409.  
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TRPM3 

Les canaux TRPM3 sont exprimés dans les cellules β du pancréas. Ces cellules ont 

besoin de zinc pour permettre la séquestration de l’insuline dans les granules d’exocytose415. 

Ces canaux participent à l’entrée du zinc dans ces cellules par un mécanisme indépendant des 

canaux calciques dépendants du voltage. Ils sont aussi perméables au nickel, au baryum, au 

magnésium et au manganèse. La conductivité des canaux semble être différente de celle des 

TRPM7 ou TRPM6 avec comme séquence : Ca2+ > Zn2+ > Mg2+ > Ni2+ 410.  

 

TRPV6   

Les canaux TRPV6 sont retrouvés dans les épithéliums impliqués dans l’absorption et 

la sécrétion. Ils sont notamment fortement exprimés dans le placenta, le duodénum, le 

jejunum, le colon, le pancréas, les glandes salivaires, les glandes mammaires ou encore la 

prostate. Les canaux TRPV6 forment la voie principale de transport du calcium vers le fœtus 

au niveau placentaire et une voie d’absorption majeure du calcium dans l’intestin416. Des 

expériences d’imagerie de fluorescence avec la sonde Fura2 et la sonde Newport Green DCF 

sur des cellules HEK293 exprimant hTRPV6 ont permis de mettre en évidence leur 

perméabilité au zinc, au cadmium, au strontium, au manganèse, au cobalt mais aussi au 

gadolinium et au lanthane. Ces résultats d’imagerie sont complétés par des expériences 

d’électrophysiologie qui démontrent la perméabilité des canaux TRPV6 au zinc, au cadmium 

mais pas au cobalt. Un phénomène identique est observé dans les cellules MCF-7 de cancer 

du sein qui expriment les TRPV6 de façon endogène411.  

 

TRPA1  

Les canaux TRPA1, uniques représentants des canaux TRPA, sont exprimés dans les 

neurones nociceptifs417. L’activation constitutive des canaux TRPA1 permet une entrée de 

zinc qui semble pouvoir se fixer sur les parties N-ter et C-ter de TRPA1, régulant ainsi la 

sensibilité et l’activation de ces canaux22,418. Ce processus a lieu pour des concentrations 

intracellulaires en zinc comprises entre 1 nM et 1 µM22. Le cadmium est capable de mimer les 

effets du zinc sur les canaux TRPA1. L’injection de zinc à des souris génère des réponses 

nociceptives via un mécanisme dépendant de TRPA1, faisant de ces canaux un probable 

senseur du zinc419. 
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Les canaux TRPC6 s’ajoutent donc à cette famille de TRP impliqués dans 

l’homéostasie des métaux au niveau cellulaire. Les rôles précis de l’entrée de ces métaux (Fe 

et Zn) via les canaux TRPC6 sur les fonctions cellulaires restent cependant à déterminer.  

 

Des résultats précédents ont montré la présence de canaux SOC et de canaux sensibles 

à l’hyperforine/DAG dans les neurones corticaux à E13. Ces canaux SOC sont inhibés par le 

zinc extracellulaire (figure additionnelle 2 de l’article 1) alors que les canaux TRPC6 sont 

perméables à ce métal. De ce fait, il semblerait que ces deux voies d’entrée calciques soient 

distinctes. Dans le chapitre suivant, nous déterminerons si la vidange des stocks calciques 

internes et l’hyperforine activent des voies calciques distinctes ou identiques. Dans ce dernier 

cas, cela supposerait que les canaux pourraient s’ouvrir via diverses modalités d’activation 

comme dans les plaquettes où TRPC6 participe à l’entrée de calcium en réponse à la vidange 

des stocks calciques et en réponse au DAG111.  
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Article 2 : Canaux TRPC6 et canaux capacitifs 
 

Introduction 

 

Il existe différents modes d’activation des canaux TRPC6 selon le type cellulaire. 

Dans les plaquettes, les canaux TRPC6 s’activent en réponse au DAG et en réponse à la 

déplétion des stocks internes de calcium112. Dans les hépatomes, la sur-expression des canaux 

TRPC6 augmente l’entrée calcique par la voie SOC108. Dans les cellules COS, l’expression de 

TRPC6 ne modifie pas l’entrée calcique stimulée par la déplétion des stocks internes69. Dans 

les cellules de muscles lisses A7r5, l’inhibition des canaux TRPC6 endogènes par siRNA ne 

modifie ni la réponse calcique en réponse à l’OAG ni la réponse SOC des cellules140.  

Dans ce 2ème volet de la thèse, nous utiliserons différentes propriétés 

pharmacologiques connues des canaux TRPC6 et des canaux SOC afin de déterminer si ces 

deux voies d’entrée du calcium sont distinctes ou non dans les neurones corticaux 

embryonnaires de souris. 

Nous tenterons de les discriminer l’une de l’autre par l’imagerie de fluorescence. 

Plusieurs questions seront abordées dont la localisation membranaire, la régulation par les 

tyrosines kinases, l’effet d’inhibiteurs et d’activateurs de certains TRPC et la régulation par 

les immunophilines.  
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Store-depletion and hyperforin activate distinct types of Ca2+-conducting 
channels in cortical neurons 
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a b s t r a c t

Cortical neurons embryos (E13) from murine brain have a wide diversity of plasma membrane Ca2+-
conducting channels. For instance, they express several types of transient receptor potential channels
of C-type (TRPC) and hyperforin, a potent TRPC6-channel activator, controls the activity of TRPC6-like
channels. In addition, E13 cortical neurons possess plasma membrane channels activated in response
to the depletion of internal Ca2+ pools. Since some TRPC channels seem to be involved in the activity of
store-depletion-activated channels, we investigated whether hyperforin and the depletion of the Ca2+

stores control similar or distinct Ca2+ routes. Calcium imaging experiments performed with the fluores-
cent Ca2+ indicator Fluo-4 showed that the TRPC3 channel blocker Pyr3 potently inhibits with an IC50 of
0.5 �M the entry of Ca2+ triggered in response to the thapsigargin-dependent depletion of the Ca2+ stores.
On the other hand, Pyr3 does not block the hyperforin-sensitive Ca2+ entry. In contrast to the hyperforin
responses, the Ca2+ entry through the store-depletion-activated channels is down-regulated by the com-
petitive tyrosine kinase inhibitors genistein and PP2. In addition, the immunosuppressant FK506, known
to modulate several classes of Ca2+-conducting channels, strongly attenuates the entry of Ca2+ through
the store-depletion-activated channels, leaving the hyperforin-sensitive responses unaffected. Hence,
the Zn2+ chelator TPEN markedly attenuated the hyperforin-sensitive responses without modifying the
thapsigargin-dependent Ca2+ signals. Pyr3-insensitive channels are key components of the hyperforin-
sensitive channels, whereas the thapsigargin-dependent depletion of the Ca2+ stores of the endoplasmic
reticulum activates Pyr3-sensitive channels. Altogether, these data support the notion that hyperforin
and the depletion of the Ca2+ pools control distinct plasma membrane Ca2+-conducting channels. This
report further illustrates that, at the beginning of the corticogenesis, immature cortical neurons express
diverse functional Ca2+ channels.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the cortex of mouse embryo, the first post-mitotic neurons
appear at E11–12 [1]. Even at this embryonic age, cortical neurons of
the immature cortex possess a large repertoire of Ca2+-conducting
channels. For instance, E13 cortical cells express intracellu-
lar channels: IP3-sensitive receptors (IP3R) (IP3R1–IP3R3) and
ryanodine-sensitive receptors (RyR) (RyR1–RyR3), with IP3R1 and
RyR2 being the predominant proteins [2]. Hence, several types of
plasma membrane Ca2+-conducting channels are present in E13

∗ Corresponding author at: Laboratoire de Chimie et Biologie des Métaux, UMR
CNRS 5249, CEA, 17 rue des Martyrs, 38054 Grenoble, France.
Tel.: +33 4 38 78 44 23; fax: +33 4 38 78 54 87.

E-mail address: alexandre.bouron@cea.fr (A. Bouron).
1 Present address: Institut de Biologie de l’Ecole Normale Supérieure, CNRS

UMR8197, Paris, France.

cortical cells, like voltage-gated Ca2+ channels [3], NMDA recep-
tors [4], and Ca2+-conducting channels activated in response to
the depletion of internal Ca2+ stores [5]. In addition, E13 corti-
cal neurons have several types of TRPC channels [6] and possess
functional diacylglycerol-sensitive channels that can be recruited
by hyperforin [7], a plant extract known to activate TRPC6 chan-
nels without activating TRPC1, TRPC3, TRPC4, or TRPC5 channels
[8].

Store-depletion-activated channels (also called store-operated
channels, SOC) form a class of voltage-independent Ca2+ channels.
They open in response to the emptying of the endoplasmic reticu-
lum (ER) Ca2+ pools [9]. The molecular characterisation of the SOC
has long been awaited but recent data revealed that Orai and Stim
are two key molecular players involved in SOC activity [10,11].
However, the role of C-class transient receptor potential (TRPC)
cations channels in this Ca2+ signalling is still discussed [12–14].
Indeed, some experimental data support the notion that TRPC chan-
nels, at least some of them, could participate in SOC activity.

0143-4160/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ceca.2010.05.003
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In the present report, the properties of the hyperforin-sensitive
and the store-depletion-activated channels of cortical neurons
were compared. The data gained provide new insights into these
Ca2+-conducting channels present in the immature cortex at the
beginning of the neurogenesis. This study highlights the large
repertoire of families of Ca2+-conducting channels even at early
stages of the corticogenesis.

2. Materials and methods

2.1. Primary cell cultures

Cultures of cortical neurons were prepared according to [5].
The procedures used were approved by the Ethical Committee
of Rhône-Alpes Region and by the Ethical Committee of Greno-
ble (ComEth) (France). Briefly, embryos (E13) from C57BL6/J mice
(vaginal plug was designated E0) were sacrificed and the brains
were kept in an ice-cold Ca2+- and Mg2+-free Hank’s solution sup-
plemented with 33 mM glucose, 4.2 mM NaHCO3, 10 mM HEPES,
1% penicillin/streptomycin. The isolated cortices were triturated by
means of repetitive aspirations though a sterile and fire-polished
Pasteur pipette. Four to five E13 mice (e.g. 8–10 cortices) were used
for each culture. The cell suspension was then filtered through a
70 �m cell strainer (BD Falcon). Sterile glass cover-slips (Ø 16 mm,
Marienfield, Germany) were coated with poly-l-ornithine (2 h at
37 ◦C) and washed twice with sterile water before plating the cells.
Cells grown in a Neurobasal medium containing 2% B27, 1% peni-
cillin/streptomycin and 500 �M glutamine.

2.2. Calcium imaging experiments with Fluo-4

The experiments were carried out according to experimental
procedures described previously [7]. In these experiments, the
baseline Fluo-4 fluorescence was recorded for ≥1 min and averaged
(F0). The results are expressed as F/F0 as a function of time, with F
being the Fluo-4 fluorescence. Data are presented as mean ± S.E.M.,
with n being the number of cell bodies analyzed. Recordings were
made at room temperature 1–3 days after the plating of the cells. At
that time, ≥75% of them displayed a depletion-activated Ca2+ entry
[5]. Certain variability in the size of the thapsigargin-dependent
Fluo-4 signals was observed from one batch of cultured cells to
the other. Each treatment was compared to its proper control (non
treated cells from the same batch of cells). In every case, and unless
otherwise indicated, conditions to be tested were repeated on at
least three batches of cultured cells.

2.3. Materials

Genistein, FK-506, calyculin A, methyl-�-cyclodextrin, and
cholesterol were from Sigma–Aldrich (France). Fluo-4/AM was
purchased from Molecular Probes (Invitrogen, France). The
Neurobasal medium, B27, glutamine were from (Invitrogren,
France). 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-
d]pyrimidine (PP2) was from Calbiochem (Merck Chemicals,
France). The ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-
(trif luoromethyl)-1H-pyrazole-4-carboxylate (Pyr3) was kindly
provided by Dr. Y. Mori (Kyoto University, Japan). Hyperforin,
prepared as a mixture of hyperforin with its homologue adhyper-
forin (ratio 8:2), was prepared as a sodium salt. It was a kind gift
from Dr. Willmar Schwabe GmbH & Co. (Karlsruhe, Germany). The
hyperforin-dependent Fluo-4 responses reported in the present
report were smaller than previously found [7]. Since the hyperforin
extract is not pure, this may explain the variability between our
two reports (present one and [7]) carried with two different
batches of hyperforin.

Fig. 1. Cortical neurons possess store-depletion-activated channels and hyperforin-
sensitive channels. The figure shows somatic changes in fluo-4 fluorescence (F/F0)
as a function of time in two cultured cortical neurons. Thapsigargin (Tg, 1 �M) was
applied on a cell kept in a Ca2+-free medium, washed away and 2 mM external Ca2+

was reintroduced (as illustrated by the horizontal black bar) which provoked a sec-
ond Ca2+ rise through store-depletion-activated channels. Hyperforin (10 �M) or its
vehicle (DMSO, 0.1%) was added (arrow) after the onset of the Tg-dependent Ca2+

entry. Similar data were obtained on 98 cells.

3. Results

We previously showed that E13 cortical neurons possess
hyperforin-sensitive channels [7] and store-depletion-activated
channels [5]. We first asked whether these two Ca2+ routes co-exist
in the same cells. To this aim, cortical neurons were first treated
with thapsigargin (Tg), a potent inhibitor of the endoplasmic retic-
ulum Ca2+ pumps [15]. It caused a transient Fluo-4 signal reflecting
the passive release of Ca2+ from internal pools followed by the
extrusion of Ca2+ out of the cells. A subsequent superfusion with
a Ca2+-containing recording medium gave rise to a second Fluo-4
signal (Fig. 1). The addition of hyperforin (arrow, Fig. 1) during the
Tg-dependent Ca2+ entry elicited a rapid and transient elevation
of the Fluo-4 fluorescence as already reported [7,8]. The fact that
these responses are additive suggests the coexistence of distinct
Ca2+ routes. This latter hypothesis was tested below.

Hyperforin-sensitive channels of cortical neurons are insensi-
tive to agents disturbing the actin cytoskeleton [7]. In the following
experiments, cortical neurons were treated with cytochalasin D to
inhibit actin filament polymerization. However, this agent did not
affect the Tg-dependent Ca2+ release and entry (Fig. 2A). Another
way to modify the actin filament network is to use phosphatase
inhibitors such as calyculin A. Like cytochalasin D, pre-treating cells
with calyculin A had no effect on the Tg-dependent Ca2+ release
and entry (not shown, n = 38 cells). Caveolae have been shown
to play important roles in Ca2+ signalling [16,17]. To determine
whether the store-depletion-activated channels were located in
caveolae-like structures, cortical neurons were kept 2 days in a
culture medium supplemented with 20 �g/ml cholesterol. After
this treatment, cells were transferred to (a cholesterol- and) nom-
inally Ca2+-free Tyrode solution and Tg was added to deplete the
stores. Cholesterol had no effect on the Tg-dependent release and
entry of Ca2+ (Fig. 2A). In another set of experiments, methyl-�-
cyclodextrin was used as a modifier of caveolae structures. Here
again, treating the cells with methyl-�-cyclodextrin did not affect
the Tg-dependent release and entry of Ca2+ (not shown, n = 35 cells).
In conclusion, like the hyperforin-sensitive channels, the store-
depletion-activated channels of cortical neurons are not present
in caveolae-like structures.

Regulation by tyrosine kinases seems to be a general feature of
depletion-activated channels [18] but hyperforin-sensitive chan-
nels are not regulated by these kinases [7]. The involvement of
tyrosine kinases in the Tg-dependent Ca2+ entry of embryonic
cortical neurons was verified by using genistein and PP2, two tyro-
sine kinase inhibitors which do not affect the hyperforin-sensitive
responses [7]. Both inhibitors depress the amplitude of the Tg-
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Fig. 2. The Tg-dependent Ca2+ entry is unaffected by cholesterol and cytochalasin
D but is down-regulated by the tyrosine kinase inhibitors genistein and PP2. The
protocol used was the same as in Fig. 1. Tg was applied and washed away. Panel (A)
shows Fluo-4 responses (F/F0) as a function of time (mean ± S.E.M.) and illustrates
the lack of effect of cytochalasin D (1 �M, filled circles) and cholesterol (1 �M, grey
triangles) on the Tg-dependent Ca2+ release and entry. Cytochalasin D treatment:
cells were pre-incubated for 1–2 h at 37 ◦C before the beginning of the recording;
Cholesterol treatment: cells were kept for 48 h in a culture medium supplemented
with 20 �g/ml cholesterol. As a control, cells were not treated with Tg. Under these
conditions, they poorly responded to the reintroduction of Ca2+ (open squares). The
total number of cells and dishes used was: 72/4 (control cells), 70/4 (cholesterol) and
83/5 (cytochalasin D), and 88/4 (cells not treated with Tg). In panel (B) are shown
Fluo-4 recordings recorded in response to the application of Tg and the subsequent
admission of Ca2+. In this set of experiments, some cortical cells were pre-treated
with either 50 �M genistein (for 10 min at 37 ◦C) or with 10 �M PP2 (for 20 min at
room temperature) before the addition of Tg. The total number of cells and dishes
used was: 47/3 (control cells, open circles), 30/3 (genistein, grey triangles) and 65/4
(PP2, filled circles).

dependent Ca2+ entry without altering the Tg-dependent Ca2+

release (Fig. 2B). This latter observation indicates that the depletion
of the Ca2+ stores and hyperforin activate distinct channels.

Determining the molecular identity of the store-depletion-
activated channels by means of pharmacological agents is not an
easy task because of the lack of specific blockers of this family of
channels [19]. However, the pyrazole compound Pyr3 has recently
been described as a selective inhibitor of TRPC3 channels having
an IC50 value of 0.7 �M. A complete blockade is seen in the pres-
ence of 3 �M Pyr3 [20]. Of interest, it does not block the other TRPC
channels even when used at the concentration of 10 �M [20]. We
thus took advantage of this property to further analyse the char-
acteristics of the store-depletion-activated channels of E13 cortical
neurons. As illustrated in Fig. 3A, Pyr3 attenuated the Tg-dependent
entry of Ca2+ in a concentration-dependent manner but without
altering the Tg-dependent Ca2+ release (Fig. 3A). The strongest
inhibitory responses were seen for concentrations of Pyr3 ≥2 �M
(Fig. 3B). Even when used at 10 or 20 �M, Pyr3 failed to completely
abolish the Fluo-4 signals seen upon the readmission of Ca2+. Of
note, the amplitude of this Pyr3-insensitive Ca2+ signal is compara-
ble to the one observed on Tg-untreated cells (see Fig. 2A, open

Fig. 3. The TRPC3 channel blocker Pyr3 strongly blocks the Tg-dependent Ca2+

entry but has a modest inhibitory action on the hyperforin-dependent responses.
The store-depletion-activated Ca2+ entry was studied according to the protocol
described in Fig. 1. Tg (1 �M) was applied and washed away before the readmission
of Ca2+ (horizontal black bar). In some experiments, Pyr3 was added (arrow) and
remained present throughout the recording. Panel (A) shows Fluo-4 changes (F/F0)
as a function of time under control conditions (open circles) and in the presence of 0.5
and 4 �M Pyr3. In panel (B) is shown a summary graph of the experiments illustrated
in (A) and presenting the blockage (% inhibition) of the store-depletion-activated
Ca2+ entry in the presence of Pyr3 (�M). Mean ± S.E.M. The number of cells and
dishes used is indicated. The effects of Pyr3 on the hyperforin-sensitive responses
were also investigated (C). The figure shows Fluo-4 responses recorded in the pres-
ence of hyperforin (10 �M) alone and in the presence of hyperforin (10 �M) + 1 or
10 �M Pyr3. The total number of cells and dishes used was: 303/12 (hyperforin),
128/5 (hyperforin + 1 �M Pyr3), and 149/5 (hyperforin + 10 �M Pyr3).
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Fig. 4. (A and B) The Zn2+ chelator TPEN diminishes the hyperforin-sensitive
responses without altering the Tg-dependent Ca2+ entry. In this set of experiments,
the Zn2+ chelator TPEN (10 �M) was added 1–2 min before the beginning of the
recording and remained present in the bath. It partially reduces the amplitude of
the peak and the plateau phase observed in response to the addition of hyperforin
(10 �M) whereas it failed to block the Tg-dependent Ca2+ responses. The total num-
ber of cells and dishes used was: 54/3 (hyperforin), 67/3 (hyperforin + TPEN), 85/3
(Tg), and 86/3 (Tg + TPEN).

squares). This indicates that Tg, via the emptying of the stores,
controls the activity of a family of Pyr3-sensitive channels. The
concentration producing 50% of the maximal inhibitory effect was
observed for a Pyr3 concentration of ∼0.5 �M, a value quite close to
the one determined for TRPC3 channels (0.7 �M) [20]. After having
shown that Pyr3 is a potent blocker of the store-depletion-activated
channels of cortical neurons, this pharmacological tool was used
to determine whether it blocked hyperforin-sensitive channels.
Interestingly, concentrations up to 1 �M Pyr3 failed to block the
hyperforin-sensitive Fluo-4 responses. In the presence of 10 �M,
Pyr3 reduced the peak amplitude of the hyperforin response by
only ∼15–20% (n = 149, p < 0.05, Student’ t-test). Increasing the Pyr3
concentration to 50 �M did not further potentiate the blockage
(n = 54, not shown). Thus, concentrations of Pyr3 known to depress
TRPC3 channels (0.3–1 �M) [20] have no effect on the hyperforin-
sensitive responses. From these experiments, it can be concluded
that Tg activates Pyr3-sensitive channels whereas hyperforin con-
trols channels poorly sensitive to Pyr3.

Hyperforin is used as a convenient TRPC6-channel activator
[8] but, in addition to its action on plasma membrane channels,
hyperforin has also the property to release Zn2+ and Ca2+ from mito-
chondria [21]. During the time course of this latter study we noticed
that the Zn2+ chelator TPEN partially abolished the hyperforin-
dependent responses. This inhibitory effect is illustrated in Fig. 4A
showing Fluo-4 responses elicited by hyperforin without or with
TPEN (10 �M). It appears that TPEN reduces the size of the peak
hyperforin-sensitive response but also the plateau phase. This sus-

tained response reflects the hyperforin-dependent release of Ca2+

and Zn2+ [21]. TPEN reduces the amplitude of the plateau (or sus-
tained) phase by chelating Zn2+ but not Ca2+ ions. On the other
hand, the TPEN-dependent reduction of the maximal hyperforin-
dependent response likely reflects its inhibitory action on the
hyperforin-sensitive channels. Of note, TPEN has already been
shown to block plasma membrane ion channels. Indeed, 30 �M of
this Zn2+ chelator partially inhibits L-type voltage-gated Ca2+ chan-
nels [22]. Understanding the mechanism by which TPEN reduces
the hyperforin-activated Ca2+ entry was beyond the scope of the
present study and it was thus not investigated further but it is
worth mentioning that TPEN also exerts cellular responses inde-
pendently to its property of chelating trace elements. For instance,
TPEN inhibits ligand binding to some trimeric G proteins, and
interferes with G protein-coupled receptors [23]. Whether the
TPEN-dependent inhibition of the hyperforin-sensitive channels
unveils a G protein-dependent regulation of the hyperforin-
sensitive TRPC6-like channels of cortical neurons remains to be
explored. To gain further insight into the pharmacological proper-
ties of the Tg- and hyperforin-sensitive channels, the Zn2+ chelator
TPEN was added before Tg. Under these conditions, TPEN did not
block the Tg-dependent signals, namely the release and entry of
Ca2+ (Fig. 4B), further indicating that Tg and hyperforin control dis-
tinct Ca2+ routes. If TPEN did not reduce the Tg-dependent entry
of Ca2+ it however influenced the Ca2+ release and extrusion pro-
cesses by slowing down their kinetics (Fig. 4B). A recent report
showed that this chelator interacts with the ryanodine receptor
and the Ca2+ pumps of the ER [24]. This may explain its effects on
the Tg-induced Ca2+ release.

Immunophilins, which are receptors for immunosuppressant
drugs like cyclosporine A or FK506, form an important class of
proteins playing crucial roles including in the nervous system
[25]. They influence the cellular homeostasis of Ca2+ by regulat-
ing the activity of various Ca2+ channels [25,26]. The experiments
depicted in Fig. 5 show that FK506 exerted a strong inhibitory
action on the Tg-dependent Ca2+ entry (Fig. 5A) without modify-
ing the hyperforin-sensitive responses (Fig. 5B). Thus, in contrast
to the hyperforin-sensitive channels, the activity of the store-
depletion-activated channels is regulated by a FK506-sensitive
target. Altogether, these data show that store-depletion and hyper-
forin control Ca2+ routes exhibiting distinct properties.

4. Discussion

Even at the beginning of the murine corticogenesis, neurons
from the immature cortex express several types of internal [2] and
plasma membrane Ca2+ channels [4,6,7], including store-depletion-
activated channels [5]. TRPC, at least some of them, have been
described as important components of SOC [12–14]. At E13, the
mRNAs of all known TRPC (TRPC1–TRPC7) are already present in
the cortex of C57Bl6 mice [6]. The antidepressant hyperforin acti-
vates TRPC6 channels without activating TRPC1, TRPC3, TRPC4, or
TRPC5 channels [8]. In E13 cortical neurons, hyperforin elicits an
entry of Ca2+ through TRPC6-like channels [7]. We hypothesized
that hyperforin and Tg control the activity of plasma membrane
cation channels of TRPC type and verified whether they were dis-
tinct or similar.

Many molecules exert an inhibitory action on TRPC channels and
store-depletion-activated channels but most of them appear poorly
selective [19]. The pyrazol derivative Pyr3 is a new potent and selec-
tive blocker of recombinant and native TRPC3 channels [20]. It has
a direct action on the protein by binding to an external site of the
TRPC3 channel. Furthermore, Pyr3 has no effect on TRPC1, TRPC2,
TRPC4, TRPC5, TRPC6, TRPC7, TRPM2, TRPM4 and TRPM7 channels.
But, of note, it blocks the stimulated entry of Ca2+ in HEK-293 cells
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Fig. 5. The immunosuppressant FK506 blocks the Tg-dependent Ca2+ entry but not
the hyperforin-sensitive responses. Panel (A) shows the inhibitory action exerted
by the immunosuppressant FK506 on the Tg (1 �M)-dependent Ca2+ entry. FK506
(5 mM) was added when indicated by the arrow and remained present throughout
the recording. The number of cells and culture dishes used was: 107/6 (control)
and 122/5 (FK506). Mean ± S.E.M. (B) FK506 (5 mM) did not modify the hyperforin-
sensitive responses. As above, the immunosuppressant was added when indicated
by the arrow and remained present throughout the entire recording. The total
number of cells and culture dishes used was: 136/5 (control) and 149/5 (FK506).
Mean ± S.E.M.

co-expressing TRPC3 and TRPC6 [20]. In DT40 B lymphocytes Pyr3
suppresses receptor-dependent Ca2+ responses which develop via
TRPC3 channels [20]. Pyr3 is thus a new and promising TRPC3 chan-
nel blocker which could help to unravel the physiological functions
of native TRPC3 channels. The present report provides experimen-
tal evidence for the existence of Pyr3-sensitive channels in cultured
cortical neurons dissociated from E13 embryonic mice. However,
saturating concentrations of Pyr3 (e.g. ≥2 �M) do not fully block the
entry of Ca2+ triggered in response to the depletion of the stores.
This latter point indicates that, besides Pyr3-sensitive channels,
Pyr3-insensitive channels seem to also participate in the store-
depletion-activated Ca2+ entry. The molecular identity of these
Pyr3-insensitive actors has not yet been characterized. For instance
the contribution of Stim, Orai and other TRPC like TRPC1, the most
abundant TRPC isoform in the immature cortex [6], in this neu-
ronal Ca2+ route remains to be shown. Experiments are currently
in progress to address this issue.

The store-depletion-activated channels are clearly different
from the hyperforin-sensitive channels of TRPC6 type. Indeed,
Pyr3 markedly suppresses the store-depletion-activated Ca2+ entry
whereas it poorly blocks hyperforin-activated channels. Hence,
TPEN inhibits the hyperforin- but not the Tg-dependent Ca2+ entry.
In addition, only store-depletion-activated channels are regulated
by tyrosine kinases since the tyrosine kinase inhibitors genis-
tein and PP2 negatively regulate the Tg-dependent Ca2+ entry
without altering the entry of Ca2+ through hyperforin-sensitive
TRPC6-like channels [7]. The experiments carried out with the
immunosuppressant FK506 further show that the depletion of

Ca2+ stores and hyperforin control distinct plasma membrane
Ca2+ channels since FK506 strongly depresses the Tg-dependent
Ca2+ entry without influencing the hyperforin-sensitive responses.
The immunosuppressant FK506 has been reported to displace the
immunophilins from the TRPC and alter their activity [27]. In
Drosophila photoreceptor cells, the immunophilin FKBP59 binds
to TRPL [28]. In rat cerebral cortex FKBP12 binds to TRPC3 and
TRPC6 whereas FKBP52 associates with TRPC1, TRPC4 and TRPC6
[27]. In Xenopus spinal neurons FKBP52 and FKBP12 regulate the
gating of TRPC1 channels [29]. Of note, immunophilins ligands
such as FK506 or rapamycin exert neuroprotective actions [25].
The FK506-dependent reduction of the Ca2+ influx through store-
depletion-activated channels could participate, at least partially,
in the immunosuppressant-dependent neuroprotective response.
In HEK-293 cells stably over-expressing TRPC6, FK506 reduces the
size of the currents through receptor-activated TRPC6 channels [27]
whereas the hyperforin-sensitive TRPC6-like channels of cortical
neurons are unaffected by the immunosuppressant.

If these Tg- and hyperforin-sensitive channels exhibit distinct
pharmacological properties, our past [7] and present work shows
that they however display some common features: for instance
both types of responses are insensitive to manoeuvres aimed
at manipulating the lipid composition of the plasma membrane.
Indeed, maintaining cells in a cholesterol-enriched culture medium
or depleting the plasma membrane cholesterol with methyl-�-
cyclodextrin fails to influence the hyperforin-sensitive channels
[7] and the store-depletion-activated channels. In addition, both
responses are not governed by actin cytoskeleton-dependent pro-
cesses since cytochalasin D and calyculin have no effect on
the hyperforin-dependent Ca2+ entry [7] as well as on the Tg-
dependent Ca2+ entry. Based on these results, it is proposed that
these neuronal channels are present at the plasma membrane but
not inserted into caveolae-like structures.

In summary, in cultured cortical neurons dissociated from E13
brain embryos, the depletion of internal Ca2+ pools and the TRPC6-
channel activator hyperforin control the activity of distinct plasma
membrane Ca2+ channels. Although, they possess some common
features they clearly exhibit distinct pharmacological properties.
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Conclusion et perspectives 

 Nous avons dans un premier temps mis en évidence la présence de la voie d’entrée 

SOC et de la voie d’entrée du calcium en réponse à l’hyperforine dans une même cellule. Les 

réponses étant distinctes, il semblerait que ces deux voies d’entrée du calcium impliquent des 

acteurs différents.  

 Les premières expériences basées sur l’utilisation d’outils pharmacologiques 

déstabilisant la composition lipidique de la membrane plasmique (cholestérol et méthyl-β-

cyclodextrine) ne modifient ni la réponse SOC ni la réponse hyperforine. De la même façon, 

la cytochalasine D et la calyculine A qui agissent sur la polymérisation de l’actine n’ont pas 

d’effet sur les réponses SOC et hyperforine. Ces résultats nous amènent à suggérer que les 

canaux SOC et les canaux TRPC6 ne sont pas insérés dans des rafts lipidiques sous 

membranaires. Nos résultats indiquent que, contrairement aux canaux surexprimés dans des 

cellules HEK80, l’activation des canaux TRPC6 neuronaux n’est pas couplée à leur insertion 

membranaire via un processus d’exocytose.  

 Contrairement aux canaux capacitifs90, les canaux sensibles à l’hyperforine ne sont pas 

régulés par une activité tyrosine kinase95. Ceci a été mis en évidence en utilisant la genisteine 

ou le PP2 (deux inhibiteurs de tyrosines kinases). Récemment, une équipe a mis au point un 

inhibiteur spécifique des canaux TRPC3, le Pyr3420. Nous avons utilisé ce composé afin de 

montrer que la réponse SOC est inhibée à de façon dose-dépendante par le Pyr3 avec une 

IC50 d’environ 0,7 µM. Les canaux sensibles à l’hyperforine sont très peu sensibles au Pyr3 

puisqu’à 10 µM, une concentration induisant un blocage maximal de la voie SOC, il ne 

provoque qu’une diminution de 15 à 20% de la réponse hyperforine. Cette différence de 

sensibilité au Pyr3 suggère l’existence de canaux composés d’identités moléculaires distinctes. 

La sensibilité des réponses hyperforine au Pyr3 pourrait indiquer que TRPC3 serait un 

composant impliqué dans la composition des canaux sensibles à l’hyperforine. Ceci reste 

cependant à démontrer. La forte sensibilité des canaux SOC au Pyr3 indique que les canaux 

TRPC3 sont des éléments essentiels à cette voie calcique. On peut toutefois noter que même 

en présence de fortes concentrations de Pyr3 la voie SOC n’est jamais complètement bloquée, 

indiquant que des canaux insensibles au Pyr3 participent aussi à l’entrée de calcium induite 

par la vidange des stocks calciques. Un autre argument en faveur de l’existence de 

conductances calciques distinctes est la différence de sensibilité des voies calciques vis-à-vis 

du TPEN. En effet, nous avons observé qu’à des concentrations supérieures à 10 µM, le 

TPEN (un chélateur spécifique du zinc) inhibe la réponse hyperforine sans influencer la voie 

SOC. Outre son rôle de chélateur, le TPEN interfère avec des récepteurs couplés aux 
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protéines G trimériques 421, il serait donc intéressant de préciser si l’effet inhibiteur du TPEN 

se fait via cette action sur les protéines G.  

Les immunophilines régulent les canaux TRPC. Par exemple, l’immunosuppresseur FK506 

diminue l’amplitude des courants via les canaux TRPC6 dans les cellules HEK-TRPC6422. 

Dans nos expériences sur les neurones, la réponse SOC est très inhibée par le FK506 alors 

que la réponse hyperforine ne l’est pas. Il est possible que, contrairement aux canaux TRPC6 

surexprimés dans les cellules HEK, les canaux natifs possèdent des propriétés différentes. 

Dans les HEK-TRPC6, la composition moléculaire des canaux tétramériques est 

probablement différente à celle des canaux endogènes neuronaux. La composition moléculaire 

des canaux sensibles à l’hyperforine dans les neurones corticaux reste à être clarifiée. 

Le tableau ci-dessous résume les résultats obtenus qui suggèrent que les canaux SOC 

et les canaux sensibles à l’hyperforine (TRPC6) forment deux voies d’entrée du calcium 

distinctes dans les neurones corticaux embryonnaires. 

Sensibilité à : Canaux SOC 
Canaux sensibles à 

l’hyperforine  

Cytochalasine D 1 µM - - 

Cholestérol 2 jours 20 µg/ml - - 

Méthyl-ββββ-cyclodextrine 10 µM - - 

Génistéine 50 µM + - 

PP2 10 µM + - 

Pyr3 1 µM + - 

Pyr3 10 µM + + 

TPEN 10 µM - + 

FK506 5 mM + - 

Le – signifie que la réponse n’est pas influencée. 
Le + signifie que la réponse est bloquée.  
 

 Les expériences d’imagerie de fluorescence Fluo4 montrent clairement que 

l’hyperforine provoque une réponse calcique bi-phasique: 1) Une phase précoce et transitoire, 

caractéristique d’une entrée de calcium via les canaux TRPC695. 2) Une phase de plateau, plus 

tardive et insensible au gadolinium95. Dans la partie suivante, nous tenterons de mieux 

caractériser cette phase de plateau dans les neurones. 
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Article 3 : Effet de l’hyperforine sur l’homéostasie du calcium et du Zinc 

 

Introduction 

 

Dans les expériences décrites précédemment (articles 1 et 2), nous avons utilisé 

l’hyperforine en tant qu’activateur des canaux TRPC6. Cette molécule, purifiée à partir de 

millepertuis (Hypericum perforatum) est prescrite comme antidépresseur. Au niveau cellulaire, 

de nombreuses cibles ont été identifiées mais à ce jour les bases moléculaires de son action 

thérapeutique antidépressive ne sont pas connues. L’hyperforine bloque par exemple certaines 

conductances calciques dont des canaux dépendants du voltage et des récepteurs NMDA, 

AMPA et GABA. L’hyperforine inhibe la recapture des neurotransmetteurs (dopamine, 

sérotonine et noradrénaline) (Chapitre 5.1). Cependant, elle possède la propriété d’activer les 

canaux TRPC6 sans ouvrir les autres canaux TRPC15. TRPC6 est, à ce jour, le seul canal 

ionique connu comme étant positivement régulé par cet antidépresseur. 

Dans les articles suivants, nous nous intéresserons aux effets de cette molécule sur des 

neurones corticaux. Nous avons tout d’abord mis en évidence le fait que l’hyperforine libère 

des cations à partir de stocks internes dans les neurones95 et dans les cellules HEK (figure 

supplémentaire 1 article 1). Dans une seconde partie, nous étudierons les effets d’un 

traitement chronique à l’hyperforine sur des neurones en culture et chez la souris.  
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The TRPC6 channel activator hyperforin induces the release of zinc and calcium 
from mitochondria 
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Hyperforin, an extract of the medicinal plant hypericum
perforatum (also named St John’s wort) exhibits antidepres-
sant properties (Chatterjee et al. 1998). Indeed, hyperforin
alleviates symptoms of mild to moderate depression and is
now commonly prescribed worldwide (Nathan 1999; Men-
nini and Gobbi 2004; Zanoli 2004). In vitro experiments
showed that hyperforin inhibits the synaptic uptake of
various neurotransmitters, including serotonin and noradren-
aline (Muller 2003). However, the mechanisms by which it
exerts its antidepressive actions remain elusive (Mennini and
Gobbi 2004).

Hyperforin, known to change membrane fluidity (Eckert
et al. 2004), influences cell functions by altering the activity
of some plasma membrane channels. For instance, it is a
potent blocker of many voltage-gated (Ca, Na, and K)
channels (Chatterjee et al. 1999; Fisunov et al. 2000) and
ligand-gated (GABA, NMDA, and AMPA) channels (Chat-
terjee et al. 1999; Kumar et al. 2006). Besides inhibiting
proteins involved in the transport of ions through the plasma

membrane, hyperforin activates an inward cationic current in
a dose-dependent manner (Chatterjee et al. 1999; Treiber
et al. 2005). TRPC6, a member of the C-class of transient
receptor potential (TRPC) proteins, is the key molecular
component of these hyperforin-activated channels (Leuner
et al. 2007). TRPC6 is activated by hyperforin but the other
TRPC isoforms (TRPC1, TRPC3, TRPC4, TRPC5, and
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N,N,N¢,N¢-tetrakis(2-pyridylmethyl)ethylene-diamine; TRPC, C-class of
transient receptor potential.

Abstract

Hyperforin, an extract of the medicinal plant hypericum per-

foratum (also named St John’s wort), possesses antidepres-

sant properties. Recent data showed that it elevates the

intracellular concentration of Ca2+ by activating diacylglycerol-

sensitive C-class of transient receptor potential (TRPC6)

channels without activating the other isoforms (TRPC1,

TRPC3, TRPC4, TRPC5, and TRPC7). This study was

undertaken to further characterize the cellular neuronal re-

sponses induced by hyperforin. Experiments conducted on

cortical neurons in primary culture and loaded with fluorescent

probes for Ca2+ (Fluo-4) and Zn2+ (FluoZin-3) showed that it

not only controls the activity of plasma membrane channels

but it also mobilizes these two cations from internal pools.

Experiments conducted on isolated brain mitochondria

indicated that hyperforin, like the inhibitor of oxidative phos-

phorylation, carbonyl cyanide 4-(trifluoromethoxy)phenyl-

hydrazone (FCCP), collapses the mitochondrial membrane

potential. Furthermore, it promotes the release of Ca2+ and

Zn2+ from these organelles via a ruthenium red-sensitive

transporter. In fact, hyperforin exerts complex actions on CNS

neurons. This antidepressant not only triggers the entry of

cations via plasma membrane TRPC6 channels but it displays

protonophore-like properties. As hyperforin is now use to

probe the functions of native TRPC6 channels, our data

indicate that caution is required when interpreting results

obtained with this antidepressant.

Keywords: brain, calcium, cortex, mice, zinc.
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TRPC7) are insensitive to the antidepressant (Leuner et al.
2007).

Several authors took advantage of this characteristic to
study the functions and properties of native TRPC6 channels
(Leuner et al. 2007; Muller et al. 2008; Tu et al. 2009b). In
cortical neurons, whole cell patch-clamp recordings showed
that hyperforin elicits an inward current displaying TRPC6-
like properties. Additional imaging experiments carried out
with the Ca2+ sensitive probe Fluo-4 confirmed that hyper-
forin gave rise to an entry of cations (Tu et al. 2009b).
However, the addition of Gd3+, a potent blocker of TRPC
channels, reduced but did not abolish the hyperforin-induced
Ca2+ rise (Tu et al. 2009b), suggesting that it could release
Ca2+ from internal stores.

This study was undertaken to further characterize the
effects of hyperforin on neurons from the CNS. Our data
show that this antidepressant exerts complex actions on
cortical neurons. Hyperforin not only triggers an entry of
cations via plasma membrane TRPC6 channels (Leuner et al.
2007) but displays protonophore-like properties, triggering
the release of Ca2+ and Zn2+ from mitochondria.

Materials and methods

Primary cultures of embryonic cortical cells
Cortical cells were prepared from isolated cerebral cortices of

C57BL6/J mice embryos (vaginal plug was designated embryonic

day 0). Brains were removed and kept in an ice-cold Ca2+- and

Mg2+-free Hank’s solution containing gentamycin (10 mg/mL) and

glucose (6 g/L). Cells were mechanically isolated by means of

successive aspirations through a fire-polished sterile Pasteur pipette.

They were plated on 16 mm diameter glass coverslips and kept up to

4 days in a 5% CO2/95% O2 atmosphere at 37�C (Bouron et al.
2005). The procedures used have been approved by the Ethical

Committee of Rhône-Alpes Region (France).

Calcium imaging experiments with Fluo-4
The culture medium was removed and the cortical cells were washed

twice with a Tyrode solution containing (in mM): 136 NaCl, 5 KCl,

2 CaCl2, 1 MgCl2, 10 HEPES, and 10 glucose, pH 7.4 (NaOH).

After a 10 min incubation period (at 21–23�C) in a Tyrode solution

supplemented with 1.25 lM Fluo-4/acetoxymethyl ester (AM), cells

were washed twice with a Fluo-4/AM-free Tyrode solution and kept

at 21–23�C ‡ 20 min to allow the de-esterification of the dye. Glass

coverslips, inserted into a perfusion chamber (RC-25F; Warner

Instruments, Phymep, France), were placed on the stage of an Axio

Observer A1 microscope (Carl Zeiss, Le Pecq, France) equipped

with a Fluar 40· oil immersion objective lens (1.3 numerical

aperture) (Carl Zeiss). Light was provided by the DG-4 wavelength

switcher (Princeton Instruments, Roper Scientific, Evry, France).

The excitation light for Fluo-4 was filtered through a 470–495 nm

excitation filter and the emitted light was collected through a

525 nm filter. Images, acquired by means of a high speed cooled

charge-coupled device camera (CoolSnap HQ2; Princeton

Instruments, Roper Scientific) were analyzed using the software

METAFLUOR (Universal Imaging, Roper Scientific, Evry, France).

Mean Fluo-4 values are reported as mean ± SEM, with n indicating

the number of cell bodies analyzed. All the experiments were

performed at 21–23�C. Several batches of cultured cells (prepared

from two to seven pregnant mice) were used for each experimental

condition.

Zinc imaging experiments with FluoZin-3
Changes in the intracellular concentration of Zn2+ were recorded

with the specific fluorescent Zn2+ indicator FluoZin-3 (Gee et al.
2002). The experimental conditions were as described above except

that the cells were incubated with 5 lM FluoZin-3/AM for 30 min

at 21–23�C. Afterward, they were washed twice and kept for 30 min

in a FluoZin-3-free Tyrode solution before starting the recordings.

The Fluo-4 and FluoZin-3 recordings were performed as follows:

images were captured every 5 s. The baseline Fluo-4 (or FluoZin-3)

fluorescence was recorded for ‡ 1 min before adding hyperforin and

averaged (F0). Unless otherwise indicated, the changes in Fluo-4 (or
FluoZin-3) fluorescence as a function of time were expressed as

F/F0, with F being the Fluo-4 (or FluoZin-3) fluorescence.

Zinc and calcium fluxes measurements from isolated brain
mitochondria
Some experiments were conducted on isolated brain mitochondria.

These organelles were prepared from brains of 1- to 5-day-old

neonatal mice according to Chinopoulos et al. (2003) and experi-

mental procedures described previously by Tu et al. (2009a).

Neonatal mice were killed, brains were isolated, and homogenized

in an ice-cold isolation solution containing (in mM) 225 mannitol,

75 sucrose, 5 HEPES, and 1 EGTA, pH 7.4 (KOH). Brain

homogenate was centrifuged at 1500 g for 10 min (4�C). The pellet
was discarded and the supernatant was centrifuged at 10 000 g for

10 min (4�C). The pellet was resuspended into EGTA-free isolation

medium and centrifuged at 1500 g for 5 min (4�C). The supernatant
was finally centrifuged at 10 000 g for 10 min (4�C). The pellet

containing the isolated mitochondria was resuspended into this

EGTA-free isolation buffer and kept on ice for 3–4 h. Zinc and Ca2+

fluxes measurements were carried out on mitochondria kept in a

medium consisting of (in mM) 5 DL-malic acid, 5 L-glutamic acid,

270 sucrose, 10 Tris, and 1 Pi (KH2PO4/K2HPO4), pH 7.35 (KOH).

This medium was supplemented with either 0.25 lM Fluo-4 or

0.25 lM FluoZin-3.

Changes of the mitochondrial membrane potential
The changes of the mitochondrial membrane potential (DY) induced

by hyperforin were assayed using the fluorescent cyanine dye 3,3¢-
dipropylthiodicarbocyanine [diS-C3-(5)] (Waggoner 1979) accord-

ing to experimental conditions already described (Tu et al. 2009a).

Materials
FluoZin-3, FluoZin-3/AM, Fluo-4, Fluo-4/AM, and diS-C3-(5) were

from Molecular Probes (Interchim, France). Glycyl-phenylalanine-

2-naphthylamide (GPN), carbonyl cyanide 4-(trifluorometh-

oxy)phenylhydrazone (FCCP), ruthenium red, N,N,N¢,N¢-tetra-
kis(2-pyridylmethyl)ethylene-diamine (TPEN), 2,2¢-dithiopyridine
(DTDP), and thapsigargin (Tg) were from Sigma-Aldrich (Saint-

Quentin Fallavier, France). Bafilomycin Awas from Tocris (Lucerna

Chem AG, Switzerland). Cyclosporin A (CsA) was purchased from

Calbiochem (Fontenay sous Bois, France). Tissue culture media

� 2009 The Authors
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were obtained from Invitrogen (VWR, France). Hyperforin was a

kind gift from Dr Willmar Schwabe GmbH & Co (Karlsruhe,

Germany). The extract is a mixture of hyperforin with its homolog

adhyperforin (ratio 8 : 2), prepared as sodium salts.

Results

Hyperforin releases Ca2+ from internal compartments
The antidepressant hyperforin promotes the entry of cations
(including Ca2+) through TRPC6 channels (Leuner et al.
2007) or channels exhibiting TRPC6-like properties (Tu
et al. 2009b). The hyperforin-induced Fluo-4 signals were
biphasic with a large and transient response followed by a
plateau phase (Fig. 1a, filled circles). Even in the presence of
a high concentration of Gd3+ (50 lM), a potent blocker of
TRPC channels, hyperforin was still able to increase the
cytosolic concentration of Ca2+ as illustrated in Fig. 1a (open
circles). In this case, Gd3+ specifically suppressed the

transient phase leaving the plateau unaffected. The latter
result suggested that hyperforin controls at least two cellular
responses: it promotes the entry of cations and also causes
the release of Ca2+ from internal stores. In the following
experiments, the hyperforin-induced Ca2+ responses were
recorded when the cells were kept either in a 2 mM Ca2+

Tyrode solution (Fig. 1b) or in a Ca2+-free solution (Fig. 1c),
thus excluding a Ca2+ entry via Gd3+-insensitive channels. In
both instances, hyperforin increased cytosolic concentration
of Ca2+ in a dose-dependent manner (Fig. 1d). The half-
maximal effective concentrations were 3.3 and 3.5 lM when
measured in Ca2+-free and in normal (2 mM Ca2+) Tyrode
solutions, respectively. Thus, hyperforin not only triggers the
entry of Ca2+ through plasma membrane channels but it
causes the release of Ca2+ from internal compartments. The
blocker of TRPC channels Gd3+ prevents the entry of cations
through the hyperforin-activated channels without altering
the hyperforin-induced release of Ca2+.
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Fig. 1 Hyperforin releases Ca2+ from internal compartments. (a) Fluo-

4 recordings from isolated cortical neurons kept 2 days in culture. The

graph shows that the external application of 10 lM hyperforin causes

a strong enhancement of the Fluo-4 fluorescence (F/F0). This re-

sponse was never totally abolished by the TRPC channel blocker Gd3+

used at 50 lM (n = 53 cells from three culture dishes). Panels (b and

c): representative Fluo-4 recordings from distinct cultured cortical

neurons. Cells were kept in a normal (2 mM Ca2+) Tyrode (b) or in a

Ca2+-free Tyrode solution (c). The external application of hyperforin

(0.2, 1, and 10 lM) (indicated by the horizontal black bars) triggered a

Fluo-4 response in a concentration-dependent manner. In these

experiments where Gd3+ was not present, cells experienced only one

application of hyperforin. (d) Dose–response curves obtained when

hyperforin was added in the absence (open circles) or presence (filled

circles) of external Ca2+ (2 mM). For each cell analyzed, the baseline

Fluo-4 fluorescence was recorded for ‡ 1 min before adding hyper-

forin and averaged (F0). The changes in Fluo-4 fluorescence as a

function of time were expressed as (F ) F0)/F0 · 100, with F being

the maximal Fluo-4 fluorescence measured during a 250 s recording.

The number of cells tested and the number of culture dishes used are

given for each concentration. Mean ± SEM. When not visible, error

bars are smaller than the symbol.
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Hyperforin elevates the cytosolic concentration of Zn2+

Fluo-4 is a well-known fluorescent Ca2+ indicator (Gee et al.
2000) but it can not be regarded as a specific sensitive Ca2+

probe because a plethora of metals like Zn, Cu, or Cd
interfere with the fluorescence of Ca2+ sensitive dyes
(Grynkiewicz et al. 1985; Marchi et al. 2000; Rousselet
et al. 2008). Cations of metals like Fe or Mn quench the
fluorescence of Ca2+ probes whereas the binding of Zn2+

gives rise to prominent fluorescent signals. An easy way to
check for the contribution of Ca2+ in the Fluo-4 response is to
use TPEN. Indeed, TPEN is a membrane permeant heavy
metal chelator having a very low affinity for cations like Ca2+

(Kd 4 · 10)5 M for Ca2+) and Mg2+ (Hofer et al. 1998) but a
very high affinity for transition, mainly Zn2+, metal ions (e.g.
Kd 2.9 · 10)16 M for Zn2+) (Arslan et al. 1985; Hofer et al.
1998). As Fe2+ and Mn2+ do not increase but rather quench
the Fluo-4 fluorescence we hypothesized that the hyperforin-
induced Fluo-4 signals could reflect cytosolic changes in the
concentration of chelatable Zn2+ and/or Ca2+. To check
whether hyperforin elevated cytosolic concentration of Zn2+

([Zn2+]i), the experiments illustrated in Fig. 1c were repeated
but this time in the presence of TPEN. When extracellular
Ca2+ was omitted, hyperforin increased the Fluo-4 fluores-
cence as already shown (Fig. 1c) but this hyperforin-induced
Fluo-4 signal was markedly attenuated by TPEN (Fig. 2a).
On average, the maximal increases in Fluo-4 fluorescence
induced by a 250 s application of 10 lM hyperforin (added
in a Ca2+-free Tyrode solution) were 63 ± 1% (n = 285 from
10 culture dishes) and 8 ± 0.3% (n = 86 cells from three
culture dishes), without and with TPEN (2 lM), respectively
(p < 0.001, Student’s t-test). Increasing the concentration of
TPEN from 2 to 10 lM did not change the amplitude of the
hyperforin-dependent Fluo-4 signals (not shown). Thus, the
antidepressant mobilizes Ca2+ and Zn2+ from internal pools.
To further verify the effect of hyperforin on the chelatable
Zn2+, we used the specific fluorescent Zn2+ indicator
FluoZin-3 (Gee et al. 2002). To prevent any hyperforin-
induced Zn2+ entry, cortical neurons were maintained in a
Tyrode medium supplemented with Ca-EDTA to chelate
extracellular Zn2+ (Kay 2004) and with Gd3+ to block cation
channels. The addition of hyperforin gave rise to a robust
elevation of the FluoZin-3 fluorescence (Fig. 2b). A
subsequent addition of TPEN (2 lM) totally eliminated the
hyperforin-induced FluoZin-3 response (Fig. 2b), providing
further support to the idea that the antidepressant alters the
homeostasis of Zn2+. In Fig. 2c–e are shown images of
FluoZin-3 loaded cells, before (i), during the addition of
hyperforin (ii), and in the presence of TPEN (iii). Hyperforin
did not seem to induce any compartmentalization of the
fluorescent Zn2+ probe.

An oxidative stress can elevate the cytosolic concentra-
tion of free Zn2+ (Kroncke 2007). If hyperforin acts as an
oxidant it could then give rise to FluoZin-3 signals. The
oxidizing agent DTDP, known to elevate [Zn2+]i in neuronal

cells (Aizenman et al. 2000; Sensi et al. 2003) was used.
DTDP produced a strong and long-lasting elevation of the
FluoZin-3 fluorescence as illustrated in Fig. 2f. These
DTDP-induced FluoZin-3 signals are smaller than the
hyperforin-induced signals (Fig. 2f). This shows that corti-
cal neurons posses a pool of Zn2+ that can be recruited
during an oxidative stress. A subsequent application of
hyperforin (still in the presence of DTDP) was followed by
a very large increase of the FluoZin-3 fluorescence
(Fig. 2f). The hyperforin response was thus not abolished
but potentiated by DTDP (Fig. 2g). Hyperforin causes
acidosis (Froestl et al. 2003). For instance in PC12 cells,
10 lM hyperforin causes a pH drop of �0.6 unit (the
cytosolic pH was �7.1 and �6.5, under control condition
and in the presence of 10 lM hyperforin, respectively)
(Froestl et al. 2003). The acidification of the cytosol could
be the mechanism by which hyperforin alters the concen-
tration of free Zn2+. This was verified in the following set
of experiments: FluoZin-3 loaded cortical neurons were
kept in a Tyrode solution having a pH of 6.0. Lowering the
extracellular pH causes an acidification of the cytosol of
cortical neurons (Sensi et al. 2003). In our experiments,
incubating cells at pH 6.0 did not evoke any FluoZin-3
signal (Fig. 2f). However, when hyperforin was added at
pH 6.0, it caused a very strong elevation of the FluoZin-3
fluorescence, larger than at pH 7.4 (Fig. 2g). Taken
together, these experiments show that hyperforin increases
the cytosolic concentrations of free Ca2+ and Zn2+.
Acidifying the cytosol did not mimic the action of
hyperforin on [Zn2+]i, and this latter response was not
suppressed but potentiated by DTDP.

Characterization of the intracellular pools of Ca2+ and Zn2+

We next addressed the question of the intracellular sources of
Ca2+ and Zn2+. To this aim, we first check the involvement of
the endoplasmic reticulum (ER). Any release of Zn2+ from
the ER could contribute to the hyperforin-induced Fluo-4 (or
FluoZin-3) signals observed in Fig. 2. The application of Tg,
an inhibitor of the ER Ca2+ pumps, elicited a transient Fluo-4
signal (Fig. 3a, n = 47 cells). However, FluoZin-3 loaded
cells failed to respond to Tg (Fig. 3b, n = 75 cells) showing
that the Tg-dependent depletion of the ER did not cause the
release of Zn2+ but specifically reflected the leakage of Ca2+

out of this store. The contribution of additional intracellular
stores was verified by using GPN. It provokes the osmotic
lysis of lysosomes or lysosome-related organelles (Berg
et al. 1994). These acidic compartments are known to store
cations like Ca2+ (Haller et al. 1996; Srinivas et al. 2002)
including in neural cells (Singaravelu and Deitmer 2006;
McGuinness et al. 2007). Similar to Tg, GPN (200 lM)
caused a transient Fluo-4 response (Fig. 3c) (n = 81 cells)
but did not induce any FluoZin-3 signal (Fig. 3d) (n = 65
cells). The vacuolar ATPase inhibitor bafilomycin A (Bow-
man et al. 1988; Drose and Altendorf 1997) was also tested.
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It blocks proton pumps located in endosomes and lysosomes
(Drose and Altendorf 1997) and thus promotes the release of
cations out of these compartments (Camacho et al. 2008;
Lloyd-Evans et al. 2008). Regardless of the probe used,
Fluo-4 (n = 33 cells) or FluoZin-3 (n = 109 cells), 0.5 lM
bafilomycin A never elicited any fluorescent signal (Fig. 3e–

f). In a last series of experiments, the protonophore FCCP
was tested to further characterize the intracellular pools of
Zn2+ and Ca2+. FCCP alters the Ca2+ homeostasis by
collapsing the mitochondrial membrane potential and it
triggers the release of Ca2+ and Zn2+ from these organelles
(Ichas et al. 1997; Sensi et al. 2002; Tu et al. 2009a). The
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when indicated (horizontal black bars). The hyperforin-induced Fluo-

Zin-3 response was observed in all cortical cells tested and was to-

tally abolished by TPEN (2 lM) (n = 180 cells from three culture

dishes). In (c–e) are shown cortical neurons kept 3 days in vitro and

loaded with FluoZin-3, before (c, 1), during the application of hyper-

forin (10 lM, 2) (d), and in the presence of hyperforin

(10 lM) + TPEN (2 lM) (e, 3). The arrow shows the cell used for the

panel (b). (f) Representative FluoZin-3 traces showing the effect of
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6.0. The arrow indicates when hyperforin, DTDP, or the acidic Tyrode
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fluorescence were quantified when indicated: 1 . 2 .
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addition of FCCP (2 lM) produced a Fluo-4 signal incom-
pletely blocked by TPEN (Fig. 3g). On the other hand, FCCP
gave rise to TPEN-sensitive FluoZin-3 signals (Fig. 3h).
These responses were observed in all cells tested (n > 100
for Fluo-4, and n = 76 cells for FluoZin-3). Altogether, the
results depicted in Fig. 3 indicate that cortical neurons
possess (i) Tg-, GPN- and FCCP-sensitive Ca2+ stores and
(ii) FCCP-sensitive Zn2+ stores. As FCCP is a potent
mitochondrial uncoupler, hyperforin was applied on isolated
brain mitochondria to verify whether it effectively releases
Zn2+ from these organelles.

Hyperforin releases Zn2+ from isolated brain mitochondria
The application of FCCP to isolated brain mitochondria pre-
incubated with the non-permeant form of Fluo-4 gave rise to

a strong Fluo-4 signal (Fig. 4a) as already shown (Tu et al.
2009a). A subsequent addition of hyperforin (1 lM) had no
additional effect (Fig. 4a). However, if hyperforin was added
without FCCP, it produced a strong elevation of the Fluo-4
fluorescence (Fig. 4b). The hyperforin-induced Fluo-4 sig-
nals were strongly reduced in the presence of the Zn2+

chelator TPEN (2.5 lM, n = 4) (Fig. 4b) confirming that the
antidepressant releases this metal from mitochondria. It is
worth noting that hyperforin elicited a TPEN-resistant Fluo-4
signal which most likely reflected the release of Ca2+ from
mitochondria. CsA, acting on cyclophylin D, a putative
component of the mitochondrial permeability transition pore
(Kroemer et al. 2007), and ruthenium red, a blocker of the
mitochondrial Ca2+ uniporter (O’Rourke 2007), were used.
CsA (5 lM, n = 4) had no effect but ruthenium red (3 lM,
n = 4) completely blocked the hyperforin-induced Fluo-4
signal (Fig. 4b). Similar experiments were realized with the
non-permeant form of the Zn2+ probe FluoZin-3 (Fig. 2c and
d). The addition of FCCP provoked a time-dependent
increase of the FluoZin-3 fluorescence that disappeared in
the presence of low concentrations of TPEN (n = 5)
(Fig. 2c). Similarly, hyperforin augmented the FluoZin-3
fluorescence (n = 10) (Fig. 2d). This effect was prevented by
ruthenium red (added before hyperforin) (n = 6) and abol-
ished by TPEN (n = 10) (Fig. 2d). A previous report showed
that hyperforin has protonophore-like properties (Roz and
Rehavi 2003). Its action on the mitochondrial membrane
potential was assessed by using the fluorescent cyanine dye
diS-C3-(5) (Waggoner 1979; Tu et al. 2009a). The addition
of hyperforin (2 lM) to isolated brain mitochondria
enhanced the diS-C3-(5) fluorescence (Fig. 4e), showing
that it collapsed the mitochondrial membrane potential
(Waggoner 1979). A subsequent addition of FCCP had no
additional effect. In summary, these experiments show that
hyperforin probably exerts an uncoupling action on isolated
mitochondria by collapsing the membrane potential. This is
accompanied by the release of Ca2+ and Zn2+ via a ruthenium
red-sensitive mechanism.

Discussion

The antidepressant hyperforin exerts multiple cellular actions
but it is now currently used to explore the properties and
functions of TRPC6 channels. Indeed, hyperforin activates
TRPC6, giving rise to a non-selective cation current (Leuner
et al. 2007). Experiments conducted on cultured cortical
neurons loaded with the sensitive Ca2+ probe Fluo-4 showed
that hyperforin induced cytosolic Ca2+ changes (Tu et al.
2009b). However, the hyperforin-induced Fluo-4 signals
were incompletely eliminated by Gd3+, a potent blocker of
TRPC channels, even when present at high concentrations
(e.g. 50 lM). Based on this observation we hypothesized that
the Gd3+-resistant Fluo-4 responses triggered by hyperforin
could reflect the release of Ca2+ from internal stores. But, as
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pointed out by other authors (Martin et al. 2006), caution is
required when interpreting data obtained with fluorescent
Ca2+ probes because they are sensitive to metals like Zn or
Fe endogenously present in all living cells. This difficulty has
for instance been recently illustrated in lymphocytes where
thymerosal, described as a Ca2+ mobilizing agent, releases
Zn2+ but no Ca2+ from internal compartments (Haase et al.
2009). These data prompted us to determine whether
hyperforin could alter the intracellular homeostasis of cations
like Ca2+ and Zn2+.

FluoZin-3 is a specific fluorescent Zn2+ indicator (Gee
et al. 2002), insensitive to Ca2+ and Mg2+ (Devinney et al.
2005). It has become a very useful tool for studying Zn2+

homeostasis. Our data clearly show that hyperforin
enhanced the FluoZin-3 fluorescence in living neurons.
This hyperforin-dependent FluoZin-3 signal could reflect
an uptake of Zn2+ because this cation is a common
contaminant present in physiological solutions but a

chelator like Ca-EDTA minimizes this drawback (Kay
2004). Even when cells were kept in a Tyrode solution
supplemented with Ca-EDTA, hyperforin was still able to
elevate the FluoZin-3 fluorescence. Moreover, Gd3+, a
blocker of cation channels, did not prevent the hyperforin-
dependent FluoZin-3 responses, showing that they had an
intracellular origin. It is concluded that hyperforin did not
promote the entry of Zn2+ but rather mobilized this cation
from intracellular pools.

In neurons, the putative sources of intracellular Zn2+ are
metallothioneins, an important family of Zn2+-binding
proteins which reversibly bind this metal (West et al.
2008), and synaptic vesicles (Palmiter et al. 1996; Paoletti
et al. 2009). It is however important to mention that all the
data reported in this study were obtained on immature
cortical neurons kept for only 2–4 days in culture, before
synaptogenesis and the establishment of a mature synaptic-
ally connected neuronal network. Experiments conducted
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membrane potential. The addition of the antidepressant on isolated
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indicating that the mitochondrial membrane was completely depolar-

ized. A representative trace from four independent experiments is

shown.
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with bafilomycin A and GPN, known to act on acidic
compartments (including synaptic vesicles), suggested that
these stores did not contribute to the Zn2+ signal observed in
response to the addition of hyperforin. Besides synaptic
vesicles, various intracellular membrane-delimited compart-
ments can store cations (e.g. the ER, lysosomes and
lysosomes-like organelles, peroxisomes, and mitochondria).
In our experiments, we found no evidence for the presence
of a lysosomal pool of Zn2+. However, in hippocampal
neurons, an oxidative stress can permit the accumulation of
this metal into these organelles (Hwang et al. 2008).
Whether this phenomenon also occurs in cortical neurons
has not been investigated. Inhibiting the Ca2+ pumps of the
ER with Tg released Ca2+ but not Zn2+. A similar
observation was recently made on lymphocytes (Haase et al.
2009). Except for FCCP, none of the agents used (Tg, GPN,
and bafilomycin A) elevated the FluoZin-3 fluorescence,
pointing to mitochondria as the putative hyperforin-sensitive
Zn2+ pool. This was confirmed by experiments carried out
on isolated brain mitochondria. Hyperforin caused a robust
Fluo-4 signal that was strongly attenuated by TPEN. It also
elicited TPEN-sensitive FluoZin-3 responses. These results
seem to indicate the presence of a mitochondrial pool of
Zn2+ in cortical neurons. However, whether these organelles
really represent a physiologically relevant Zn2+ storage site
is currently under debate but previous studies reported the
presence of a mitochondrial pool of Zn2+ in cortical neurons
(Sensi et al. 2002; Malaiyandi et al. 2005). More recently,
by using genetically targeted Zn2+ sensors to monitor the
spatial distribution of Zn2+ (Dittmer et al. 2009) reported the
presence of a labile and releasable pool of this metal in
mitochondria of cultured hippocampal neurons. Although
this matter is still debated, a growing number of studies
suggest that mitochondria are a likely Zn2+ source. The
mitochondrial Zn2+ uptake occurs via the Ca2+ uniporter (in
a ruthenium-sensitive manner) (Caporale et al. 2009) and via
a non-identified ruthenium red-insensitive pathway (Malaiy-
andi et al. 2005). On the other hand, the mechanisms
controlling the mitochondrial Zn2+ efflux are still not
characterized (Malaiyandi et al. 2005). In isolated murine
brain mitochondria, ruthenium red, a blocker of the
mitochondrial Ca2+ uniporter (O’Rourke 2007; Demaurex
et al. 2009), strongly attenuated the hyperforin-induced
release of Zn2+. Ruthenium red can however influence the
activity of other intracellular targets like ryanodine receptors,
the voltage-dependent anion channels (Hajnoczky et al.
2006) and the so-called ‘rapid-mode’ uptake (Gunter and
Sheu 2009). Interestingly, under certain conditions, ryano-
dine receptors can mediate a release of Ca2+ from mito-
chondria (O’Rourke 2007). But, to our knowledge, the
presence of these Ca2+ channels in brain mitochondria has
never been documented. Whatever the exact molecular
identity of the hyperforin-sensitive mitochondrial target
allowing the efflux of cations, our data show that this

antidepressant releases Zn2+ and Ca2+ from mitochondria via
a ruthenium red-sensitive process. Hyperforin collapses the
mitochondrial membrane potential which is in agreement
with a previous report demonstrating that, similarly to FCCP,
the antidepressant has protonophore properties (Roz and
Rehavi 2003). The hyperforin-induced loss of the mitochon-
drial potential permits the passive release of Ca2+ and Zn2+

out of these organelles.
Hyperforin is a potent uptake inhibitor of various neuro-

transmitters (Chatterjee et al. 1998; Nathan 1999). However,
this latter characteristic does not seem to explain its
antidepressant action. So far, the molecular mechanisms by
which hyperforin alleviates mild depressions are unknown.
Interestingly, it alters the neuronal homeostasis of zinc. Of
note, clinical data show that subjects suffering from depres-
sion exhibit lower zinc serum levels than non-depressed
control subjects (Nowak et al. 2005). As importantly, zinc
has antidepressant properties (Szewczyk et al. 2008). Syn-
thetic antidepressants like imipramine and citalopram affect
zinc concentration in the blood serum and in the brain
(Szewczyk et al. 2008). Moreover, zinc supplementation
exerts an antidepressant-like activity and enhances the effects
of synthetic antidepressants (Szewczyk et al. 2008). In vitro
experiments, data collected from animal studies as well as
clinical and postmortem studies point to a role of zinc in the
physiopathology of depression and in its treatment. Whether
the hyperforin-induced alteration of the neuronal homeostasis
of Zn2+ is involved in its antidepressant action remains to be
shown.

In conclusion, this report reveals that hyperforin collapses
the mitochondrial membrane potential and releases Ca2+ and
Zn2+ from these organelles via a ruthenium red-sensitive
mechanism. Hyperforin is now commonly used to under-
stand the functions and properties of native TRPC6 channels.
However, when considering its large number of targets
located either in the plasma membrane or intracellularly,
caution is needed when interpreting data obtained with this
protonophore-like agent disturbing Ca2+ and Zn2+ homeo-
stasis.
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Conclusion et perspectives 

Cette étude est basée sur une observation montrant la dualité de la réponse hyperforine 

dans les neurones corticaux95. Point de départ de nos expériences, nous avons montré par 

l’imagerie de fluorescence Fluo4 que l’hyperforine induit une réponse calcique transitoire 

sensible au gadolinium et une réponse prolongée insensible au gadolinium95. 

Cette seconde réponse n’est donc pas due à la présence des canaux TRPC6 (inhibés par le Gd) 

mais provient d’une libération de cations depuis un stock interne. La sonde Fluo4 est 

couramment utilisée pour observer des flux de calcium cependant cette sonde est peu sélective 

vis-à-vis de ce cation403,423. En effet, elle est sensible au Fe ou au Zn. Nous avons vérifié la 

nature des signaux mesurés en ajoutant du TPEN (chélateur spécifique du zinc) et nous avons 

observé que ces signaux Fluo4 sont en grande partie supprimés par ce chélateur. Il semble 

donc que l’hyperforine induise une libération de calcium et de zinc depuis des compartiments 

intracellulaires. Nous avons confirmé ce résultat en utilisant une sonde spécifique du zinc, le 

FluoZin-3. Cette étude et celle présentée en annexe (Gibon et al., The thiol-modifying agent 

N-ethylmaleimide elevates the cytosolic concentration of free Zn2+ but not of Ca2+ in murine 

cortical neurons. Cell calcium (48) 37-43 (2010)403) illustrent les précautions à prendre lors de 

l’utilisation de la sonde Fluo4 pour enregistrer des variations calciques cytosoliques.  

 La suite de l’étude a consisté en la détermination des pools de calcium et de zinc 

intracellulaires affectés par l’hyperforine. Pour répondre à cette question, nous avons utilisé 

une approche pharmacologique. Elle a permis de mettre en évidence le pool calcique sensible 

à la thapsigargine (réticulum endoplasmique), celui sensible au GPN (lysosomes) et celui 

sensible au FCCP (mitochondrie). En ce qui concerne les pools de zinc intracellulaires, nous 

avons uniquement détecté un pool de zinc sensible au FCCP en plus de celui sensible au 

DTDP (Cf article 1). Le fait de ne pas trouver de pool de zinc au niveau vésiculaire 

(compartiments riches en zinc dans certains neurones) est probablement du au modèle 

cellulaire de neurones cultivés in vitro. En effet, nous utilisons les neurones 2 à 4 jours après 

leur mise en culture c'est-à-dire avant la mise en place d’un réseau synaptique.  

 Nous avons posé l’hypothèse que l’hyperforine touche les mitochondries et induit une 

libération de calcium et de zinc depuis ce compartiment. Pour tester cette hypothèse, nous 

avons utilisé des mitochondries isolées de cerveaux de souris nouveau-nés et les sondes Fluo4 

et FluoZin-3 non AM (donc non perméantes). Nous avons observé une libération de calcium 

et de zinc depuis les mitochondries. Cet efflux de cation se produit aussi en présence de FCCP. 

L’hyperforine et le FCCP agissent sur le même compartiment intracellulaire. L’action de 
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l’hyperforine sur la mitochondrie est inhibée en présence de rouge de ruthénium (un bloqueur 

de l’uniporteur calcique mitochondrial) ce qui suggère que l’efflux du zinc se fait via cette 

voie. Il serait maintenant intéressant de regarder au niveau cellulaire cette libération de zinc 

depuis les mitochondries avec une autre approche par exemple en utilisant la sonde RhodZin-

3 ce qui permettrait de mesurer directement l’efflux de zinc depuis ces compartiments403. 

L’action de l’hyperforine sur les mitochondries semble aussi passer par une perte du 

potentiel de membrane mitochondriale (comme pour le protonophore FCCP), provoquant une 

fuite passive des cations hors de ce compartiment. La mitochondrie est le siège de la 

production d’espèces réactives de l’oxygène, ce résultat peut aussi être le signe d’une possible 

toxicité de l’hyperforine sur les neurones.  

 

L’hyperforine est un antidépresseur utilisé dans le traitement des formes légères à 

modérées. En clinique humaine, les médicaments à base d’hyperforine impliquent des 

traitements de plusieurs jours voire semaines. Ceci nous a incité à nous intéresser aux 

conséquences d’un traitement chronique avec cet antidépresseur.   
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Article 4 : L’hyperforine modifie les capacités de séquestration du zinc dans 
les cellules neuronales. 

 

Introduction 

 
De nombreux travaux ont montré qu’in vitro l’hyperforine pouvait entrainer la mort de 

divers types cellulaires. Il est d’ailleurs intéressant de noter que ce composé possède, entre 

autres, des propriétés anti-angiogénique390 et antiproliférative392. Pour notre étude, nous avons 

choisi une concentration de 1 µM et vérifié qu’elle ne provoquait pas de mort cellulaire, en 

accord avec d’autres travaux424. Les cellules en culture seront traitées pendant 72h. En 

parallèle, des souris seront traitées quotidiennement par voie intra-péritonéale avec une dose 

de 4 mg d’hyperforine/kg pendant 4 semaines pour tester l’effet de cet antidépresseur sur 

l’homéostasie des métaux au niveau du cerveau de ces souris. Le dosage utilisé correspond à 

celui recommandé par l’entreprise pharmaceutique (Willmar Schwabe, GmbH and Co) qui 

nous fournit le médicament. 
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a b s t r a c t

In vitro and in vivo experiments were carried out to investigate the consequences on brain cells of
a chronic treatment with hyperforin, a plant extract known to dissipate the mitochondrial membrane
potential and to release Zn2þ and Ca2þ from these organelles. Dissociated cortical neurons were grown in
a culture medium supplemented with 1 mM hyperforin. Live-cell imaging experiments with the fluo-
rescent probes FluoZin-3 and Fluo-4 show that a 3 day-hyperforin treatment diminishes the size of the
hyperforin-sensitive pools of Ca2þ and Zn2þ whereas it increases the size of the DTDP-sensitive pool of
Zn2þ without affecting the ionomycin-sensitive pool of Ca2þ. When assayed by quantitative PCR the
levels of mRNA coding for metallothioneins (MTs) I, II and III were increased in cortical neurons after a 3
day-hyperforin treatment. This was prevented by the zinc chelator TPEN, indicating that the plant extract
controls the expression of MTs in a zinc-dependent manner. Brains of adult mice who received a daily
injection (i.p.) of hyperforin (4 mg/kg/day) for 4 weeks had a higher sulphur content than control
animals. They also exhibited an enhanced expression of the genes coding for MTs. However, the long-
term treatment did not affect the brain levels of calcium and zinc. Based on these results showing that
hyperforin influences the size of the internal pools of Zn2þ, the expression of MTs and the brain cellular
sulphur content, it is proposed that hyperforin changes the Zn-storage capacity of brain cells and
interferes with their thiol status.

� 2011 Published by Elsevier Ltd.

1. Introduction

The medicinal plant Hypericum perforatum, also named St John’s
Wort (SJW), exhibits interesting pharmacological properties with
anti-bacterial, anti-tumoral and anti-angiogenic properties (Medina
et al., 2006; Schempp et al., 1999). It also exerts neurological actions
(Griffith et al., 2010) and, is now currently used for the treatment of
mild tomoderate depression (Di Carlo et al., 2001; Linde et al.,1996;
Muller, 2003; Nathan, 1999). In vitro experiments showed that
hyperforin, one of the main extract of SJW, blocks the uptake of
several neurotransmitters like dopamine, serotonin, noradrenaline
and glutamate (Chatterjee et al., 1998) whereas in vivo, it elevates in
the brain of rats the extracellular levels of glutamate, dopamine,
noradrenaline and serotonin but not of GABA (Kaehler et al.,1999). It

seems to influence the uptake of neurotransmitters by increasing
the free cytosolic concentration of Naþ (Singer et al., 1999). Since
these first studies, many reports have provided new and relevant
data on the pharmacological properties of hyperforin. Among other
features, this plant extract influences the cellular homeostasis of
Ca2þ. For instance, it blocks some Ca2þ-conducting channels like
voltage-gated Ca2þ channels and NMDA receptors (Chatterjee et al.,
1999; Kumar et al., 2006). Although it is a potent blocker of plasma
membrane ion channels it paradoxically has the unique property to
activate a specific TRPC channel, TRPC6, which gives rise to prom-
inent cytosolic Ca2þ signals (Leuner et al., 2007). Hyperforin can also
elevate the cytosolic concentration of free Ca2þ by promoting the
release of Ca2þ (Koch and Chatterjee, 2001) from mitochondria (Tu
et al., 2010). Acutely applied, it collapses the mitochondrial
membrane potential and affects the morphology and properties of
mitochondria (Schempp et al., 2002; Tu et al., 2010). It provokes the
release of cytochrome c (Schempp et al., 2002) and themobilisation
of Ca2þ and Zn2þ (Tu et al., 2010). Hyperforin exerts thus complex
actions on neuronal Ca2þ signalling: it is able to promote the entry
(via TRPC6 channels) and the release of Ca2þ from internal
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compartments (e.g. mitochondria) while it potently blocks plasma
membrane Ca2þ-conducting channels (e.g. NMDA receptors).

We recently showed that, acutelyapplied, hyperforin triggers the
release of Ca2þ and Zn2þ from brain mitochondria in a concentra-
tion-dependent manner (Tu et al., 2010). This result prompted us
to precise its biological effects particularly on the homeostasis of
Zn2þ. After having investigated some of the neuronal responses
observed after an acute application of hyperforin, we then looked at
the effects of a chronic treatment. Our past (Tu et al., 2010) and
present data show hyperforin has the property to influence the
Zn2þ-storage capacities of brain cells.

2. Experimental

2.1. Preparation of primary cultures of cortical neurons

Cortical neurons were prepared according to a protocol validated by the Ethical
Committee of Rhône-Alpes Region and by ComEth (Grenoble, France) (Bouron et al.,
2006). After plating, cortical cells were allowed to grow for 6 h at 37 �C in
a humidified atmosphere (5% CO2) before adding hyperforin (1 mM) or its vehicle
(DMSO). The culture Neurobasal medium was renewed everyday. A fresh
hyperforin-culture medium was prepared from a stock hyperforin solution (10 mM
in DMSO). The final concentration of DMSO in the culture medium was <0.1%. In
control experiments, cells were incubated with DMSO only. These DMSO-treated
cells had the same phenotype as DMSO-untreated cells.

2.2. Expression of metallothioneins by qPCR

Total RNAwas isolated from cortical neurons grown 6 days in vitro (DIV) using the
TQ-RNA binding resin (Total Quick RNA cells and tissues kit, Talent, Trieste, Italy). Total
RNA from cortices isolated from adult brain was isolated using the Nucleospin� RNA/
Protein Kit (Macherey-Nagel, France) according to the manufacturer’ instructions. The
RNA concentration was determined using a NanoDrop ND1000 spectrophotometer
equipped with the ND1000 software (version 3.5.1, Labtech, Palaiseau, France). An
amount of 100 ng total RNA was reverse transcribed using oligo DT18 primers and
M-MuLV Reverse Transcriptase reagents (Euromedex, Souffelweyersheim, France). The
expression levels of MT-I, -II, and -III were determined by quantitative real-time PCR
using the MESA blue qPCR Mastermix plus for SYBR� assay (Eurogentec, France) with
the Biorad CFX 96 apparatus (Bio-Rad, France) and analyzed with the Bio-Rad CFX
Manager (version 2.0). All PCR primerswere designedwithNCBI Primer3/BLAST (Basic
Local Alignment Search Tool). The following primer sets were used for PCR amplifi-
cation: Metallothionein I (NM_013602.3) (MT-I) forward, 50-agctcctgcgcctgcaagaac-30;
MT-I reverse, 50-tcaggcacagcacgtcactt-30 , Metallothionein II (NM_008630.2) (MT-II)
forward, 50-accccaactgctcctgtg-30; MT-II reverse, 50-acttgtcggaagcctctttg-30; Metal-
lothionein III (NM_013603.2) (MT-III) forward, 50-agacctgcccctgtcctact-30; MT-III
reverse, 50-cctcttcacctttgcacaca-30; Actin-Beta (NM_007393.3) forward, 50-agccatg
tacgtagccatcc-30; Actin-Beta reverse, 50-ctctcagctgtggtggtgaa-30; GAPDH (NM_008084)
forward, 50-acccagaagactgtggatgg-30; GAPDH reverse, 5‘-cacattgggggtaggaacac-30 . The
internal reference genes were actin and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). Samples were run in duplicate from 3 independent biological samples.

2.3. Calcium and zinc imaging experiments

Live-cell imaging experiments were carried out to analyze the changes in the
intracellular concentration of free Zn2þ, with FluoZin-3 (Gee et al., 2002) and of free
Ca2þ, with Fluo-4 (Thomas et al., 2000). The culture mediumwas removed and cells
were washed twice with a saline solution containing in (mM): 140 NaCl, 5 KCl, 2
CaCl2, 1 MgCl2, 10 HEPES, 10 glucose, pH 7.4 (NaOH). Cells were incubated in this
saline supplemented with 5 mM FluoZin-3/AM for 20 min (or for 15 minwith 1.8 mM
Fluo-4) at room temperature in the dark. After this loading period, cells were
washed twice with a dye-free saline and kept at room temperature for 20 more
minutes in the dark before being placed on the stage of an inverted Axio Observer A1
microscope (Carl Zeiss, France) equipped with a Fluar 40� oil immersion objective
lens (1.3 NA) (Carl Zeiss, France). The experimental setup consisted of the DG-4
wavelength switcher (Princeton Instruments, Roper Scientific, France) and
a cooled CCD camera (CoolSnap HQ2, Princeton Instruments, Roper Scientific,
France). The excitation light for FluoZin-3 (or Fluo-4) was filtered through
a 470e495 nm excitation filter and the emitted light was collected through a 525 nm
filter. The baseline FluoZin-3 (or Fluo-4) fluorescence was recorded for �1 min
before adding any agent (e.g. hyperforin, ionomycin or DTDP) and averaged (F0).

2.4. Chronic treatment of mice with hyperforin

Fifteen male C57Bl6/J mice (Charles River, France) were used. They were housed
under standard conditions with a 12 h light/dark cycle and had free access to water
and food. They were 5 month old at the beginning of the treatment. Eight animals

received a daily intra-peritoneal injection of hyperforin diluted in a sterile NaCl
solution (4 mg of hyperforin/kg of body weight) for 4 weeks. The hyperforin solution
was prepared fresh each day before the injection. After the 4-week treatment,
animals were killed and the brains were quickly removed and placed in an ice-cold
saline solution. For control animals (n ¼ 7) the procedure was the same except they
received a sterile saline solution devoid of hyperforin. These experiments were
conducted according to a protocol approved by the Ethical Committee of Grenoble
(ComEth, France).

2.5. Determination of the zinc and sulphur content of the brain

Brains were dried by heating and vacuum and processed by incubation over-
night in 70% nitric acid at 50 �C, before analysis with Inductively Coupled Plasma-
Optical Emission Spectrometry (ICP-OES) with a Varian, Vista MPX instrument
(Rousselet et al., 2008). The zinc, calcium and sulphur contents were normalized to
the weight of dry brain.

2.6. Materials

Ionomycin and 2,20-dithiodipyridine (DTDP) were from Sigma-Aldrich (France).
FluoZin-3/AM and Fluo-4/AM was purchased from Molecular Probes (Invitrogen,
France). The Neurobasal medium, B27, glutamine were from Invitrogren (France).
Hyperforin used is a mixture of hyperforin with its homologue adhyperforin (ratio
8:2), prepared as a sodium salt. It was a kind gift from Dr. Willmar Schwabe GmbH &
Co (Karlsruhe, Germany).

3. Results

3.1. A chronic treatment with hyperforin affects the mitochondrial
pools of Zn2þ and Ca2þ

Depending on the concentration used and the duration of the
treatment, hyperforin can cause cell death (Schempp et al., 2002).
However, at concentrations �1 mM this agent does not seem to be
toxic (Kraus et al., 2010; Moore et al., 2000). It has recently been
shown that when present for 3 days at the concentration of 1 mM,
hyperforin stimulates the differentiation of keratinocytes (Muller
et al., 2008). We followed the same protocol and investigated the
effect of this plant extract on the Zn2þ-storage capacities of brain
cells. Six hours after the plating of E13 cortical neurons the culture
medium was changed and cells were kept in a culture medium
supplemented with 1 mM hyperforin or its vehicle (DMSO).
Subsequently, the culture medium was renewed everyday and the
Zn2þ and Ca2þ imaging experiments were conducted 72 h after the
beginning of this treatment. In order to determine the size of the
mitochondrial pool of mobilisable Zn2þ, the fluorescent Zn2þ probe
FluoZin-3 was used (Gee et al., 2002; Gibon et al., 2010; Tu et al.,
2010). The culture medium was removed, cells were then washed
twice with a hyperforin-free saline, and then incubated with
FluoZin-3 (see Materials and methods). FluoZin-3-loaded cortical
neurons were bathed in a nominally Ca2þ-free saline supplemented
with 1 mM EDTA to minimize any contribution from residual Zn2þ

ions present in saline solutions (Kay, 2004). The application of
hyperforin (10 mM) provokes the release of Zn2þ (but also Ca2þ, see
below) from mitochondria (Tu et al., 2010). This hyperforin-
triggered Zn2þ-release gives rise to prominent FluoZin-3 signals
(Fig. 1A). When compared to hyperforin-untreated (control) cells,
cells chronically treated with 1 mM hyperforin exhibited smaller
FluoZin-3 signals in response to the application of 10 mMhyperforin
(Fig. 1A). The effect of a long-term (72 h) hyperforin treatment on
the mobilisable pool of mitochondrial Ca2þ was also analyzed
(Fig. 1B). For these experiments, cells were loaded with the fluo-
rescent Ca2þ probe Fluo-4 and bathed in a nominally Ca2þ-free
saline supplementedwith 1mMEDTA and 2 mMof the zinc chelator
TPEN. Indeed, since most fluorescent Ca2þ probes have a high
affinity for Zn2þ, the presence of the zinc chelator should abolish
the contribution of the hyperforin-dependent release of Zn2þ

(Tu et al., 2010). Under these conditions, the hyperforin-dependent
Fluo-4 signals were reduced in chronically hyperforin-treated cells
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when compared to untreated cells (Fig. 1B). The differences
observed, namely the smaller Fluozin-3 and Fluo-4 signals found in
hyperforin-treated cells could reflect distinct levels of dye loading.
Indeed, the hyperforin treatment might have influenced the ability
of cells to take up fluorescent probes which, in turn, could alter the
amplitude of the hyperforin-triggered fluorescent signals.
However, the basal fluorescence of control and hyperforin cells was
comparable, regardless of the probe used (FluoZin-3 and Fluo-4)
(see Supplementary Fig. S1), indicating that a chronic hyperforin
treatment did not affect the loading of the cells. In conclusion,
acutely applied, hyperforin stimulates the release of Zn2þ and Ca2þ

from mitochondria (Tu et al., 2010). After a chronic treatment, the
size of the hyperforin-sensitive pools of Zn2þ and Ca2þ were
significantly reduced (Fig. 1).

3.2. A chronic treatment with hyperforin enhances
the size of the DTDP-sensitive pool of Zn2þ

The redox state of cells influences the availability of free Zn2þ

(Maret, 2009). For instance, the oxidizing agent 2,2’-dithiodipyr-
idine (DTDP) elevates the cytosolic concentration of free Zn2þ

([Zn2þ]i) in brain cells (Aizenman et al., 2000; Sensi et al., 2003; Tu

et al., 2010), revealing the presence of a pool of mobilisable Zn2þ.
DTDP (100 mM) was applied to control and hyperforin-treated cells.
It elicited larger FluoZin-3 signals in hyperforin-treated neurons
when compared to untreated neurons (Fig. 2A). Similar experi-
ments were conducted on cells maintained 16 days in vitro (DIV)
(in this case, hyperforin was present only the last 72 h). Similarly to
the immature neurons cultured for only 3 days, these 16 DIV
neurons treated for 72 h with hyperforin had a larger pool of DTDP-
sensitive Zn2þ when compared to untreated 16 DIV neurons (not
shown). Thus, this chronic hyperforin treatment enhances the size
of the DTDP-sensitive pool of mobilisable Zn2þ in neurons kept 3 or
16 DIV. The size of the mobilisable pool of Ca2þ was assayed by
means of the Ca2þ ionophore ionomycin. The experimental condi-
tions were the same as in Fig. 1B, namely Fluo-4 cortical neurons
were maintained in a nominally Ca2þ-free saline supplemented
with 1 mM EDTA and 2 mM TPEN. The results shown in Fig. 2B
indicate that a chronic hyperforin treatment does not affect the size
of the ionomycin-sensitive pool of Ca2þ.

Fig. 1. Effects of a chronic hyperforin treatment on the mitochondrial pools of mobi-
lisable Zn2þ and Ca2þ. Cortical neurons were maintained for 72 h in a culture medium
supplemented with 1 mM hyperforin (or DMSO, control cells). They were washed away
and loaded with FluoZin-3 (A) or Fluo-4 (B) to record cytosolic Zn2þ and Ca2þ signals,
respectively. Cells were bathed in a nominally Ca2þ-free saline containing 1 mM EDTA.
Figure A shows FluoZin-3 signals (F/F0) as a function of time recorded before and
during the addition of 10 mM hyperforin (arrow). Hyperforin-untreated cells (open
circles), n ¼ 114 and hyperforin-treated (72 h) cells (filled circles), n ¼ 106.
Mean � S.E.M. In Figure B, the recording medium was the same as in A but it also
contained 2 mM TPEN to prevent any hyperforin-induced elevation of free Zn2þ. The
graph in B shows Fluo-4 signals (F/F0) as a function of time before and during the
addition of 10 mM hyperforin (arrow). Untreated cells (open circles), n ¼ 180 and
hyperforin-treated cells (filled circles), n ¼ 181. Mean � S.E.M.

Fig. 2. A repeated administration of hyperforin influences the size of the DTDP-
sensitive pool of mobilisable Zn2þ. A, The experimental conditions were the same as
in Fig. 1A, namely FluoZin-3 loaded cells were bathed in a nominally Ca2þ-free saline
supplemented with 1 mM EDTA. The application of 100 mM DTDP (arrow) provoked
larger FluoZin-3 signals in cells chronically treated with 1 mM hyperforin (n ¼ 283
cells), when compared to control (hyperforin-untreated) cells (n ¼ 309 cells). When
not visible, errors bars are smaller than symbols. Mean � S.E.M. B, Same procedures as
in Fig. 1B (cells kept in a nominally Ca2þ-free saline supplemented with 1 mM EDTA).
When indicated (arrow) Fluo-4-loaded cortical neurons were challenged with ion-
omycin (2 mM). To prevent any ionomycin-dependent release of Zn2þ, TPEN (2 mM,
arrowhead) was added before ionomycin. In hyperforin-treated cells (1 mM for 3 days)
(filled circles, n ¼ 184 cells), the ionomycin-dependent Fluo-4 signals were non-
significantly different from the ones recorded on control cells (open circles, n ¼ 175).
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3.3. A chronic treatment with hyperforin stimulates the expression
of metallothioneins in vitro

Metallothioneins (MTs) constitute an important family of metal-
binding proteins. They have a high content of cysteine residues and
are consequently rich in sulphur. They can bind Zn2þ in a reversible
manner (West et al., 2008). Four isoforms of MTs are so far known
(MT-I to MT-IV). We focused our analysis on MT-I and MT-II,
ubiquitously expressed, and on MT-III of which expression is
more predominantly restricted to the brain. MT-IV, found in a few
tissues (Penkowa, 2006; West et al., 2008), was excluded. The
expression of these 3 isoforms was analyzed by qPCR. All MTs
isoforms (MT-I, -II and -III) were found in cortical cells, with MT-III
being the major isoform (Fig. 3A). Cultured cells were treated for
72 h with 1 mM hyperforin. This chronic treatment exerted
a profound regulatory action on the expression of the MTs mRNAs.
As illustrated in Fig. 3B, the plant extract enhances the levels of MTs
transcripts, showing that it regulates the expression of MTs genes.
The addition of 1 mM TPEN to the culture medium strongly atten-
uated the hyperforin-dependent upregulation of the expression of
MTs (Fig. 3B).

3.4. A chronic treatment of mice with hyperforin enhances
the sulphur content of the brain

To better described the effects of hyperforin on brain cells, adults
C57Bl6/J mice were chronically treated with hyperforin (intra-
peritoneal injection, 4 mg/kg/day for 4 weeks). Afterwards, brains
were collected and the total content of several elements was
determined by ICP-OES (see Methods section). The total brain
content of Zn was 48.6 � 3.9 and 49.9 � 2.4 mg/g of dry brain
(p > 0.05) in control and hyperforin-treated animals, respectively
(Table 1). On the other hand, the total brain Ca content was
269.8 � 46.9 (control) and 256.3 � 46.7 mg/g of dry brain (hyper-
forin-treated animals, p> 0.05). Thus, the long-term treatmentwith
the plant extract did not affect the Ca and Zn contents of the brain
(Table 1). However, a marked elevation (w70%) of the total sulphur
content was noted after the hyperforin treatment (1440.3 �
255.8 mg S/g of dry brain in control versus 2392.2�70.5 mg S/g of dry
brain in the hyperforin-treated group, p < 0.005, Student’s t-test)
(Table 1). This indicates that hyperforin influences the expression of
sulphur-containing molecules in the brain.

3.5. A chronic treatment with hyperforin stimulates the expression
of metallothioneins in vivo

The expression of MTs in the cortex of mice was investigated.
Animals were treated for 4 weeks and the cortices were collected
before being analyzed by qPCR. Similarly to the in vitro experiments
conducted on cultured cortical neurons, hyperforin has the ability
to stimulate the expression of the MTs genes in the murine cortex
(Fig. 4). Altogether, the data presented in Figs. 3 and 4 show that
hyperforin is a potent inducer of the expression of MT-I, MT-II and
MT-III both in vitro and in vivo.

4. Discussion

Several in vitro studies have investigated the effects of a repeated
administration of hyperforin. For instance, a 3-day treatment of the
human keratinocyte HaCaT cell line with 1 mM hyperforin triggers
the differentiation of the cells via a mechanism involving TRPC6
channels (Muller et al., 2008). A 2-day treatment of human hepa-
tocytes with 5 mM hyperforin decreases the mitochondrial activity,
increases the expression (at the mRNA and protein levels) as well as
the activity of CYP3A4 and CYP2C9, two drug-metabolizing
enzymes (Komoroski et al., 2004). The data shown in the present
report add newclues on the consequences of a chronic treatment on
brain cells: whether applied acutely (Tu et al., 2010) or chronically
(present report), hyperforin acts onmitochondria (Komoroski et al.,
2004; Schempp et al., 2002). Hence, the dicyclohexylammonium
salt of hyperforin (DCHA-hyperforin) dissipates the mitochondrial
membrane potential (Liu et al., 2011). Altogether, these studies
clearly show that hyperforin and hyperforin analogues act on
mitochondria (Komoroski et al., 2004; Liu et al., 2011; Schempp

Fig. 3. A chronic hyperforin treatment of cortical neurons in culture enhances the
levels of mRNA encoding MT-I, -II and -III. A, After 6 DIV, cortical neurons were har-
vested and mRNA levels of three MTs (MT-I, MT-II and MT-III) were analyzed by
quantitative real-time PCR (qPCR). Expressionwas normalized to the expression of MT-
I using actin as the reference gene. MT-III is the main MT isoform in these cultures of
neurons. Data collected from �3 batches of cells. B, Cortical neurons were grown for
72 h in a culture medium supplemented with DMSO alone (control cells) or with 1 mM
hyperforin or with 1 mM hyperforin þ 1 mM TPEN. Cells were washed away and mRNA
levels of MT-I, MT-II and MT-III were analyzed by qPCR. Chronically applied, hyperforin
up-regulates the levels of the transcripts. *p < 0.05 KruskaleWallis ANOVA followed by
a Dunn’s test. Expression was normalized with respect to the mRNA levels under
control conditions using actin and GAPDH as reference genes. Data collected from �3
batches of cells.

Table 1
Determination of the calcium, zinc and sulphur contents of the brain of C57BL/6J
mice. Adult males received a daily injection (i.p) of hyperforin (4 mg/kg body
weight) for 4 weeks. A few hours after the final injection, animals were sacrificed
and the cerebral content of selected elements (Ca, S, Zn) was quantified by ICP-OES.
Values are given as Mean � S.E.M.

Element (mg/g
dried brain)

Control (n ¼ 4) Hyperforin-treated
(n ¼ 5)

Student’s
t-test

Calcium 269.8 � 46.9 256.3 � 46.7 p > 0.05
Sulphur 1440.3 � 255.8 2392.2 � 70.5 p < 0.005
Zinc 48.6 � 3.9 49.9 � 2.4 p > 0.05
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et al., 2002; Tu et al., 2010). When assayed by means of fluorescent
dyes, the size of the hyperforin-sensitive pools of mobilisable Ca2þ

and Zn2þ were depressed after a repeated administration of
hyperforin. However, the ionomycin-sensitive pool of Ca2þ

remained unaffected by the SJW extract whereas the DTDP-
sensitive pool of Zn2þ was augmented. In addition, an enhanced
level ofmRNAs coding forMTs (MT-I, -II, and -III) was observed. This
effect on the expression of MTs transcripts was reversed by TPEN
indicating that Zn2þ ions are necessary for the hyperforin-
dependent regulation of the MTs genes in cultured cortical
neurons. In vivo, hyperforin augmented the sulphur content of the
brain and up-regulated the expression of MTs. Previous observa-
tions showed that, acutely applied, hyperforin releases Zn2þ from
mitochondria (Tu et al., 2010). We now find that a chronic hyper-
forin treatment affects the size of mobilisable pools of Zn2þ. This is
accompanied by a Zn2þ-dependent augmentation of the expression
of MTs and an elevation of the brain sulphur content.

MTs are an important family of cysteine- and zinc-rich proteins
(Maret and Li, 2009; Penkowa, 2006; Vasak, 2005). Participating in
many biological processes, they are described as multipurpose
proteins but their exact pathophysiological relevance is still unclear
(Penkowa, 2006). They are regarded as zinc donors and redox
transducers, and, due to their translocation within cells and
through the plasma membrane, they are able to deliver zinc to
various compartments (Maret, 2005). The expression of MTs can be
regulated by many factors notably metals and in vitro studies
showed that an enhanced expression of MTs exerts beneficial
effects with anti-inflammatory, anti-apoptotic, anti-oxidant and
neuro-protective functions (Penkowa, 2006; Thirumoorthy et al.,
2007; Vasak, 2005). It is important to mention that a chronic
injection of SJW extract augments the expression of MTs in the
kidney of rats but not in the liver (Shibayama et al., 2007). In
a similar vein, our data showed that a chronic treatment of cultured
cortical neurons stimulates in a TPEN-dependent manner the
expression of genes coding for MT-I, -II and -III, confirming that
hyperforin has the ability to regulate the expression of these zinc-
binding proteins. Hence, a 4-week treatment of mice enhances
by w66% the brain sulphur content, showing that hyperforin
influences the cellular content of sulphur-containingmolecules like
amino acids with a thiol group. They play key roles in the synthesis,
structure and functions of proteins (Brosnan and Brosnan, 2006;
Komarnisky et al., 2003). This higher content of sulphur is not
associated with a higher brain level of zinc (calcium, or copper, not

shown). Hyperforin does not seem to affect the cerebral zinc
content but rather changes its storage capacities (enhanced
expression of MTs and larger pool of DTDP-sensitive Zn2þ).

In summary, the data shown indicate that, when repeatedly
administered, hyperforin diminishes the size of the hyperforin-
sensitive pools of mobilisable Zn2þ and Ca2þ. This is accompanied
by an upregulation of the DTDP-sensitive pool of Zn2þ, leaving the
ionomycin-sensitive pool of Ca2þ unaffected. Furthermore,
a chronic hyperforin treatment of cortical cells in culture and of
adult mice influences the expression of the MTs genes. In addition,
it augments the sulphur content of the brainwithout modifying the
levels of calcium and zinc. It is proposed that hyperforin, by influ-
encing the size of the internal pools of Zn2þ, the expression of MTs
and the cerebral sulphur content, can interfere with the thiol status
of the brain and regulates its Zn-storage capacities.
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Conclusion et perspectives 

 Cette étude sur les effets chroniques de l’hyperforine sur l’homéostasie du calcium et 

du zinc peut se diviser en deux parties, les données in vitro et les données in vivo. 

 In vitro : 

Le traitement des neurones corticaux embryonnaires pendant 72 h avec l’hyperforine 

conduit à une diminution significative de la taille des pools de calcium et de zinc 

mitochondriaux. Cependant, le pool de calcium sensible à la ionomycine n’est pas modifié ce 

qui signifie que le calcium libéré par la mitochondrie sous l’effet de l’hyperforine n’a pas été 

pris en charge par ce pool. Il est possible que ce calcium libéré des mitochondries soit expulsé 

des cellules. 

Un traitement chronique à l'hyperforine diminue la taille du pool de zinc mitochondrial 

et augmente la taille du pool de zinc sensible au DTDP (un agent oxydant qui touche les 

groupements thiols). Les métallothionéines (MTs) sont des petites protéines qui possèdent de 

nombreux groupement thiols et qui permettent de fixer le zinc (Chapitre 3.2.3.3). Par des 

expériences de qPCR, nous avons montré la présence des métallothionéines 1, 2 et 3 dans les 

neurones en culture ; MT3 étant l’isoforme majoritaire (ce qui est en accord avec la 

littérature). Un traitement de 72 h à l’hyperforine augmente significativement l’expression des 

métallothionéines dans les neurones. Il serait intéressant de confirmer ce résultat par Western 

Blot. De façon très intéressante, nous avons montré qu’un traitement au TPEN en même 

temps que le traitement à l’hyperforine diminue considérablement l’expression des MTs, 

suggérant ainsi que le zinc intervient dans la régulation de l’expression des MTs par 

l’hyperforine.  

 In vivo 

Le contenu en métaux des cerveaux a été dosé par  ICP-OES. Les contenus en calcium 

et en zinc sont identiques entre les souris traitées 4 semaines à l’hyperforine et les souris 

traitées 4 semaines avec du NaCl. En revanche, les cerveaux des souris traitées à l’hyperforine 

possèdent plus de soufre que les cerveaux des souris non traitées. Ces résultats suggèrent 

premièrement que le traitement chronique à l’hyperforine provoque une redistribution du zinc 

et du calcium puisque leur quantité totale n’est pas affectée et, deuxièmement, ils suggèrent 

une augmentation de la teneur cérébrale en molécules soufrées. Les MTs sont très riches en 

résidus cystéines (environ 20 cystéines (C3H7NO2S)/protéine) nous avons posé l’hypothèse 

que l’expression des MTs est augmentée dans le cerveau des souris traitées à l’hyperforine. 

Pour tester cette hypothèse, nous avons prélevé les cortex des souris traitées à l’hyperforine et 
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des souris non traitées. Par qPCR, nous avons montré une augmentation de l’expression des 

gènes des MTs au niveau du cortex des animaux traités. A eux seuls ces résultats n’expliquent 

pas l’augmentation de 66% du contenu en soufre du cerveau des animaux traités avec 

l’hyperforine. Il serait à présent intéressant de regarder l’expression d’autres protéines à 

groupement thiols qui jouent un rôle dans l’homéostasie des métaux au niveau cellulaire.  

 Les résultats des traitements chroniques à l’hyperforine in vitro et in vivo vont donc 

dans le sens d’une relocalisation du zinc depuis la mitochondrie vers les métallothionéines en 

augmentant probablement la synthèse des acides aminés soufrés et en induisant l’expression 

de protéines fixant les métaux.  
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Article 5 : L’hyperforine augmente la phosphorylation de CREB et 
l’expression de TrkB de façon tissu-spécifique sans influencer la 
neurogénèse hippocampique chez la souris adulte. 
 

Introduction 

 

L’hyperforine est un des composants bioactifs extrait des plantes de millepertuis 

(Hypericum perforatum). Les effets antidépresseurs des extraits de millepertuis sont mis à 

profit pour soigner des dépressions légères à modérées en favorisant notamment l’expression 

du facteur neurotrophique dérivé du cerveau (BDNF) chez les patients380. De plus, des 

traitements chroniques avec ces extraits augmentent l’expression de CREB et de P-CREB 

chez le rat381 et rétablissent la neurogénèse adulte lors d’un stress à la corticostérone chez la 

souris383. 

L’hyperforine est la molécule qui semble impliquée dans l’effet antidépresseur des 

extraits de millepertuis365. Ce principe actif est un activateur des canaux TRPC615 or 

l’activation de ces canaux au niveau de l’hippocampe favorise la croissance et la 

complexification du réseau dendritique via la voie CaMKIV-CREB132,133. De plus, la 

suppression des canaux TRPC6 empêche l’effet du BDNF sur le guidage des cônes de 

croissance neuronaux93. 

Dans les neurones, l’hyperforine induit une dépolarisation de la membrane 

mitochondriale qui conduit à la libération de calcium et de zinc depuis ces compartiments123. 

Dans l’article précédent, nous avons montré qu’un traitement chronique à l’hyperforine 

conduisait à une relocalisation du zinc dans la cellule. C’est le deuxième métal le plus 

abondant de l’organisme et ses rôles sont divers tant au niveau catalytique que structural dans 

de nombreuses enzymes. Le Zn a aussi un rôle de second messager capable d’induire 

l’activation de TrkB (les récepteurs du BDNF) via les kinases de la famille Src (Fyn et Src)194. 

Le récepteur TrkB est la cible du BDNF et la fixation de cette neurotrophine induit la 

dimérisation du récepteur et la transphosphorylation des résidus tyrosines des domaines 

intracellulaires de TrkB conduisant à l’activation de voie de signalisation intracellulaires349. 

La suppression de TrkB dans les neurones d’hippocampe a permis de montrer leur rôle dans la 

neurogénèse, processus mis en jeu dans la réponse aux antidépresseurs356. La séquence 

promotrice du gène codant pour TrkB possède deux sites CRE (Ca2+/cAMP response 

elements) suggérant que l’augmentation de calcium ou d’AMPc régule l’expression de ces 

récepteurs425 via la protéine CREB phosphorylée426. 
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Lors de ma 3ème année de thèse, j’ai tenté de caractériser les effets d’un traitement 

chronique à l’hyperforine sur le BDNF et sa voie de signalisation contrôlant l’expression des 

ses récepteurs dans les neurones et chez la souris. Un tel traitement augmente l’expression de 

TrkB, CREB et P-CREB in vitro et TrkB et P-TrkB in vivo. Le blocage des canaux TRPC6 

par le SKF96365 supprime l’effet de l’hyperforine ce qui indique que ces canaux sont 

impliqués dans l’action de cette molécule. L’inhibition de la PKA par le RpcAMP supprime 

aussi l’effet de l’hyperforine. Un traitement chronique à l’hyperforine active donc une voie 

TRPC6 / PKA / P-CREB conduisant à la sur-expression de TrkB.  
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Hyperforin increases the phosphorylation of CREB and the expression of TrkB in 
a tissue-specific manner 
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ABSTRACT 

Hyperforin, an extract from the medicinal plant Hypericum perforatum (St John wort), 

possesses antidepressant properties. The following study was undertaken to extend our 

understanding of its mechanisms of action by characterizing the neuronal responses induced 

after a chronic hyperforin treatment. Western blot experiments show that in cultured cortical 

neurons from murine brain, hyperforin stimulated the expression of the BDNF receptor TrkB 

via SKF-96365-sensitive channels and a downstream signalling pathway involving Ca2+ ions, 

PKA, CREB and phospho-CREB. Parallels experiments were conducted on cortical and 

hippocampal tissues isolated from adult mice that had received a daily injection (i.p.) of 

hyperforin (4 mg/kg) for 4 weeks. Similarly to the in vitro experiments, this treatment 

augmented the expression of TrkB in the cortex but not in the hippocampus. In addition, 

hyperforin did not influence the hippocampal neurogenesis. These latter findings suggest that 

the cortex but not the hippocampus is an important brain structure participating in the CNS 

effects of hyperforin. Altogether, these data, showing that this plant extract acts via the 

cortical BDNF/TrkB pathway, leaving the hippocampal neurogenesis unaffected in the adult 

brain, add new clues on the neuronal responses controlled by hyperforin. 

 

 

 

 

 

Keywords :   brain, cortex, mice, hyperforin, antidepressants, BDNF, TrkB, CREB, PKA, 

neurogenesis, TRPC6. 
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INTRODUCTION 

 

The medicinal plant Hypericum perforatum, also named St John wort (SJW), contains nearly 

two dozens of bioactive compounds which possess interesting pharmacological properties. 

They for instance exhibit anti-bacterial, anti-inflammatory, anti-tumoral and anti-angiogenic 

activities (Lorusso et al., 2009; Saddiqe et al., 2010; Schempp et al., 1999). In addition, 

extracts of SJW have central nervous system effects and are used as antidepressants (Di Carlo 

et al., 2001; Linde et al., 1996; Mennini et al., 2004; Muller, 2003). Although several 

constituents of SJW seem to contribute to its therapeutic efficacy (Chatterjee et al., 1998a), 

the phloroglucinol derivative hyperforin is regarded as the main mood-stabilizer principle of 

this medicinal herb (Cervo et al., 2002; Chatterjee et al., 1998b; Zanoli, 2004). However, the 

cellular mechanisms underlying its clinical antidepressant action are so far currently 

unknown. Many cellular targets have been identified (Beerhues, 2006; Medina et al., 2006). 

For instance, hyperforin inhibits (Chatterjee et al., 1999; Fisunov et al., 2000; Kumar et al., 

2006) or activates (Leuner et al., 2007) various plasma membrane channels, controls the 

activity of enzymes (Albert et al., 2002; Gey et al., 2007; Hoffmann et al., 2010; Komoroski 

et al., 2004), binds to intracellular receptors like the pregnane X receptor (Moore et al., 2000), 

and alters the expression of genes like CYP2C genes (Chen et al., 2009). Hyperforin has also 

been shown to interfere with neurotransmission. It for instance inhibits the reuptake of most if 

not all neurotransmitters and dissipates the pH gradient of synaptic vesicles. This causes a 

redistribution of monoamines from these vesicles to the cytoplasmic compartment (Roz et al., 

2004).  

 

The BDNF/neurotrophine system as well as the regulation of adult hippocampal neurogenesis 

by antidepressants seem to be two key issues involved in the molecular biology of depression 
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(Duman et al., 2006; Kozisek et al., 2008; Miguel-Hidalgo et al., 2002; Sahay et al., 2007). 

The aim of this present study was to advance our understanding of the pharmacological basis 

for the action of hyperforin on brain cells. A special focus was given to its impact on the 

BDNF receptor TrkB and on the adult hippocampal neurogenesis.  

To better decipher the roles played by the bioactive molecules present in the extract of SJW, 

in vitro and in vivo experiments were conducted with hyperforin. The data collected indicate 

that a chronic treatment has the ability to set in motion an intracellular signalling pathway 

involving the cAMP-dependent protein kinase A and the transcription factor CREB (cyclic 

adenosine monophosphate response element binding protein), regulating the expression of the 

BDNF receptor TrkB. This hyperforin-dependent cascade occurs specifically in the cortex but 

not in the hippocampus. This suggests that the cortex is a key brain structure involved in the 

antidepressant action of hyperforin. Our findings provide new insights into the 

neurobiological actions of a chronic hyperforin treatment on cells of the central nervous 

system (CNS). 
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2. MATERIALS AND METHODS 

 

2.1 Cell cultures 

Primary cultures of cortical neurons were prepared according to a protocol already described 

(Bouron et al., 2005). In brief, embryonic brains were isolated from E13 C57BL6/J mice and 

placed in an ice-cold Ca2+- and Mg2+-free Hank’s solution in which was added 33 mM 

glucose, 4.2 mM NaHCO3, 10 mM HEPES, and 1 % penicillin/streptomycin. Depending on 

the number of embryos, 1 to 3 pregnant mice were needed to prepare one batch of cultured 

cells. The cortices were pooled and placed in a sterile 1.5 mL Eppendorf tube before being 

dissociated by means of repetitive aspirations of the cortices though a sterile and fire-polished 

Pasteur pipette. This cell suspension was then filtered through a 40 µm cell strainer (BD 

Falcon) and platted on poly-L-ornithine treated Petri dishes (Ø 6 cm). Cells were grown for 3 

days in a Neurobasal medium containing 2 % B27, 1 % penicillin/streptomycin and 500 µM 

glutamine. After this, half of this culture medium was removed and replaced with a fresh 

Neurobasal medium. The procedures used were approved by the Ethical Committee of 

Grenoble (ComEth) (protocol 7_IRTSV-LCBM-AB-01).  

 

2.2 Chronic treatment of C56Bl6/J mice with hyperforin 

Twenty six 5-month old male C57Bl6/J mice (Charles River, France) were housed under 

standard conditions with a 12 h light/dark cycle and had free access to water and food. 

Thirteen animals received a daily intra-peritoneal injection of a fresh hyperforin solution (4 

mg of hyperforin/kg of body weight) diluted in a sterile NaCl (0.9 %) solution. Control 

animals (n=14) were treated with a hyperforin-free NaCl solution. After 4 weeks of treatment, 

the brain of 3 hyperforin-treated mice and of 3 control mice were isolated and placed in an 

ice-cold saline solution. They were subsequently used for the extraction of proteins (see 
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below). The other animals received 2 BrdU injections at 24 h of intervalle (25 mg 

BrdU/animal). After this, the daily injections of hyperforin (or NaCl) were repeated for 3 

more weeks before the intra-cardiac injection of paraformaldehyde (PFA) and the processing 

of the brains for the analysis of the hippocampal neurogenesis (see below). 

 

2.3 Protein extraction and western blot analysis 

For the in vivo experiments, proteins from the cortex and the hippocampus were extracted 

using the Nucleospin RNA/protein kit (Macherey-Nagel, France) followed by a precipitation 

with ethanol. Samples were kept in ice 30 minutes and centrifuged at 15000 rpm for 30 

minutes at 4°C. Pellet was resuspended in a buffer containing 150 mM NaCl, 1 % Triton X-

100, 0,1 % SDS, 0,24 % Tric-HCl and 0,5 % Deoxycholate. 

For the in vitro experiments, Hyperforin was added to the culture medium 5 days after the 

plating of the neuronal cells. At that time, the culture medium was removed and replaced by a 

fresh Neurobasal medium containing 1 µM hyperforin (or DMSO, control cells). Cells were 

subsequently kept for 72 h during which the culture medium containing hyperforin (or 

DMSO) was renewed everyday. At the end of the 72 h treatment, cells were harvested and 

centrifuged for 5 minutes at 3000 rpm. The pellet was resupended in a buffer containing (in 

mM): 10 HEPES, 3 MgCl2, 40 KCl, glycerol 2 %, Triton X-100 1%, inhibitors of protease 1% 

(Sigma), pH 7,5. The samples were kept in ice 30 minutes and centrifuged at 15000 rpm for 

30 minutes at 4°C before collecting the supernatant. Proteins were quantified using the Bio-

Rad DC protein assay.  

Immunoblotting analyses were performed with 50 µg of proteins after separation on a 8 % 

SDS-polyacrylamide gel. PVDF membranes were blocked 2 hours in 5 % non-fat dry milk. 

Primary antibodies were either anti-TrkB (Millipore) at 1:500, anti-Phospho-TrkB (tebu-bio) 

at 1:200, anti-CREB (Millipore) at 1:1000, anti Phospho-CREB (Millipore) at 1:1000 or actin 
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(Sigma) at 1:250. Incubation with primary antibodies was performed at 4°C over-night 

followed by incubation with horseradish peroxidase-coupled secondary antibodies (Bethyl). 

Detections of the bands by chemiluminescence (ECL, Pierce) was achieved using a Fusion 

Fx7 apparatus (Vilbert Lourmat). Quantification of protein expression was made with ImageJ 

software: for a given protein, its expression was normalized to the level of expression of actin.  

 

2.4 Adult hippocampal neurogenesis 

For these experiments 10 animals of each group (namely hyperforin-treated and NaCl-treated 

animals) was used. Animals were anesthetized with pentobarbital. The fixation of the brain 

was achieved after an intra-cardiac injection of 4 % PFA in PBS (Dupret et al., 2008). Free-

floating sections (40 µm) were processed in a standard mmunohistochemical procedure in 

order to visualise BrdU (1:2000, Acurate, New York, USA), phosphorylated Histone H3 

(pH3,1:2000, Upstate), doublecortin (Dcx, 1:1000, Santa Cruz Biotechnology), on alternate 

one-in-ten sections. The numbers of immunoreactive (IR) cells throughout the entire granular 

layer of the supragranular and infragranular blades of the DG (both sides for BrdU and HH3, 

and left side for Dcx) were estimated using the optical fractionator method (Dupret et al., 

2007). 

 

2.5 Statistical analysis 

Throughout this study, data are presented as means ± s.e.m. The statistical significance of the 

difference between the groups was determined using SigmaStat (version 3.5, Systat 

Software). 
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2.6 Materials 

Tissue culture media were obtained from Invitrogen (France). 5-Bromo-2’-deoxyurydine 

(BrdU) was from Serva (Coger, France). All other reagents were from Sigma-Aldrich 

(France). Hyperforin was a gift from Dr. Willmar Schwabe GmbH & Co (Karlsruhe, 

Germany). The extract is a mixture of hyperforin with its homologue adhyperforin (ratio 8:2), 

prepared as sodium salts (Tu et al., 2009).   
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3. RESULTS 

 

A previous report showed that a chronic treatment with 1 µM hyperforin can induce the 

differentiation of keratinocytes (Muller et al., 2008). This concentration was proved to be non 

toxic in several cell types (Kraus et al., 2010; Moore et al., 2000). We thus decided to use a 

similar concentration of hyperforin (1 µM) and looked at its effects on the expression of 

CREB, phospho-CREB (P-CREB), TrkB and phospho-TrkB (P-TrkB) in cultured cortical 

neurons (Figure 1A). A 72h-hyperforin treatment caused a clear augmentation of the 

expression of CREB, P-CREB and TrkB, leaving the phosphorylated form of TrkB (P-TrkB) 

unaffected. For instance, the expression of CREB, P-CREB and TrkB was enhanced by 70 %, 

109 % and 71 %, respectively (p<0.05) (Figure 1B). After having shown that a chronic 

treatment of hyperforin influences the expression of the BDNF receptor TrkB probably via a 

CREB-dependent process, additional experiments were conducted to clarify the signalling 

pathway involved in this regulatory mechanism. 

 

Hyperforin interferes with the activity of many cellular targets. Of interest, it blocks several 

plasma membrane conductances but, unexpectedly, enhances the activity of TRPC6 channels 

leaving the other TRPC channels unaffected (Leuner et al., 2007). So far, TRPC6 channels 

appear as the only Ca2+-conducting channels positively regulated by hyperforin. These 

channels are present in the embryonic mice brain (Boisseau et al., 2009; Tu et al., 2009) and 

the entry of Ca2+ through these channels is blocked by SKF-96365 (Tu et al., 2009), a potent 

blocker of Ca2+ channels (Clementi et al., 1996). The next experiments were carried out in 

order to verify whether TRPC6 channels were implicated in the hyperforin-dependent 

regulation of TrkB expression. Cortical neurons were kept in a medium containing SKF-

96365 (5 µM) alone or SKF-96365 (5 µM) + hyperforin (1 µM). In this latter case, SKF-
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96365 was added 10 min before the addition of hyperforin, so that the Ca2+ channel blocker 

(SKF-96365) was present before the TRPC6 channel activator (hyperforin). In the presence of 

SKF-96365, hyperforin was unable to enhance the phosphorylation of CREB (Figure 2A). It 

also failed to up-regulate the expression of TrkB (Figure 2A). Since SKF-96365 is a blocker 

of Ca2+-conducting channels, BAPTA was used to know whether the entry of Ca2+ controls 

the phosphorylation of CREB and the expression of TrkB. Preliminary experiments revealed 

that at concentrations higher than 1 µM, the Ca2+ chelator BAPTA-AM caused a clear cell 

loss (not shown). In the following experiments, cortical neurons were grown in a medium 

containing 100 nM BAPTA-AM. This low concentration partially reduced the hyperforin-

dependent regulation of the expression of P-CREB and TrkB (Figure 2B). These results 

obtained with SKF-96365 and BAPTA suggested that Ca2+ is a central actor downstream to 

hyperforin, and upstream to P-CREB and TrkB. The cAMP-dependent protein kinase A 

(PKA) is a key player controlling CREB activity (Kingsbury et al., 2003; Lonze et al., 2002). 

Its involvement in the hyperforin-dependent phosphorylation of CREB was investigated. Cells 

were incubated with hyperforin (1 µM) or with hyperforin + RpcAMP (20 µM), a competitive 

inhibitor of PKA (Murray, 2008). Under this latter condition, the expression of TrkB and P-

CREB was not up-regulated by the antidepressant (Figure 2C). The amount of TrkB and P-

CREB was rather reduced by 9 % and 34 %, respectively. The data summarized in Figure D-E 

suggest that SKF-96365-sensitive channels, Ca2+ ions and PKA are likely candidates 

participating in the hyperforin-dependent regulation of TrkB expression.  

 

Since hyperforin controls the expression of TrkB in cultured cortical neurons, we next 

addressed its effects on adult brains. Mice were chronically treated for 4 weeks (4 mg/kg/day) 

and the expression of TrkB was analysed in the cortex (Figure 3A) and in the hippocampus 

(Figure 3B). In agreement with the in vitro experiments, a 4 week hyperforin treatment exerts 
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a positive action on the expression of TrkB (+124 %, p<0.05). However, CREB and P-CREB 

seemed up-regulated but, when compared to their respective controls (NaCl-treated) the 

difference was not significant (p>0.05). In vivo, hyperforin also enhanced the expression of P-

TrkB (+ 200 %, p<0.05) (Figure 3A). In striking contrast to the cortex, none of the actors 

analyzed in the hippocampus (CREB, TrkB and their phosphorylated forms) appeared 

regulated by hyperforin (Figure 3B). This latter observation indicates that this bioactive 

compound exerts tissue specific responses. 

 

To further precise the action of hyperforin, its effects on the adult hippocampal neurogenesis 

was analyzed. Adult mice received (i.p.) a daily dose of hyperforin (4 mg/kg) for 4 weeks. 

They then received 2 injections of BrdU to label dividing cells and the hyperforin treatment 

was pursued for 3 more weeks before analysing the different step of neurogenesis: cell 

proliferation, cell survival and neurogenesis.  We observed no effect on cell proliferation as 

measured by the number of phosphorylated Histone H3 (pH3, Figure 4A, t18=-0.70,p=0.49). 

The survival of 3 weeks old BrdU-labelled cells was not either modified (Figure 4B, t18=-

0.30, p=0.77). As a consequence neurogenesis, evaluated by the number of doublecortine 

(DCX) a surrogate of neurogenesis (Figure 4C, t18=-1.05,p=0.31) remained unchanged 

(Figure 4). In conclusion, under the experimental conditions used, hyperforin did not 

influence the hippocampal adult neurogenesis. 
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DISCUSSION 

 

SJW is one of the most commonly used medicinal plant (Wills et al., 2000). Since the first 

meta-analysis of Linde et al (1996) showing that extracts of SJW were as effective as standard 

antidepressants for the treatment of some forms of depression (Linde et al., 1996), several 

authors have shown the usefulness of this medicinal plant for the treatment of mood disorders 

(Di Carlo et al., 2001; Stevinson et al., 1999). Although several constituents of SJW seem to 

contribute to this antidepressive action, the phloroglucinol derivative hyperforin is considered 

as the main mood-stabilizer principle of this medicinal herb (Cervo et al., 2002; Chatterjee et 

al., 1998b). Due to its recognized clinical efficacy, the use of the plant extract hyperforin is 

regarded as an alternative for the treatment of depression. The mechanisms by which it acts 

on CNS function and underlying its behavioural responses are still obscure. The data 

presented shed new light on its putative mechanisms of action. 

 

In vitro and in vivo experiments illustrate the positive influence of a chronic hyperforin 

treatment on the expression of TrkB. This up-regulation was observed on cultured cortical 

neurons from embryonic mice (in vitro data) as well as on brain from adult mice (in vivo 

data). Therefore, the hyperforin-dependent regulation of the gene coding for this BDNF 

receptor can be observed in immature and mature brains. The hyperforin-dependent 

expression of TrkB is abolished in the presence of the channels blocker SKF-96365, is 

sensitive to the Ca2+ chelator BAPTA, critically depends on the activity of serine-threonine 

PKA and involves the inducible transcription factor CREB. Upon binding to gene promoters 

P-CREB, the active form of CREB, controls the expression of various proteins like TrkB for 

instance and plays a pivotal role in synaptic plasticity (Benito et al., 2010; Lonze et al., 2002). 

Many, but not all, antidepressants increase P-CREB levels. Whether the clinical efficacy of 
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antidepressant really involves P-CREB is not yet completely proven (Blendy, 2006). The 

findings of the present report indicate that hyperforin controls via a SKF-96365-sensitive 

pathway, a signalling cascade involving PKA and CREB. Since TRPC6 are the only plasma 

membrane channels known to be activated by this agent, it is proposed that TRPC6 channels 

mediate the hyperforin response. Since SKF-96365 is a blocker of Ca2+ conducting channels, 

hyperforin seems to enhance PKA activity via a Ca2+-dependent process which most likely 

involves Ca2+-sensitive adenylate cyclases.  

 

Although, a great number of studies have contributed to a better understanding of the 

molecular biology of the depressive disorder, little is known regarding the precise mechanism 

of action of antidepressant drugs. According to some authors, the neurotrophine BDNF and 

the action of antidepressants on the hippocampal adult neurogenesis is  one central feature 

involving TrkB receptors. Indeed, some experimental data support the existence of a 

functional link between BDNF, TrkB, the adult hippocampal neurogenesis and the 

behavioural effects of antidepressant drugs (Li et al., 2008). According to this model, TrkB 

appears as a central actor in the pathophysiology of the depressive disorder. Of interest, 

hyperforin augments its expression. However, there is no unequivocal demonstration showing 

that adult hippocampal neurogenesis is really necessary to produce the behavioural effects of 

antidepressants (Sahay et al., 2011). Although the BDNF-neurogenesis model has been well 

documented, it is debated (DeCarolis et al., 2010; Sapolsky, 2004), notably because it seems 

to suffer some exceptions (Bessa et al., 2009; David et al., 2009; Surget et al., 2008) 

suggesting that it may not fully cover the neurobiology of all the antidepressants. First, a 

decrease in hippocampal neurogenesis does not induce a depressive-like behaviour, indicating 

that this process is not involved in the pathogenesis of depression (Revest et al., 2009; 

Santarelli et al., 2003). Importantly, the effects of antidepressants on neurogenesis seem to 
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depend on the mouse strain used (Holick et al., 2008). In addition, antidepressants like 

fluoxetine seem to stimulate the hippocampal neurogenesis of mice under chronic stress but 

not when tested on unstressed animals (Surget et al., 2010). This latter finding could explain 

the inability of hyperforin to change the production of new hippocampal neurons since all the 

experiments were conducted on unstressed C57Bl6/J mice. Another important parameter to 

consider when trying to understand the requirement (or not) of the hippocampal neurogenesis 

in the efficacy of antidepressant drugs, is the type of antidepressant used. For instance, the 

hippocampal neurogenesis underlines the action monoaninergic compounds but however does 

not seem to be required for drugs acting on the hypothalamo-pituitary-adrenal (HPA) axis 

(Surget et al., 2008).  

 

In conclusion, in vitro and in vivo experiments were conducted to better address the CNS 

effects of the plant extract hyperforin which is commonly prescribed as an antidepressant 

(Cervo et al., 2002; Chatterjee et al., 1998b; Zanoli, 2004). The data presented show that it is 

a potent regulator of the expression of the BDNF receptor TrkB. It is proposed that hyperforin 

acts via a regulatory process involving TRPC6 channels, PKA and CREB. Additionally, and 

unexpectedly, this hyperforin-dependent control of the expression of TrkB occurs in the 

cortex but not in the hippocampus. Furthermore, this agent leaves unaffected the hippocampal 

neurogenesis in the brain of adult mice. Altogether, the cortex appears as an important brain 

structure participating in the CNS effects of this plant extract.  
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FIGURE LEGENDS 

 

FIGURE 1: Hyperforin enhances the expression of TrkB, CREB and P-CREB in cultured 

cortical neurons  

Western blot analysis of the expression of TrkB, phospho-TrkB, CREB and phospho-CREB 

in cortical neurons kept in culture for 72h in the presence of 1 µM hyperforin. A 

Representative Western blots from > 3 independent experiments from control neurons (-) and 

neurons treated with hyperforin (+). B Summary plot showing the expression of each protein. 

Expression levels were normalized to the level of expression of Actin and are represented in 

% of the expression of each protein in control conditions. Data are collected from at least 3 

independent experiments. *p<0.05 Mann-Whitney. 

 

FIGURE 2: SKF-96365-sensitive channels and PKA are involved in the hyperforin-

dependent controls of the expression of TrkB in cultured cortical neurons 

Western blot analysis of the expression of TrkB and P-CREB in cortical neurons kept in 

culture for 72 h in the presence of 1 µM hyperforin without or with the channel blocker SKF-

96365 (5 µM), the Ca chelator BAPTA/AM (100 nM), or the PKA inhibitor RpcAMP (20 

µM). * p<0.05 (Mann Whitney). 

 

FIGURE 3: Hyperforin regulates the expression of TrkB in the cortex but not in the 

hippocampus of adult mice 

Panels A and B show the changes in the expression level of TrkB, P-TrkB, CREB and P-

CREB in response to a 4 week treatment with hyperforin (i.p., 4 mg/kg/day). Control animals 

receiving a daily injection of NaCl. The expression of these proteins was analyzed by Western 

blotting in the cortex (A) and the hippocampus (B). Shown are representative Western blots of 
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TrkB, P-TrkB, CREB and P-CREB (left panels) and bar plots (right panels) summarizing the 

expression of each proteins in % of their expression in control (NaCl 0,9 %) animals.   

 

FIGURE 4: Hyperforin does not influence adult hippocampal neurogenesis  

Ten control (left panel) and ten treated animals (middle panel) received respectively a daily 

injection of NaCl 0,9 % or 4 mg/kg of hyperforin during 4 weeks. This treatment was 

followed by 2 injections of BrdU (at 24 hours of interval) and animals were treated for 3 more 

weeks with 4 mg/kg of hyperforin (or with NaCl 0,9 %). Animals were killed and brain slices 

were immunstained with antibodies against PH3, BrdU and DCX. Representative 

photomicrographies showing immunostained cells localized in the dentate gyrus. The total 

number of PH3-IR (A), BrdU-IR (B) and DCX-IR (C) cells is also given (right panels). No 

significant differences were observed between groups for cell proliferation (A), cell survival 

(B) and neurogenesis (C). Scale Bar = 50µm. 
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Conclusion et perspectives 

 

Les extraits de millepertuis sont couramment utilisés pour traiter des cas de dépression 

légère à modérée. Ces extraits contiennent plusieurs éléments naturels dont des flavonoides, 

des proanthocyanidines, des naphtodianthrones (hypericine) et des acylphloroglucinols 

(Hyperforine)360. Un traitement chronique avec ces extraits augmente le taux de BDNF 

sérique380 et influence la neurogénèse adulte chez la souris383. Nous avons testé si 

l’hyperforine pouvait être responsable de ces actions. Nos résultats montrent que les 

expressions protéiques de CREB, P-CREB et TrkB sont augmentées lors d’un traitement 

chronique à l’hyperforine sur des neurones corticaux en culture. In vivo, un traitement de 4 

semaines à l’hyperforine augmente les expressions protéiques de TrkB et P-TrkB dans le 

cortex de souris. Un traitement chronique avec uniquement l’hyperforine comme principe 

actif module donc l’expression des acteurs de la voie de signalisation du BDNF in vivo et in 

vitro. 

Suite à cette observation, nous avons étudié la voie de signalisation intracellulaire qui 

conduit à l’activation de CREB et à la surexpression de TrkB dans les neurones. L’action de 

l’hyperforine sur la voie de signalisation conduisant à la surexpression de TrkB est en partie 

dépendante du calcium. L’hyperforine a été décrite pour activer les canaux TRPC6 présents 

dans les neurones corticaux95 et pour induire une libération de calcium depuis la 

mitochondrie123. Ces deux actions distinctes augmentent la concentration en calcium libre 

dans le cytoplasme des neurones. La phosphorylation de CREB est sous le contrôle de 

nombreuses voies dont la voie Ca2+-CaMKIV426. L’entrée de calcium favorise la formation du 

complexe Ca2+-CaM (Calcium binding protein calmoduline) et active la CaMKIV427. L’entrée 

de calcium via les canaux TRPC6 augmente la croissance dendritique en favorisant 

notamment la voie CaMKIV-CREB dans les neurones d’hippocampe133. Les traitements 

chroniques à l’hyperforine en présence de SKF-96365 indiquent que les canaux TRPC6 sont 

probablement impliqués dans l’activation de la voie CREB/P-CREB. Ces expériences 

mériteraient d’être complétées par une approche de siRNA contre TRPC6 pour confirmer leur 

rôle dans l’action de l’hyperforine. 

L’hyperforine modifie l’homéostasie du zinc dans les neurones suite à la 

dépolarisation du potentiel de membrane mitochondrial123. Une relocalisation du zinc est alors 

observée et l’expression des métallothionéines est augmentée (Cf article 4). Le TPEN qui 

possède un Kd pour le zinc de 2,910-16M428 a été utilisé pour observer le rôle de ce métal dans 

l’effet de l’hyperforine sur les expressions de P-CREB et TrkB. De manière surprenante, 
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l’expression de P-CREB est augmentée dans le cas d’un co-traitement TPEN et hyperforine 

mais sans que l’expression de TrkB ne soit affectée (Figure supplémentaire 1, non soumise à 

publication). Le zinc serait donc nécessaire à l’activité de P-CREB. P-CREB se fixe sur les 

séquences CRE mais n’est actif qu’en présence du co-activateur CBP (CREB Binding 

Protein)426. Celui-ci possède un doigt de zinc et la fixation de CBP sur ses protéines cibles est 

sensible au TPEN429. Il est probable que dans nos expériences, la fixation de CBP sur P-

CREB soit altérée en présence de ce chélateur. Cette hypothèse pourrait être testée en 

immunoprécipitant P-CREB et en quantifiant la quantité de CBP fixé à P-CREB lors d’un 

traitement par le TPEN.  

  

 

 

 

 

 

 

 

Figure supplémentaire 1 : Le TPEN bloque l’expression de TrkB sans affecter l’activation de CREB 
Des cultures de neurones sont incubées en présence de 1 µM TPEN ou 1 µM TPEN + hyperforine 1 µM pendant 
72 h. L’expression de TrkB et P-CREB est mesurée par Western Blot (A) puis normalisée par l’expression de 
l’actine. Le graphique (B) montre l’expression de TrkB et P-CREB dans les neurones traités avec 1 µM TPEN+ 
hyperforine 1 µM exprimées en pourcentage de l’expression de TrkB ou P-CREB en condition TPEN seul. 
*P<0,05 (Mann-Whitney). 
 

L’hyperforine induit l’apoptose dans les cellules K562 via l’activation des caspases 3, 

8 et 9 causée par une libération du cytochrome c et une dérégulation du potentiel de 

membrane mitochondrial424. Nous avons choisi une concentration non toxique d’hyperforine 

pour nos traitements (1 µM)424 mais il n’est pas exclu que cette concentration n’affecte pas les 

propriétés de la mitochondrie. Il serait intéressant de quantifier la libération du cytochrome c 

dans les neurones suite aux différents traitements chroniques à l’hyperforine mais aussi 

d’observer la morphologie des mitochondries lors de ces traitements. Dans les cellules de 

mammifères, l’inhibition de l’activité mitochondriale provoque la phosphorylation de CREB 

sur la sérine 133 par l’intermédiaire de la CaMKIV430. L’hypothèse que l’action de 

l’hyperforine passe par une dérégulation de l’activité mitochondriale pourrait être testée dans 

les cellules HEK293 dans lesquelles l’hyperforine ne provoque pas d’entrée transitoire de 

calcium mais exerce son action au niveau des pools de cations intracellulaires (article 1 figure 

A B 
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supplémentaire 1). Le protonophore mitochondrial (et inhibiteur métabolique) FCCP induit 

l’activation de CREB par un mécanisme dépendant du calcium430. De plus, traiter des 

mitochondries isolées de cerveau par l’hyperforine dépolarise la membrane mitochondriale et 

supprime l’effet du FCCP (article 3)123. Cet antidépresseur pourrait donc induire les mêmes 

dysfonctionnements mitochondriaux que le FCCP.  

La PKA est directement impliquée dans la phosphorylation de CREB426. Les 

expériences qui ont été réalisées avec le RpcAMP, un inhibiteur compétitif de la PKA431, 

montrent que la voie P-CREB/TrkB n’est plus activée lors d’un traitement chronique à 

l’hyperforine en présence de cet antagoniste. Une voie de signalisation activant la PKA serait 

donc mise en jeu lors d’un traitement chronique à l’hyperforine. L’activité de la PKA est 

régulée par le niveau d’AMPc et donc par l’activité de l’adénylate cyclase (AC) or l’AC est 

principalement régulée par les récepteurs couplés aux protéines G (GPCR)432. Une hypothèse 

serait que l’hyperforine active un GPCR, activant l’AC puis la PKA par la production accrue 

d’AMPc et finalement augmente la phosphorylation de CREB et l’expression de TrkB. 

Cependant, l’AC de sous-type 1, exprimée spécifiquement dans certaines régions du cerveau 

(hippocampe, néocortex, cortex entorhinal, cortex olfactif, cervelet) est régulée positivement 

par le calcium, une augmentation du calcium intracellulaire favorise son activité433,434. Nous 

avons testé l’effet de la chélation du calcium par le BAPTA-AM sur la réponse hyperforine, 

les résultats indiquent que le calcium joue un rôle important dans l’activation de CREB par 

l’hyperforine (109 % d’augmentation en condition hyperforine seule contre 52 % 

d’augmentation en présence de BAPTA-AM + hyperforine). L’effet incomplet de la chélation 

du calcium par le BAPTA sur la réponse hyperforine peut venir du fait que la concentration 

en BAPTA employée est faible (0,1 µM). Toutefois, cette concentration a été choisie car elle 

n’affecte pas la viabilité cellulaire.  

Il serait très intéressant de compléter l’étude par des expériences avec des inhibiteurs 

d’adénylate cyclase (Dideoxyadénosine), des inhibiteurs de protéines G (toxine pertussique, 

suramine) ou des inhibiteurs de la production de GTP (acide mycophénolique). Ces 

expériences sont en cours de réalisation et permettront de mieux comprendre les mécanismes 

mis en jeu pour activer la PKA.  

Pour compléter les expériences de description des voies de signalisation affectées par 

un traitement chronique à l’hyperforine, il serait important de caractériser les kinases mises en 

jeu pour la phosphorylation de CREB. L’utilisation du KN-93 (un inhibiteur de CaMK) 

pourrait nous renseigner sur l’implication des kinases CaMKI, II et IV. De nombreuses autres 
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kinases et acteurs comme MAPK, Akt ou ERK pourraient être quantifiés par Western Blot 

pour préciser leurs actions dans la réponse des neurones à l’hyperforine.   

Un traitement chronique par les extraits de millepertuis favorise la neurogénèse 

adulte383. Nous avons testé si un traitement chronique par l’hyperforine produisait le même 

effet. La survie cellulaire, la prolifération cellulaire et la neurogénèse au niveau du gyrus 

denté ne sont pas affectées par un traitement chronique à l’hyperforine de 7 semaines. Nos 

résultats montrent de plus que lors d’une injection intra péritonéale quotidienne, l’hyperforine 

agit sur les acteurs de la voie du BDNF au niveau du cortex et non de l’hippocampe.  

Les extraits de millepertuis exercent des effets complexes et variés (Chapitre 5), il est 

très probable que les principes actifs de ces plantes soient responsables des effets décrits dans 

la littérature. Bien que l’hyperforine soit un composé essentiel pour les effets antidépresseurs 

des extraits de millepertuis365, un traitement chronique avec uniquement ce principe actif ne 

conduit pas à des effets similaires notamment au niveau de l’hippocampe. 

Le schéma suivant résume le mécanisme d’action de l’hyperforine qui conduit à 

l’expression de TrkB selon les résultats de nos expériences. 

 
Voie de signalisation impliquée dans la phosphorylation de CREB en réponse à l’hyperforine. 
Les molécules pharmacologiques utilisées pour caractériser cette voie de signalisation sont noté en bleu sur le 
schéma. L’implication de certains acteurs dans cette voie de signalisation est encore à démontrer (protéines 
suivies d’un point d’interrogation). 
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La première problématique que j’ai abordée au cours de mon travail de thèse a 

consisté à déterminer les liens entre les canaux TRPC6 et l’augmentation du contenu en zinc 

des cellules qui sur expriment ces canaux. Nous avons démontré que les canaux TRPC6 

forment une voie d’entrée du zinc et que leur surexpression confère une plus grande 

sensibilité aux cellules face à un stress oxydant. Nous avons exploité ces résultats pour poser 

la question du rôle des canaux TRPC6 natifs des neurones corticaux embryonnaires dans 

l’homéostasie neuronale du zinc. Dans ces expériences, nous avons pris soin d’utiliser des 

concentrations physiologiques de zinc (2 à 100 µM) et nous montrons que l’activation des 

canaux TRPC6 natifs permet l’entrée du zinc dans les neurones. Ce zinc est pris en charge par 

des protéines cytoplasmiques et ne charge pas la mitochondrie. Dans ce travail de thèse, nous 

avons abordé un nouvel aspect fonctionnel très intéressant des canaux TRPC6 mais certaines 

questions majeures restent à éclaircir pour mieux appréhender les phénomènes observés : 

Quelle est la composition des tétramères de TRPC (sensibles au DAG et à l’hyperforine) 

perméables au zinc dans les neurones ? Nous avons observé des différences d’amplitude et de 

densité des courants enregistrés en électrophysiologie entre les cellules HEK surexprimant 

TRPC6 et les neurones qui expriment de façon endogène ces canaux. Cela traduit des 

différences au niveau de la quantité de protéines exprimées mais il est aussi probable que la 

composition des tétramères ne soit pas la même entre ces deux types cellulaires. La 

caractérisation de ces complexes dans les neurones est une clef pour la compréhension du rôle 

des TRPC dans cette nouvelle voie d’entrée du zinc. Ce point nécessite la réalisation de 

transfection des neurones corticaux embryonnaires par des siRNA dirigés contre chacun des 

TRPC et de combiner cette approche par des tests d’imagerie du FluoZin-3 et 

d’électrophysiologie. Toutefois, un autre point important à soulever est le manque d’outils 

pharmacologiques spécifiques des canaux TRPC6. Finalement aucune des molécules agissant 

sur TRPC6 connues à ce jour n’est sélective pour bloquer ou activer ces canaux. Ceci rend les 

approches utilisées délicates et demande des approches de surexpression éloignée des 

systèmes physiologiques. Il est donc essentiel que des études soient menées pour trouver des 

molécules qui faciliteraient la caractérisation de ces canaux. 

 Il serait à présent intéressant d’étudier les effets cellulaires associés à l’entrée du zinc 

via TRPC6. Dans le système nerveux, une partie du zinc se trouve dans les vésicules 

synaptiques des neurones glutamatargiques. Le contenu vésiculaire est libéré lors de la 

neurotransmission au niveau de la fente synaptique ce qui contribue à augmenter la 

concentration en zinc au niveau de la synapse. Le zinc libéré va moduler l’activité de certains 

canaux et récepteurs post-synaptiques. Il serait intéressant d’étudier le rôle des canaux TRPC6, 



Conclusions générales 
 

 184 

présents dans les neurones post-synaptiques hippocampiques, dans la prise en charge du zinc 

synaptique. Il est possible que ces canaux soient impliqués dans la plasticité synaptique via un 

processus impliquant le zinc, en limitant l’effet de ce métal sur les récepteurs NMDA ou 

GABA. Le zinc intracellulaire module de nombreuses voies de signalisation, notamment celle 

de l’apoptose ou de la nécrose mais aussi permet la transactivation de certains récepteurs. A 

l’heure actuelle, nous ne connaissons pas d’effets liés à l’augmentation de la concentration en 

zinc suite à l’activation des canaux TRPC6 sur les voies de signalisation intracellulaires. Cet 

axe d’étude est important pour comprendre le rôle joué par ces canaux dans l’homéostasie du 

zinc mais aussi pour expliquer pourquoi la surexpression des canaux TRPC6 conduit à une 

augmentation de la quantité de zinc au niveau du noyau. Enfin, TRPC6 étant surexprimé dans 

les glioblastomes, ceci pose la question du rôle du transport du zinc via TRPC6 sur la 

prolifération et la vascularisation de ces tumeurs agressives du cerveau.  

 L’utilisation de l’hyperforine comme activateur des canaux TRPC6 nous a permis 

d’observer que cette molécule doit être utilisée avec certaines précautions. L’hyperforine 

module les stocks de calcium et de zinc des neurones corticaux. De plus, un traitement 

chronique à l’hyperforine augmente la quantité de soufre dans le cerveau des souris. Cette 

augmentation est en partie due à l’expression accrue des métallothionéines lors du traitement. 

Cependant elle n’explique pas à elle seule l’augmentation de la quantité totale de soufre du 

cerveau de ces animaux. Il est envisageable que d’autres protéines à groupement thiols soient 

surexprimées lors d’un traitement chronique à l’hyperforine. Ces résultats amènent à se 

demander si l’augmentation de la teneur en soufre du cerveau est à l’origine de l’effet 

antidépresseur de l’hyperforine.  

Des traitements chroniques à l’hyperforine augmentent l’expression du facteur de 

transcription CREB et stimule sont activation via un mécanisme dépendant de la protéine 

kinase A, du calcium et des canaux TRPC6. La voie de signalisation conduisant à la 

phosphorylation de CREB et à l’expression de TrkB dans les neurones reste cependant à 

éclaircir sur certains points, notamment le rôle de kinases mises en jeu dans la 

phosphorylation de CREB mais aussi le rôle de l’adénylate cyclase et des récepteurs couplés 

aux protéines G. Et finalement, est-ce que l’effet antidépresseur de l’hyperforine passe par 

l’activation de CREB et la surexpression de TrkB au niveau neuronal ? 

Une meilleure compréhension des effets cellulaires de l’hyperforine permettrait de mieux 

appréhender le fonctionnement de cet antidépresseur et de forger de nouvelles hypothèses 

pour le traitement de la dépression.   
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Annexe 1 
 

The thiol-modifying agent N-ethylmaleimide elevates the cytosolic concentration 
of free Zn2+ but not of Ca2+ in murine cortical neurons 
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a b s t r a c t

The membrane permeant alkylating agent N-ethylmaleimide (NEM) regulates numerous biological pro-
cesses by reacting with thiol groups. Among other actions, NEM influences the cytosolic concentration
of free Ca2+ ([Ca2+]i). Depending on the cell type and the concentration used, NEM can promote the
release of Ca2+, affect its extrusion, stimulate or block its entry. However, most of these findings were
obtained in experiments that employed fluorescent Ca2+ probes and one major disadvantage of such
experimental setting derives from the lack of specificity of the probes as all the so-called “Ca2+-sensitive”
indicators also bind metals like Zn2+ or Mn2+ with higher affinities than Ca2+. In this study, we examined
the effects of NEM on the [Ca2+]i homeostasis of murine cortical neurons. We performed live-cell Ca2+

and Zn2+ imaging experiments using the fluorescent probes Fluo-4, FluoZin-3 and RhodZin-3 and found
that NEM does not affect the neuronal [Ca2+]i homeostasis but specifically increases the cytosolic and
mitochondrial concentration of free Zn2+([Zn2+]i). In addition, NEM triggers some neuronal loss that is
prevented by anti-oxidants such as N-acetylcysteine or glutathione. NEM-induced toxicity is dependent
on changes in [Zn2+]i levels as chelation of the cation with the cell-permeable heavy metal chelator,
N,N,N′N′-tetrakis(−)[2-pyridylmethyl]-ethylenediamine (TPEN), promotes neuroprotection of cortical
neurons exposed to NEM. Our data indicate that NEM affects [Zn2+]i but not [Ca2+]i homeostasis and
shed new light on the physiological actions of this alkylating agent on central nervous system neurons.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

N-ethylmaleimide (NEM) is a membrane permeant alkylating
agent. By covalently modifying cysteine residues and thus pre-
venting the regulation of thiol groups, NEM affects many cellular
responses. For instance, NEM is an uncoupler of pertussis toxin-
sensitive G proteins [1]. Although it increases �-aminobutyric acid
(GABAergic) synaptic transmission in a Ca2+-independent manner
[2,3], NEM is currently used to block exocytotic processes due to its
action on the NEM-sensitive factor (NSF) [4], a key player involved
in membrane fusion.

∗ Corresponding author at: Laboratoire de Chimie et Biologie des Métaux, UMR
CNRS 5249, CEA, 17 rue des Martyrs, 38054 Grenoble, France.
Tel.: +33 4 38 78 44 23; fax: +33 4 38 78 54 87.

E-mail addresses: alexandre.bouron@cea.fr, abouron@cea.fr (A. Bouron).
1 Present address: Institut de Biologie de l’Ecole Normale Supérieure, CNRS UMR

8197, Paris, France.

Among other characteristics, NEM alters the intracellular
homeostasis of Ca2+([Ca2+]i). For instance, live-cell Ca2+ imag-
ing experiments conducted with fluorescent Ca2+-sensitive probes
reported that NEM (10–30 �M) triggers [Ca2+]i rises in DDT1MF-2
cells, a smooth muscle cell line [5], and neutrophils [6]. This pro-
cess uses a DTT-sensitive mechanism as the compound promotes
cation entry through the oxidation of thiol groups [6]. A few stud-
ies also reported that the NEM-induced Ca2+ influx is enhanced
after the depletion of thapsigargin-sensitive Ca2+ pools [5,6]. On the
other hand, NEM blocks store-operated Mn2+entry indicating that
NEM-sensitive Ca2+ channels and store-operated Ca2+ channels are
distinct entities [6,7].

Moreover, NEM is a well-known and multifaceted regulator
of the ryanodine receptor (RyR) activity [8] with low concen-
trations (20–200 �M) of the compound favouring RyR opening
without alkylation of thiol groups [9]. However, in neutrophils,
NEM (30–100 �M) has been found to block the release of Ca2+ that is
induced by the formyl peptide fMLP but sustains the thapsigargin-
dependent release of the cation [7]. In smooth muscle cells (at
concentrations higher than 10 �M), NEM has been reported to
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induce the release of Ca2+ from intracellular stores [5] through
an unidentified mechanism. It is worth mentioning that, in hep-
atic microsomal vesicles, a high concentration (1 mM) of NEM
depresses the activity of the Ca2+-ATPase [10]. In addition, NEM can
influence plasma membrane fluxes because it diminishes the activ-
ity of the Na+/Ca2+ exchanger heterogeneously expressed in HEK
cells [11] or strongly blocks voltage-gated Ca2+ channels in vestibu-
lar hair cells [12]. In conclusion, depending on the cell type and
on the applied concentrations, NEM exerts a wide array of actions
that affect the [Ca2+]i homeostasis as the compound can promote
the release of the cation, affect its extrusion, stimulate or block
its entry. However, when interpreting data obtained with fluores-
cent Ca2+-sensitive probes such as Fura-2, Fluo-3, Fluo-4 or Calcium
Green-1, caution is required. All the Ca2+ indicators can bind met-
als like Zn2+ or Mn2+ with higher affinities than Ca2+ [13]. Zn2+ is
an important regulator of physiological and pathological signalling
[14] and recent reports have shown that, at least in some instances,
data obtained with fluorescent Ca2+-sensitive probes need to be
re-evaluated in light of their high affinity for Zn2+ [15–18].

In this study, we examined the effects of NEM on the [Ca2+]i
homeostasis of murine cortical neurons. By performing live-cell
imaging experiments with fluorescent probes for Ca2+ and Zn2+

like Fluo-4 and FluoZin-3, respectively, we found that NEM does
not promote [Ca2+]i rises but specifically increases the cytosolic
concentration of free Zn2+ ([Zn2+]i). We also explored whether
NEM-driven [Zn2+]i rises can promote Zn2+ sequestration in mito-
chondria. Finally, we investigated whether NEM causes neuronal
cell death through mechanisms that are dependent on [Zn2+]i
changes.

2. Materials and methods

2.1. Primary cell cultures

Cortical cells were dissociated from cerebral cortices isolated
from embryonic (E13) C57BL6/J mice (vaginal plug was desig-
nated E0) as described before in Ref. [19]. Briefly, embryonic (E13)
C57BL6/J mice were sacrificed and brains kept in an ice-cold Ca2+-
and Mg2+-free Hank’s solution supplemented with 33 mM glu-
cose, 4.2 mM NaHCO3, 10 mM HEPES, 1% penicillin/streptomycin.
Isolated cortices were mechanically minced by repetitive aspira-
tions through a sterile and fire-polished Pasteur pipette. Four to
five E13 mice (e.g. 8–10 cortices) were used for each culture. The
cell suspension was filtered through a 40 �m cell strainer (BD Fal-
con). Sterile glass cover-slips (Marienfield, Germany) were coated
with poly-l-ornithine (2 h at 37 ◦C) and washed twice with ster-

ile water before plating the cells. Cells were grown in a Neurobasal
medium containing 2% B27, 1% penicillin/streptomycin and 500 �M
glutamine. Three days after the plating of the cells, half of this cul-
ture medium was removed and replaced with a fresh medium.
For the RhodZin-3 experiments (see below) neurons were plated
on poly-lysine + laminin coated cover-slips as previously described
[20]. All these procedures were approved by the Ethical Committee
of Rhône-Alpes Region and ComEth (Grenoble, France).

2.2. Zn2+ and Ca2+ imaging experiments

Changes in the intracellular concentration of free Zn2+ and
Ca2+ were recorded with FluoZin-3 [21] and Fluo-4 [22], respec-
tively. The experimental conditions were as follows: after removal
of the culture medium, cells were washed twice with a Tyrode
solution containing (in mM): 140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2,
10 HEPES, 10 glucose, pH 7.4 (NaOH) and incubated for 20 min
(at room temperature) in a Tyrode solution supplemented with
5 �M FluoZin-3/AM (or for 15 min with 1.8 �M Fluo-4). Cells were
washed twice with a FluoZin-3/AM- (or Fluo-4/AM)-free Tyrode
solution and kept at room temperature for 20 more minutes to
allow the de-esterification of the dye. Glass cover-slips, inserted
into a perfusion chamber (RC-25F, Warner Instruments, Phymep,
France), were placed on the stage of an Axio Observer A1 micro-
scope (Carl Zeiss, France) equipped with a Fluar 40× oil immersion
objective lens (1.3 NA) (Carl Zeiss, France). Light was provided by
the DG-4 wavelength switcher (Princeton Instruments, Roper Sci-
entific, France). The excitation light for FluoZin-3 (or Fluo-4) was
filtered through a 470–495 nm excitation filter and the emitted
light was collected through a 525 nm filter. Images, acquired by
means of a cooled CCD camera (CoolSnap HQ2, Princeton Instru-
ments, Roper Scientific, France) were analyzed off-line using the
software MetaFluor (Universal Imaging, Roper Scientific, France).
Images were captured every 5 s. The baseline (F0) FluoZin-3 (or
Fluo-4) fluorescence was recorded for ≥1 min before adding NEM
and averaged.

For mitochondrial Zn2+ imaging, cortical cultures were loaded
with RhodZin-3 AM [20] (10 �M + 0.1% pluronic acid) at 4 ◦C for
30 min and then left at 37 ◦C for 4 h for de-esterification. Exper-
iments were carried out using a HEPES-buffered medium (HSS)
whose composition was (in mM): 120 NaCl, 5.4 KCl, 1.8 CaCl2,
0.8 MgCl2, 20 HEPES, 15 glucose, 10 NaOH, pH 7.4. Fluorescence
imaging was performed using an inverted microscope (Nikon, Italy)
equipped with a xenon lamp, filter wheel, a 40× epifluorescence oil
immersion objective, and a red fluorescence cube (Ex: 540 nm, Em:
>640 nm). Images were acquired with a 12 bit digital CCD camera

Fig. 1. The alkylating agent NEM does not affect the cytosolic concentration of Ca2+. (A) Cortical neurons were loaded with the fluorescent Ca2+ probe Fluo-4. The figure
shows representative Fluo-4 recordings from 2 cortical neurons kept 4 days in vitro. Externally applied NEM (50 �M, arrow) provoked an elevation of the Fluo-4 fluorescence
(F/F0) which was not observed in the presence of TPEN (10 �M). In this latter case, TPEN was added at least 3 min before NEM. (B) A summary bar graph showing the averaged
maximal Fluo-4 signals (F/F0) (mean ± SEM) recorded without or with 10 �M TPEN. The Fluo-4 signals were quantified 250 s after the addition of NEM. The number of cells
and culture dishes used are indicated. ***p < 0.001 (Student’s t test) when compared to NEM alone.
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(Orca, Hamamatsu, Japan), and analyzed (after background sub-
traction from a cell-free region of the dish) with MetaFluor 6.0
software.

In all the imaging experiments, to compensate for cell-to-cell
variability in dye loading, probe fluorescence measurements for
each cell (F) were normalized to the fluorescence intensity for that
cell at the beginning of the experiment (F0). Values are reported as
mean ± SEM, with n indicating the number of cell bodies analyzed.
All the experiments were performed at room temperature.

2.3. Colorimetric MTT assay

Mitochondrial activity was measured as an indicator of cell
viability [23]. Briefly, isolated cortical cells were plated in poly-
l-ornithine-treated 96-well culture plates. After 6–7 days in vitro
cells were incubated with 50 �M NEM for 10 min at 37 ◦C. The alky-
lating agent was then washed away. Twenty-four hours later, MTT
[3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide]
was added at 0.5 mg/ml for 3 h at 37 ◦C. The medium was removed
and the dark blue crystals formed were dissolved by adding 100 �l
DMSO/well. The optical density was measured at 570 nm with a
Tecan Infinite M200 microplate reader (Tecan, France). Results are
presented as the percentage of survival with NEM-untreated (con-
trol) cells as 100% and with Triton X-100-treated cells as 0% [24].

2.4. Materials

Fluo-4/AM and FluoZin-3/AM were purchased from Molecular
Probes (Invitrogen, France). RhodZin-3 was purchased from Molec-
ular Probes (Invitrogen, Italy). Tissue culture media were from
Invitrogen (France). Unless otherwise indicated all other reagents
were from Sigma–Aldrich (France).

3. Results

3.1. NEM does not increase [Ca2+]i

The fluorescent Ca2+-sensitive probe Fluo-4 was used to ana-
lyze the effect of the alkylating agent NEM on the neuronal [Ca2+]i
homeostasis. A bath application of NEM (50 �M) provoked a time-
dependent increase of Fluo-4 fluorescence (Fig. 1A). However, if
the membrane permeant metal chelator, N,N,N′N′-tetrakis(−)[2-
pyridylmethyl]-ethylenediamine (TPEN; 10 �M), was added prior
to the NEM exposure, NEM failed to elicit any Fluo-4 signal
(Fig. 1B). Since TPEN has a lower dissociation constant for Zn2+ (Kd
2.6 × 10−16 M) than for Ca2+ (Kd 4 × 10−5 M) [25], these results sug-
gest that NEM is more likely to alter the concentration of neuronal
[Zn2+]i instead of [Ca2+]i. This hypothesis was further verified by
employing FluoZin-3, a fluorescent probe that is selective for Zn2+

and has no affinity for Ca2+ [21].

3.2. NEM increases [Zn2+]i

Fig. 2A shows a representative recording from a FluoZin-3-
loaded cortical neuron. In this set of experiments, the external
application of 50 �M NEM produced a robust rise in the
FluoZin-3 signal that was completely reversed by TPEN (10 �M;
Fig. 2A), thereby substantiating the idea that the alkylating agent
increases neuronal [Zn2+]i but not [Ca2+]i levels. In the 0.1–0.5 �M
range, NEM failed to evoke any FluoZin-3 signal; however, at
concentrations ≥1 �M it increased [Zn2+]i levels in a concentration-
dependent manner as illustrated in Fig. 2B. Our data are in
agreement with a previous study conducted in C6 cells [26] that
made use of the Zn2+ indicator Zinquin-E and showed that NEM
increases [Zn2+]i by promoting the intracellular release of the
cation from Zn2+-binding proteins [26]. To explore the possibility

Fig. 2. NEM increases the cytosolic concentration of free Zn2+. (A) NEM (50 �M, hor-
izontal black bar) promotes a FluoZin-3 response that is suppressed by TPEN (10 �M,
arrow). (B) Averaged concentration–response curves of the FluoZin-3 responses
recorded in the presence of 0.1, 1, 10, 25, 50 or 100 �M NEM. Values are shown as
mean ± SEM. The number of cells and culture dishes used were, respectively 23/2,
14/2, 116/5, 120/4, 488/18, and 84/4. (C) The effect of the thiol reducing agent DTT
(0.5 mM) was tested. DTT was added to the cells 5 min before (and remained present
during) the application of NEM (50 �M, arrow). NEM (without DTT): same data as in
panel B; NEM + 0.5 mM DTT (n = 49 cells), mean ± SEM. When not visible, the error
bars are smaller than the symbols.
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Fig. 3. Loading of the NEM-sensitive pool of Zn2+. (A) The panel shows representative FluoZin-3 recordings from cortical neurons maintained at 2–3 DIV. NEM (50 �M) was
applied as indicated by the arrow and remained present until the end of the recording. In some instances either Zn-acetate (15 �M), Zn-acetate (15 �M) + KCl (50 mM), or KCl
(50 mM) alone were added (as indicated by the black bar) and washed away before the NEM challenge. Dotted line: NEM was added alone without a preceding treatment.
(B) Summary graph showing the averaged maximal FluoZin-3 signals (F/F0) recorded in each condition (mean ± SEM). The FluoZin-3 signals were quantified 250 s after the
addition of NEM. The number of cells and culture dishes used are given. ** and *** indicate p < 0.05 and p < 0.01, respectively (Student’s t test) when compared to NEM.

that NEM acts in neurons as an oxidant that releases Zn2+ from
Zn2+-binding proteins, neuronal cultures were exposed to the thiol
reducing agent DTT (0.5 mM), a compound that can alter the redox
state of such proteins. Our findings summarized in Fig. 2C indicate
that DTT, when added 5 min before the application of NEM (50 �M),
prevents the NEM-driven rises of FluoZin-3 fluorescence.

3.3. Regulation of the NEM-sensitive pool of Zn2+

We next determined whether the size of the releasable pool
of Zn2+ can be manipulated and found that the NEM-induced
elevation of the FluoZin-3 fluorescence is strongly enhanced by
pre-exposure of cortical neurons to a low (15 �M) concentration of
extracellular Zn2+ (Fig. 3A). This finding suggests that the external
application of Zn2+ can increase the cation uptake and refills the
NEM-sensitive pool of Zn2+. Several Zn2+ entry routes have been
identified in cultured cortical neurons [27]. Among them, voltage-
gated Ca2+ channels (VGCCs) represent a prominent pathway. To
check whether the entry of Zn2+ through VGCC can influence
the size of the NEM-sensitive pool of Zn2+, cells were challenged
with a high potassium solution containing 50 mM KCl (instead of
5 mM KCl for the control external medium) supplemented with
15 �M Zn-acetate. NEM was then added after the washout of the
Zn2+-enriched depolarizing solution. Under these conditions, NEM
provoked large rises of FluoZin-3 signals as illustrated in Fig. 3A.
Control experiments were carried out with KCl alone and we found
that, in the absence of externally added Zn2+, the K+-rich medium
does not influence the amplitude of the NEM responses (Fig. 3B).
Altogether, these data show that NEM influences [Zn2+]i levels and
that the size of the NEM-releasable pool of Zn2+ can be regulated
notably in response to the uptake of external Zn2+ through the
activation of VGCCs.

3.4. NEM promotes mitochondrial Zn2+ uptake

In a different set of experiments, we investigated whether NEM-
driven cytosolic [Zn2+]i rises could result in the sequestration of
the cation in mitochondria. To explore this possibility, cortical
neurons were loaded with the Zn2+-sensitive mitochondrial flu-
orescent probe, RhodZin-3. RhodZin-3 is taken up by mitochondria
[20,28,29], has a Kd for Zn2+ of ∼65 nM but shows no sensitivity
to Ca2+ up to mM levels [20]. As we have reported before [20,28],
RhodZin-3 loading resulted in a most prominent accumulation of
the probe in the perinuclear region with a distinct speckled pattern
of fluorescence that is consistent with a preferential sequestration

of the probe in the mitochondria. After a 5 min baseline acquisi-
tion, RhodZin-3-loaded neurons were exposed to 50 �M NEM for
10 min and fluorescence changes were evaluated for an additional
20 min. Fig. 4A shows that upon exposure to NEM, Zn2+ starts to
slowly rise inside mitochondria, a process that continues even upon
washout of the compound. In agreement with the idea that the
NEM-driven RhodZin-3 fluorescence changes are largely due to
mitochondrial Zn2+ sequestration, treatment (before, during and
after the NEM exposure) with 10 �M of ruthenium red, a com-
pound that blocks the Ca2+ uniporter which is also a major route
for mitochondrial Zn2+ sequestration [30], completely abolished
any NEM-triggered RhodZin-3 fluorescence signal (Fig. 4B). Further
substantiating the idea that NEM triggers Zn2+ uptake in the mito-
chondria, addition prior to the NEM exposure of the mitochondrial
protonophore, CCCP (10 �M), a compound that induces rapid mito-
chondrial depolarization, completely occluded any NEM-triggered
RhodZin-3 fluorescence changes (Fig. 4C).

3.5. NEM triggers cell death in a Zn2+-dependent manner

Zn2+ can induce apoptosis when in excess. Since NEM alters the
homeostasis of this metal, it was of interest to investigate its effect
on neuronal survival. In another set of experiments neurons grown
for 6 days in vitro were incubated for 10 min in the presence of
50 �M NEM and cell survival was assayed 24 h later by means of
the MTT test. It is based on the ability of mitochondrial dehydroge-
nases to transform the water soluble MTT into insoluble formazan.
Results from these experiments indicate that a 10 min exposure to
NEM triggers a sharp neuronal loss (Fig. 5A). When cells were incu-
bated with 2 mM of N-acetylcysteine (NAC) or glutathione (GSH)
for 4 h at 37 ◦C prior to the addition of NEM, cell death was almost
totally prevented (Fig. 5A) indicating that NEM controls an oxida-
tive (or nitrosative)-dependent stress that affects neuronal survival.
Finally, in order to test whether the NEM-dependent neuronal cell
loss was dependent on [Zn2+]i rises, cortical neurons were pre-
treated with TPEN (2.5 �M). The metal chelator was introduced
before (and was present during) the addition of NEM and markedly
reduced the NEM-dependent toxicity (Fig. 5A). In order to better
identify the action of NAC and GSH, Zn2+ imaging experiments with
Fluozin-3 were conducted according to the protocol illustrated in
Fig. 2A. Cells were pre-treated with NAC or GSH before adding
50 �M NEM. Under these conditions, NEM-dependent Zn2+ rises
were partially reduced (Fig. 5B). This indicates that both agents
not only reduced the NEM-dependent release of Zn2+ but they also
exert a neuroprotective action.
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Fig. 4. NEM induces Zn2+ uptake in mitochondria. (A) Cortical neurons loaded with
the Zn2+ sensitive mitochondrial probe RhodZin-3 were challenged, after a 5 min
baseline in regular bathing medium, for 10 min with a solution containing 50 �M
of NEM. NEM application induced a rapid elevation of the RhodZin-3 signal (shown
as F/F0 values) that persisted even upon removal of the compound in the washout
period. The graph shows the averaged (mean ± SEM) fluorescence values of 47 corti-
cal neurons obtained from 3 independent experiments. (B) Effect of ruthenium red,
an inhibitor of the Ca2+ uniporter, on the NEM-driven changes in RhodZin-3 fluo-
rescence. Ruthenium red (RR, 10 �M, grey bar) was present before during and after
the NEM exposure (black bar). Graph shows the averaged (mean ± SEM) fluores-
cence values (expressed as F/F0) of 70 cortical neurons from 3 different experiments.
(C) Mitochondrial depolarization prevents NEM-triggered mitochondrial Zn2+ rises.
CCCP (10 �M; left) was added for 10 min followed by the addition of NEM (50 �M)
in the continued presence of the drug. Note that CCCP occludes any response to
subsequent NEM exposure. Graph shows the averaged (mean ± SEM) fluorescence
values (expressed as F/F0) of 41 neurons from 2 different experiments.

4. Discussion

By performing live-cell Ca2+ and Zn2+ imaging experiments
with the fluorescent probes Fluo-4 and FluoZin-3, we could show
that the alkylating agent NEM specifically elevates [Zn2+]i lev-
els in cortical neurons. The NEM-dependent Fluo-4 or FluoZin-3
responses were observed in the presence of a very low concen-
tration of the alkylating agent (≥1 �M). Increasing the compound
concentration (from 1 to 100 �M) further enhanced the ampli-
tude of the Fluo-4 (data not shown) or FluoZin-3 responses. These
NEM-dependent signals, which develop slowly over time, persisted
throughout the bath application of NEM. They were completely
suppressed by the application of TPEN. Since this chelator has a
low affinity for Ca2+ (Kd 4 × 10−5 M) but a high affinity for Zn2+

(Kd 2.9 × 10−16 M) [25], we conclude that NEM specifically affects
[Zn2+]i but not [Ca2+]i. Furthermore, experiments with RhodZin-3
indicate that these NEM-driven cytosolic [Zn2+]i rises eventually
end up in increasing mitochondrial Zn2+ levels.

NEM is a well-known regulator of Ca2+ homeostasis. For
instance, it influences the activity of plasma membrane and intra-
cellular Ca2+ channels [12,13]. It can even promote the entry of Ca2+

or trigger its release from internal pools [5–7]. However, caution
is needed when interpreting data obtained with fluorescent Ca2+

probes because various endogenous metals present in all living cells
can interfere with the fluorescent signals [13]. This includes Zn2+,
an important trace element fulfilling a myriad of biological func-
tions. Zn2+ binds on specific domains of nuclear proteins, serves as
an enzymatic co-factor, or plays a role as a signalling messenger
[14,31,32]. Most of this metal is generally bound to proteins but,
depending on the redox state of the cell, can be mobilized which
results in an elevation of [Zn2+]i [33]. Our data are in line with a pre-
vious study showing that NEM increases [Zn2+]i [26]. However we
here demonstrate that, in neurons, the compound does not affect
[Ca2+]i levels. NEM is not the only agent known to elevate [Zn2+]i in
cortical neurons. For instance, the oxidizing agent DTDP, like NEM,
enhances [Zn2+]i and causes neuronal injury [34]. But, in contrast
to DTDP-induced neuronal loss, NEM-induced cell death is not pre-
vented when cells are maintained in a medium containing blockers
of potassium channels like TEA or 4-AP (Gibon et al., unpublished
data). DTDP and NEM may therefore act by recruiting distinct cell
death pathways.

Changes in neuronal [Zn2+]i levels can have important conse-
quences as a deficit or an excess of Zn2+ can alter cell viability
and survival [35]. Results shown in Fig. 5 clearly demonstrate that
NEM promotes cell death via a NAC- or GSH-sensitive process as
low concentrations of NEM are able to generate an oxidative stress
that causes neuronal loss. NEM-dependent cell death is triggered
by [Zn2+]i rises since it is attenuated by the Zn2+ chelator TPEN. Of
interest, it was reported that NEM causes the fusion of mitochon-
dria [36,37], giving rise to a mitochondrial reticulum. This response
does not occur when the cells are pre-treated with NAC [36]. Mito-
chondria are highly dynamic organelles undergoing processes of
fusion/fission. Altering these processes dramatically impairs the
mitochondrial functions and lead to cell death [38]. NEM promotes
the sequestration of Zn2+ into mitochondria (Fig. 4) and triggers
neuronal death in a Zn2+-dependent manner, thus it is tempting to
speculate that this phenomenon might involve a perturbation of
the fission/fusion processes of the organelles.

In conclusion, by employing live-cell Ca2+ and Zn2+ imaging
experiments we show that, in cortical neurons, the alkylating agent
NEM specifically increases [Zn2+]i without influencing [Ca2+]i.
Moreover, Zn2+ uptake via the activation of VGCCs increases the size
of the NEM-sensitive pool of Zn2+. Finally, NEM displays neurotoxic
properties. N-acetylcysteine and GSH prevent the NEM-dependent
neuronal cell death that is set in motion by [Zn2+]i rises. Collectively,
our data increase our understanding of the action of this alkylat-
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Fig. 5. Neurotoxic properties of NEM. (A) Neurons at 6–7 DIV were treated with 50 �M NEM for 10 min at 37 ◦C. NEM was then washed away and the cells remained 1 more
day in culture before performing the colorimetric MTT assay. In some experiments, cells were first pre-treated for 10 min with TPEN (2.5 �M), before adding NEM (still in the
presence of TPEN). In another set of experiments NAC (2 mM) or GSH (2 mM) was added 4 h before NEM. In each instance, cell viability was determined 24 h after the washout
of NEM. The data presented are the mean ± SEM. The number of independent experiments performed is indicated for each condition. *p < 0.05, **p < 0.01, Mann–Whitney
test. (B) Same protocol as in Fig. 2B. FluoZin-3-loaded cortical neurons were challenged with 50 �M NEM (arrow) without (filled symbols, n = 62 cells/2 dishes) or after one of
the following pre-treatment: NAC (2 mM, n = 128 cells/4 dishes, grey triangles) or GSH (2 mM, n = 106 cells/4 dishes, open triangles) (4 h at 37 ◦C) added before the beginning
of the recording. The data presented are the mean ± SEM. When not visible, error bars are smaller than symbols.

ing agent on central nervous system neurons, reveal a new feature
of this compound, and further illustrate the lack of specificity of
fluorescent Ca2+ probes.
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Introduction. – De nombreux métaux comme le fer, le cuivre ou le zinc sont vitaux pour tous

les organismes vivants car ils interviennent dans de nombreux processus biologiques

(synthèse de l’ADN, transport d’oxygène par l’hémoglobine. . .). Dans le tissu nerveux, ces

métaux participent à des processus essentiels comme la formation de la gaine demyéline ou

la régulation de la transmission synaptique.

État des connaissances. – Leur concentration est très finement régulée et toute carence ou

excès peut provoquer des dommages cellulaires et altérer les performances cognitives. Au

cours du vieillissement certaines structures cérébrales accumulent desmétaux. Par ailleurs,

une perturbation de l’homéostasie d’éléments comme le zinc, le fer ou le cuivre est observée

dans diverses pathologies neurologiques. De nombreux travaux ont mis en évidence l’im-

portance physiopathologique des métaux dans le fonctionnement cérébral.

Conclusion et perspectives. – Cette revue, principalement focalisée sur le zinc et le fer, aborde

certains aspects moléculaires et cellulaires de leur entrée, distribution, métabolisme et

mécanismes d’action dans le cerveau, ainsi que leur impact potentiel sur les fonctions

cognitives et le développement de maladies neurodégénératives.
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Dansun contexte de vieillissement des populations, compren-

dre l’impact de facteurs environnementaux sur la santé

humaine de façon à élaborer des recommandations et des

mesures préventives représente un des challengesmajeurs en

santé publique. Parmi ces facteurs figurent lesmétauxqui sont

présents dans notre environnement quotidien (existence de

gisements naturels, utilisation dans l’industrie des nano-

technologies, à des fins médicales dans de nombreux agents

pharmacologiques, agents de contraste et radiopharmaceuti-

ques, présence dans des cosmétiques, des emballages,métaux

présents dans des particules générées par le trafic routier, les

incinérateurs. . .). Ils sont dispersés et se retrouvent ainsi dans

l’air, l’eau et notre alimentation. Ils pénètrent dans l’orga-

nisme principalement via les voies respiratoires et digestives

et plus rarement par voie cutanée. Certainsmétaux, comme le

cadmium (Cd), le plomb (Pb), le mercure (Hg) ou l’aluminium

(Al), n’ont pas de fonctions biologiques et exercent unique-

ment des actions toxiques. En revanche, de nombreuxmétaux

comme le fer (Fe), le cuivre (Cu) ou le zinc (Zn) sont vitaux car

ils interviennent dans une myriade de processus biologiques

(synthèse de l’ADN, transport d’oxygène par l’hémoglobine,

fonction mitochondriale. . .). Leur concentration est très

finement régulée et toute carence ou excès peut provoquer

des dommages cellulaires et altérer les performances cogni-

tives. Le cerveau présente la particularité d’accumuler, au

cours du vieillissement, des métaux dans certaines de ses

structures. Par exemple, une accumulation intracérébrale de

manganèse (Mn), Fe, Cu et Zn est observée dans des zones

spécifiques du cerveau chez le rat (Tarohda et al., 2004), la

souris (Hahn et al., 2009) mais aussi chez l’homme (Bartzokis

et al., 2007 ; Xu et al., 2008 ; Zecca et al., 2001). Par ailleurs, une

perturbation de l’homéostasie d’éléments comme le Zn, le Fe

ou le Cu est observée dans diverses pathologies neurologiques.

Les deux voies d’accès desmétaux au cerveau sont les voies

nasales et la circulation sanguine. Les échanges entre le sang

et le système nerveux central (SNC) sont régulés, d’une part,

au niveau de l’endothélium des capillaires cérébraux formant

la barrière hémato-encéphalique (BHE) et, d’autre part, au

niveau de l’épithélium des plexus choroı̈des formant la

barrière entre le sang et le liquide-céphalo-rachidien (LCR)

(Ghersi-Egea et al., 2009). Celui-ci circule dans les ventricules

cérébraux et les espaces sous-arachnoı̈diens et permet un

accès et des échanges rapides avec le parenchyme cérébral

(Strazielle et Ghersi-Egea, 2000). Au niveau des deux types

d’interfaces, les jonctions serrées liant les cellules entre elles

et des transporteurs d’efflux participent au phénotype de

barrière, alors que des mécanismes de transfert impliquant

des transporteurs (diffusion facilitée/transport actif) ou des

récepteurs (transcytose) régulent la pénétration cérébrale de

solutés polaires. Ces interfaces sont donc une porte mais

également un site potentiel d’élimination active des métaux

hors du SNC.

Leur pénétration dans le cerveau a été clairement démon-

trée in vivo. Par exemple, le Fe entre principalement sous

forme liée à la transferrine, via des mécanismes impliquant le

récepteur à la transferrine ainsi que d’autres transporteurs de

métaux au niveau des plexus choroı̈des et des capillaires

(Deane et al., 2004 ; Qian et Shen, 2001). Les voies de

pénétration du Mn dans le cerveau dépendent de sa concen-

tration plasmatique et les mécanismesmis en jeu diffèrent en

fonction de sa spéciation qui gouverne la liaison du métal à la

transferrine. Ces mécanismes impliquent de multiples pro-

téines de transport (Aschner et al., 2007). Le cuivre pénètre

sous forme non liée aux protéines dans le cerveau, et la

régulation de son homéostasie cérébrale pourrait impliquer

plusieurs protéines de transport d’influx et d’efflux répartis au

sein des deux interfaces (Choi et Zheng, 2009). L’entrée

d’autres métaux comme l’Al (à travers les deux barrières), le

Cd et le Pb a également été établie (Allen et Yokel, 1992 ;

Bradbury et Deane, 1993 ; Ilback et al., 2006). Un mécanisme

d’efflux semble réguler la biodisponibilité de l’Al (Allen et al.,

1995). L’importance relative de la BHE et de la barrière sang-

LCR dans l’accumulation de ces métaux reste cependant mal

définie, et les mécanismesmoléculaires régulant les échanges

des métaux à travers ces barrières sont encore mal compris,

notamment parce qu’ils sont abordés via l’utilisation de

lignées cellulaires qui ne reflètent pas nécessairement les

propriétés de l’endothélium cérébral et de l’épithélium

a b s t r a c t

Introduction. – Many metals like iron (Fe), copper (Cu) or zinc (Zn) fulfil various essential

biological functions and are thus vital for all living organisms. For instance, they play

important roles in nervous tissue, participating in a wide range of processes such as

neurotransmitter synthesis, myelination or synaptic transmission.

State of the art. – As in other tissues, brain cells tightly control the concentration ofmetals but

any excess or deficit can lead to deleterious responses and alter cognitive functions. Of note,

certain metals such as Zn, Fe or Cu accumulate in specific brain structures over lifespan and

several neurodegenerative diseases are associated with a dysregulation of the homeostatic

mechanisms controlling the concentration of these cations.

Conclusion and perspectives. – This review will address some of the cellular and molecular

processes controlling the entry and distribution of selected metals (mainly Zn and Fe) in the

brain, as well as their roles in synaptic transmission, in the pathogenesis of some neurologic

diseases such as Parkinson’s disease and Alzheimer’s disease, and their impact on cognitive

functions.
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choroı̈dien. Les plexus choroı̈des présentent in vivo la capacité

d’accumuler les métaux lourds, et ils pourraient être une voie

d’entrée prépondérante de certains de ces éléments dans le

cerveau (Bock et al., 2008 ; Zheng et al., 2003). L’exposition

simultanée à différents métaux peut également changer leur

biodisponibilité relative. Par exemple, l’exposition in vivo au

Mn altère la biodisponibilité du Fe dans le cerveau via une

altération de la voie de transcytosemédiée par le récepteur à la

transferrine (Li et al., 2006). Enfin, en plus de leur fonction de

barrière anatomique et de transport sélectif, les interfaces

sang-cerveau assurent des fonctions neuroprotectrices (bar-

rière métabolique, détoxification enzymatique et élimination

de composés organiques délétères hors du LCR), neuro-

endocrines (régulation des taux cérébraux d’hormones et

polypeptides biologiquement actifs) et neuro-immunitaires

(efflux de médiateurs de l’inflammation, relais cytokinique de

la réponse immunitaire). Les modifications de ces différentes

fonctions, liées à l’accumulation cérébrale des métaux,

contribuent à leur toxicité. L’exemple le plus connu est

l’altération du transport choroı̈dien des hormones thyroı̈dien-

nes par le Pb. Cela participe aux défauts de développement du

SNC et à l’apparition des désordres mentaux associés à

l’intoxication par cemétal chez l’enfant (Zheng et al., 2003). En

ce qui concerne la voie nasale, aucune barrière ne protège le

cerveau et les particules en suspension dans l’air peuvent

pénétrer directement via la voie olfactive. Mais l’accumulation

cérébrale dépend dumétal considéré. Par exemple, pour le Fe,

il n’y a pas de transfert entre la cavité nasale et le bulbe olfactif.

En revanche, des métaux tels que le Cd, le cobalt (Co), le Hg ou

le Zn peuvent s’accumuler dans cette dernière structure et

d’autres comme leMn, l’uranium (Ur), le nickel (Ni) ou le titane

(Ti) peuvent passer du bulbe olfactif vers diverses zones

cérébrales où ils s’accumulent (Bondier et al., 2008 ; Persson

et al., 2003a,b ; Sunderman, 2001 ; Tournier et al., 2009).

La très faible concentration des métaux dans les cellules

neurales constitue une des principales difficultés à leur étude

dans le SNC. Leur abondance est le plus souvent mesurée en

parts per million (ppm) qui est un rapport massique corres-

pondant généralement à un millionième de gramme. Pour la

plupart des métaux, les concentrations dans le cerveau sont

dans une gamme allant de 0,1 ppm à quelques centaines de

ppm (Rajan et al., 1997). En plus de l’importance de la quantité

et de la forme chimique de ces métaux traces, un point

particulièrement critique pour le bon fonctionnement cellu-

laire est la façon dont ils sont distribués au sein des tissus et

des compartiments cellulaires. Toute modification de la

distribution et compartimentalisation desmétaux peut altérer

le fonctionnement et la survie cellulaires. Parmi les approches

méthodologiques disponibles pour étudier les métaux dans le

cerveau, l’imagerie chimique par rayonnement synchrotron

constitue une méthode de choix permettant d’analyser

quantitativement, au niveau subcellulaire, la distribution

spatiale et l’état d’oxydation des éléments chimiques, même

à l’état de traces. Ce type d’imageriemulti-élémentaires utilise

une puissante source de lumière (rayonnement synchrotron)

dans le domaine des rayons X et qui est produite uniquement

sur de grandes installations notamment celles situées à

Grenoble1 (source européenne de rayonnement synchrotron

[ESRF]) mais aussi à Saclay2 (source Soleil). Les développe-

ments méthodologiques récents réalisés à l’ESRF ont permis

d’aboutir à un outil unique de nano-analyse et de nano-

imagerie par rayons X dont la haute résolution spatiale

(< 100 nm) et la très haute sensibilité chimique (de l’ordre de

l’attogramme = 10ÿ18 g) rendent accessibles l’étude intracel-

lulaire des métaux traces sur des échantillons biologiques

fixés. À titre d’exemple, la Fig. 1 présente la distribution du Fe

et du potassium dans des neurones de cortex de souris

préalablement cultivés sur des substrats appropriés pour

l’analyse et cryofixés puis lyophilisés à basse température

sous vide. Les applications en neuroscience pour cet outil en

émergence sont en nombre croissant. Des études in vitro par

nano-imagerie chimique synchrotron portant sur la distribu-

tion subcellulaire du Fe dans un modèle de cellules caté-

cholaminergiques (lignée PC12) ont récemmentmontré que ce

métal s’accumulait dans des structures subcellulaires vrai-

semblablement de type vésicules dopaminergiques (Ortega

et al., 2007). Ces résultats révèlent un rôle physiologique

jusque-là insoupçonné de la dopamine dans le stockage

[()TD$FIG]

Fig. 1 – Distribution du potassium et du fer dans des

neurones corticaux. Ce cliché présente la distribution

élémentaire du potassium (violet) et du fer (vert) dans des

neurones corticaux de souris. Ces cellules ont été incubées

cinq minutes avec 10 mM de Fe2+ puis elles ont ensuite été

cryofixées et lyophilisées avant de réaliser les analyses

avec la nanosonde X synchrotron. Cela permet de révéler

que la distribution du potassium est généralement

homogène alors que la distribution du fer est

essentiellement granulaire, rencontré dans le cytosol et

dans certains prolongements neuritiques (S. Bohic, A.

Bouron, données non publiées).

Distribution of potassium and iron in cortical neurons. This

microphotograph shows the intracellular distribution of

potassium (violet) and iron (green) in murine cortical neurons.

Cells were incubated in a culture medium supplemented with

10 mMFe2+ for 5 min at 37 8C. The iron-containingmediumwas

washed away and cells were then cryofixed at S160 8C and

freeze dried at S65 8C in vacuum before performing the X-ray

fluorescence nanoanalyses. As can be shown, potassium has a

more homogeneous distribution than iron of which distribution

is more punctiform and found in the cytosol and some neuronal

processes (S. Bohic, A. Bouron, unpublished data).

1 http://www.esrf.eu/decouvrir. 2 http://www.synchrotron-soleil.fr.
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intracellulaire du Fe dans ce modèle cellulaire. Des études

récentes ont pu mettre en évidence l’implication de l’appareil

de Golgi dans le stockage du Mn dans les cellules PC12

(Carmona et al., 2010. Par ailleurs, ce type d’approche

expérimentale a été utilisé pour étudier la neuromélanine,

un pigment endogène de neurones de la substance noire

(substantia nigra [SN]) et dont la fonction biologique reste

méconnue. Les analyses réalisées chez l’homme, en post

mortem, sur coupes de tissus, ont permis de préciser la

métalloneurochimie de ce pigment au cours du vieillissement

cérébral (Bohic et al., 2008). Ce sont ces mêmes neurones

mélanisés de la SN qui dégénèrentmassivement au cours de la

maladie de Parkinson. Des travaux en cours sur des tissus de

cerveaux de patients parkinsoniens apporteront de précieuses

informations sur la distribution cellulaire des métaux dans

cette maladie neurodégénérative.

1. Le zinc

Le Zn est, après le Fe, l’élément trace le plus abondant du corps

humain qui en contient 2–3 g. Ce métal est présent dans tous

les organes mais plus particulièrement dans les muscles, le

foie, les reins, les os et la prostate. La nourriture est, bien avant

l’eau de boisson, la principale source de Zn pour l’homme. En

général, les apports alimentaires recommandés varient entre

10 et 12 mg/j chez l’adulte, en fonction du sexe et de la

biodisponibilité du Zn de la ration alimentaire. Le Zn joue un

rôle important dans la biologie du cerveau (Sandstead, 1986). Il

a notamment été rapporté que des régimes carencés en Zn

provoquent des troubles neurologiques et comportementaux

variés (Golub et al., 1995). Tout comme dans le reste du corps,

le Zn exerce des rôles biologiques essentiels au niveau cérébral

notamment via son rôle structural et/ou catalytique dans une

myriade de protéines (près de 300 enzymes nécessitent ce

métal pour leur activité). À l’instar du calcium, les concen-

trations de Zn à l’intérieur des cellules nerveuses sont

activement régulées et des augmentations trop importantes

du Zn cytoplasmique peuvent aboutir à la mort neuronale

(Sensi et al., 2009). La grandemajorité du Zn cytoplasmique est

fixé à des protéines ou accumulé à l’intérieur de comparti-

ments intracellulaires par des transporteurs spécifiques (zinc

transporters [ZnT]) ; ainsi la concentration deZn « libre », non lié

à des protéines, est très faible, de l’ordre du picomolaire. Mais

le métal peut être mobilisé (ou recruté) à partir de pools

internes, notamment dans des situations de stress oxydant

(Fig. 2). Dans le tissu nerveux, les principales sources de Zn

mobilisable sont les métallothionéines (protéines riches en

cystéine liant des métaux de façon réversible et avec une

haute affinité), les mitochondries et les vésicules synaptiques

(Sensi et al., 2009). Les mitochondries sont des organelles qui

apparaissent comme des acteurs essentiels dans l’homéo-

stasie du Zn puisqu’elles peuvent le stocker mais aussi le

libérer. À titre d’exemple, l’hyperforine, un antidépresseur

d’origine végétal, induit une libération de Zn à partir des

mitochondries (Tu et al., 2010).

Dans le cerveau, le Zn ne serait pas seulement unmessager

intracellulaire contrôlant diverses voies de signalisation, mais

également un messager intercellulaire impliqué dans la

communication entre cellules nerveuses. En effet, du Zn est

concentré en grande quantité (de l’ordre dumillimolaire) dans

les terminaisons axoniques de nombreux neurones excita-

teurs du SNC. Ceux-ci sont appelés neurones « zincergiques »

ou encore « gluzinergiques ». La distribution de ce pool de Zn

est remarquable sous deux aspects :

� premièrement, elle est restreinte au cerveau antérieur

(cortex, structures limbiques), avec notamment un très fort

[()TD$FIG]

Fig. 2 – Augmentation de la concentration de Zn libre dans les neurones soumis à un stress oxydant. Pour ces expériences,

les changements de la concentration des ions Zn2+ libres ont été analysés à l’aide d’une sonde fluorescente spécifique : le

FluoZin-3. Celle-ci a une très forte affinité pour le Zn2+ (KD : 15 nM) et est insensible aux ions Ca2+ et Mg2+. Une

augmentation de la concentration en Zn2+ libre se traduit par une augmentation de la fluorescence du FluoZin-3 (mesurée à

> 525 nm). Cela est illustré sur les trois clichés montrant des neurones de cortex de souris en culture primaire avant (a) et

pendant (b) l’application d’un agent oxydant (le 2-20 dithiopyridine [DTDP]). L’ajout d’un chélateur spécifique des ions Zn2+,

le TPEN, supprime la réponse du DTDP (c). (J. Gibon, A. Bouron, données non publiées).

Oxidative stress elevates the intracellular concentration of free zinc. In this set of experiments, the specific fluorescent zinc probe

FluoZin-3 was used to monitor the intracellular changes of the concentration of free zinc ([Zn2+]i). This dye has a high affinity for

Zn2+ (KD: 15 nM) and is not sensitive to Ca2+ and Mg2+ ions. Any augmentation of [Zn2+]i gives rise to an enhancement of the

FluoZin-3 fluorescence (measured at > 525 nm). The figure shows cortical neurons in culture loaded with FluoZin-3 before (a) and

during the application of the oxidant 2-20 dithiopyridine (DTDP) (b). The addition of the zinc chelator TPEN abolishes the DTDP-

dependent FluoZin-3 signal (c) (J. Gibon, A. Bouron, unpublished data).
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enrichissement dans l’hippocampe, région impliquée dans

les fonctions d’apprentissage et de mémoire (Fig. 3) ;

� en second lieu, au niveau subcellulaire, le Zn axonique se

retrouve systématiquement co-accumulé avec le glutamate

(principal neurotransmetteur excitateur) dans les vésicules

présynaptiques (même si tous les neurones glutamatergi-

ques ne sont pas « zincergiques » (Paoletti et al., 2009).

Le transporteur vésiculaire ZnT3 assure le remplissage en

Zn des vésicules synaptiques (Palmiter et al., 1996). Durant

l’activité neuronale, suite à l’arrivée du potentiel d’action dans

la terminaison axonique, la libération par exocytose du

neurotransmetteur glutamate s’accompagnerait donc, à cer-

taines synapses excitatrices, d’une co-libération de Zn ce qui,

localement, élèverait de façon transitoire et brève la concen-

tration extracellulaire de ce métal. Si certains auteurs ont

estimé que lors d’activités neuronales intenses, les concen-

trations de Zn libérées puissent atteindre des dizaines de

micromolaires (10–100 mM), en conditions de stimulationsplus

physiologiques les niveaux de Zn libérés seraient nettement

moindres (< 1 mM) (Paoletti et al., 2009). Quelle est l’action de

ce Zn dans le compartiment extracellulaire ? Il semble que sa

fonction principale soit de moduler la transmission synap-

tique par le biais d’une interaction directe avec les récepteurs

N-méthyl-D-aspartate (NMDA), un sous-type de récepteurs du

glutamate abondant au niveau de la membrane post-synap-

tique (Vogt et al., 2000). Les récepteurs NMDA forment des

canaux ioniques fortement perméables au calcium, activés

par la fixation du glutamate et sont bien connus pour leur rôle

central dans la plasticité synaptique à long-terme, phéno-

mène qui résulte d’un changement de l’efficacité des synapses

sur des heures, voire des jours, et qui serait le substrat

cellulaire des processus mnésiques (Malenka et Nicoll, 1999).

Or, il est maintenant bien établi que les récepteurs NMDA

possèdent dans leur région extracellulaire des sites modula-

teurs de liaison du Zn, distincts des sites de liaison du

glutamate, et qui agissent commeautant de « senseurs » du Zn

extracellulaire (Paoletti et Neyton, 2007). Notamment, les

récepteurs NMDA qui contiennent la sous-unité NR2A (sous-

unité fortement exprimée dans le cerveau adulte) sont

particulièrement sensibles au Zn extracellulaire, étant inhibés

par des concentrations nanomolaires de cet ion (Gielen et al.,

2008 ; Paoletti et al., 1997). Une telle sensibilité suggère

d’ailleurs que le Zn pourrait exercer son action modulatrice

non seulement de façon phasique (transitoire) lors de la

libération synaptique mais également sous un mode tonique

plus lent. En d’autres termes, en conditions basales (de repos),

une fraction des récepteurs NMDA pourraient être constitu-

tivement inhibés par le Zn présent à l’état de traces dans le

milieu extracellulaire. Quel rôle jouerait cette inhibition et,

plus généralement, quel serait l’intérêt pour certains neurones

d’accumuler dans les mêmes vésicules d’exocytose le gluta-

mate, activateur des récepteurs NMDA et le Zn, un puissant

inhibiteur de ces mêmes récepteurs ? Ce paradoxe apparent

reste encore entier. Une explication souventmise en avant est

que le Zn, via son action inhibitrice sur les récepteurs NMDA,

exerce une sorte de boucle de rétrocontrôle négatif, empê-

chant une sur-activation de ces récepteurs et protégeant ainsi

les neurones contre une entrée massive de calcium via les

canaux NMDA (Sensi et al., 2009). Cette hypothèse est

cohérente avec l’observation que les souris où le gène codant

pour ZnT3 a été invalidé (souris ZnT3ÿ/ÿ), et qui de ce fait sont

dépourvues de Zn vésiculaire, montrent une susceptibilité

accrue à la mort neuronale suite à des crises épileptiques

limbiques (Cole et al., 2000).

L’implication du Zn dans des processus neurotoxiques

illustre les liens étroits entre les métaux et divers processus

pathologiques dont lesmaladies neurodégénératives. Celles-ci

constituent un problème de santé publique majeure pour nos

populations vieillissantes. Certaines pathologies se caractéri-

sent par des dépôts de métaux. C’est par exemple le cas de la

maladie d’Alzheimer (MA). Elle toucherait 5 à 10 % des

individus de plus de 65 ans et ce chiffre avoisine 30 % pour la

tranche des individus de 80 ans et plus. Sur le plan

histopathologique, la MA est caractérisée par deux types de

lésions présentes dans le cerveauhumain, pathognomoniques

de l’affection. Ce sont les plaques amyloı̈des (ou séniles) et la

dégénérescence neurofibrillaire. Les plaques, situées dans

l’espace extracellulaire, sont des dépôts fibrillaires formés des

peptides amyloı̈des Ab 1-40 et Ab 1-42. Les peptides Ab

résultent de la coupure séquentielle de type amyloı̈dogénique

d’une protéine transmembranaire de plus grande taille

nommée amyloid precursor protein (APP) (Dries et Yu, 2008)

[()TD$FIG]

Fig. 3 – Distribution du zinc histo-chimiquement réactif

dans le cerveau de souris. Coupe coronale du cerveau

antérieur d’une souris jeune adulte après marquage par la

méthode de Timm-Danscher (coloration brun/noire). Le

zinc marqué correspond exclusivement au zinc contenu

dans les vésicules synaptiques de certaines terminaisons

axoniques excitatrices (libérant le glutamate comme

neurotransmetteur). On note un très fort marquage dans

l’hippocampe (h), notamment au niveau des fibres

moussues (FM). Cx : cortex ; t : thalamus. (P. Paoletti,

données non publiées).

Distribution of the histochemical reactive zinc in a murine

brain. Coronal section of a murine brain after staining with the

Timm-Danscher method (tan–brown–black). The zinc staining

is specifically found in synaptic vesicles of some glutamatergic

nerve terminals. Of note, is the strong staining in the

hippocampus (mainly in mossy fibers, fm). Cx: cortex; t:

thalamus. (P. Paoletti, unpublished data).
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par un complexe protéique comprenant les présénilines 1 et 2.

L’activité d’une sécrétase de type a est prépondérante et ne

mène pas à la production des fragments amyloı̈des Ab 1-40 et

Ab 1-42 (Thinakaran et Koo, 2008). Desmutations au niveau du

gène codant pour APP ou dans ceux des présénilines sont

responsables de certaines formes familiales de la MA

caractérisées notamment par une apparition précoce de la

maladie (Janssen et al., 2003). Via des processus encore mal

élucidées, les fragments peptidiques amyloı̈des Ab sécrétés

s’oligomérisent et précipitent en adoptant une conformation

en feuillet b-plissé, contribuant à la formation des plaques

dites séniles. C’est au niveau de ces plaques que la concen-

tration en certains métaux, et parmi ceux-ci le Zn, est

particulièrement élevée (Stoltenberg et al., 2005).

La dégénérescence neurofibrillaire constitue la seconde

caractéristique histopathologique de la MA. Elle a pour origine

l’agrégation intraneuronale de la protéine tau appartenant à la

famille des protéines associées aux microtubules. Le gène de

tau se trouve en 17q21-22 et des mutations sont responsables

des formes familiales précoces de démence frontotemporales

(Goedert et Spillantini, 2000). Dans la forme sporadique de la

MA, qui est la présentation majoritaire, la protéine tau n’est

pas mutée mais est anormalement hyperphosphorylée, ce qui

conduit à son détachement des microtubules et à sa

précipitation dans le neurone sous forme de paires de

filaments hélicoı̈daux (PHF) (ou neurofibrillary tangles). À terme,

l’accumulation des PHF va entraı̂ner la mort du neurone.

La présence des PHF et des plaques amyloı̈des à l’examen

neuropathologique post-mortem pose le diagnostic de certitude

de la MA. La cinétique d’apparition de ces deux types de

lésions a été bien décrite (Braak et Braak, 1991) mais le primum

movens de l’affection fait toujours débat entre ceux qui

privilégient la pathologie « amyloı̈de » ou la pathologie

« tau ». Dans ce débat, le Zn occupe une place intéressante

comme élément favorisant la pathologie tau, une fois

présentes les plaques amyloı̈des.

Avec l’âge, la concentration en Zn augmente dans le SNC et

cette caractéristique est exacerbée chez les patients Alzhei-

mer (Religa et al., 2006) où l’on note une distribution originale

de type « focale » puisque c’est essentiellement au niveau de la

plaque amyloı̈de que le Zn se concentre (Suh et al., 2000). On

mesure ainsi à ce niveau des concentrations avoisinant le

millimolaire, une valeur cinq mille fois plus élevée que celle

observée physiologiquement (Bush, 2003). D’où vient le Zn

présent à de telles concentrations au niveau de la plaque

amyloı̈de ? Une part de la réponse est donnée par la

distribution spécifique du Zn dans certaines régions cérébra-

les. Physiologiquement, seule une sous-population de neu-

rones glutamatergiques co-séquestrent du Zn avec le

glutamate dans leurs vésicules synaptiques (Frederickson

et al., 2000 ; Paoletti et al., 2009). Ceux-ci sont plus

particulièrement présents dans les régions atteintes par la

MA tels que les cortex associatifs, l’hippocampe et les noyaux

limbiques. Confortant l’idée d’une implication du Zn dans la

genèse de la maladie, on ne retrouve pas ce métal dans les

neurones des régions épargnées, tels que les noyaux thala-

miques, le striatum, le cervelet, le tronc cérébral et la moelle.

Au cours de la MA, la déstructuration du parenchyme

neuronal par la multiplication des dépôts amyloı̈des affecte

l’homéostasie des échanges cellulaires avec une recapture

invalidée du glutamate s’accompagnant d’une excitotoxicité

(Hynd et al., 2004) et d’une accumulation parallèle de Zn. Les

régions riches en neurones gluzinergiques sont aussi celles

ayant la plus grande densité de plaques amyloı̈des. Outre

l’accumulation de Zn, d’autresmétaux sont rencontrés dans la

plaque tels le Fe et le Cu (Zatta et al., 2009). Ces deux derniers

sont bien connus pour générer, par réaction de Fenton, des

espèces oxydantes responsables, entre autres, de la peroxyda-

tion lipidique et de l’oxydation des protéines. Concomitam-

ment, la microglie activée engendre la libération de

médiateurs inflammatoires qui vont exercer des effets

délétères (Matsuoka et al., 2001). Le rôle indubitable du Zn

dans le développement de la pathologie amyloı̈de a été

élégamment démontré par le groupe de Ashley I. Bush qui,

à partir d’un modèle de souris transgéniques développant des

plaques amyloı̈des, a noté leur disparition après un traitement

par un chélateur spécifique du Zn (Cherny et al., 2001). De la

même manière, dans un modèle transgénique de la MA,

l’invalidation du transporteur ZnT3, empêchant le Zn d’être

concentré dans les vésicules synaptiques, s’accompagne

d’une très nette raréfaction des plaques (Lee et al., 2002). La

présence, en périphérie de la plaque amyloı̈de, de prolonge-

ments nerveux ayant une morphologie anormale appelés

« neurites dystrophiques », est en relation avec les processus

inflammatoires présents au sein de la plaque sénile.

Auniveau des neurites dystrophiques, le Zn est retrouvé aux

mêmes concentrations anormales que celles observées dans la

plaque amyloı̈de et, par ailleurs, la protéine tau fait également

l’objet d’une transformation post-traductionnelle caractéris-

tique de la MA : l’hyperphosphorylation. En ayant recours aux

procédés autométallographiques, deux types de neurites sont

observables en microscopie : les neurites dystrophiques dilatés

entourant laplaque, composésdecorpsmultivésiculaires riches

enZn,etunsecondtype,peuonnonmarquépourcemétal,mais

comprenantunnombre importantdemitochondries.C’estdans

les neurites dystrophiques contenant du Zn qu’une hyper-

phosphorylation de la protéine tau est observée (Boom et al.,

résultats non publiés). Ce lien entre le Zn et l’hyper-phospho-

rylation de tau a déjà pu être démontré in vitro en testant l’effet

dumétal sur des cellules transfectées sur-exprimant la protéine

tau (Boom et al., 2009). L’addition de Zn entraı̂ne une nette

hyper-phosphorylation de tau, effet passant par l’activation

d’unekinase, laglycogènesynthasekinase3-b.Dans laMA, leZn

apparaı̂tcommeunélémentfavorisant laformationdelaplaque

amyloı̈de et le lien entre l’amyloı̈de et la pathologie tau semble,

aumoins au niveau de la plaque amyloı̈de, se concrétiser. Deux

hypothèses peuvent être avancées :

� il y aurait un transfert du Zn de la plaque vers les

prolongements neuronaux en périphérie de celle-ci. Il reste

cependant à comprendre si ces processus de relocalisation

du Zn s’effectuent de manière non spécifique, traduisant

une perméabilité affectée de la membrane neuritique ou si

un transporteur spécifique au niveau du neurite pourrait

rendre compte de l’accumulation de Zn ;

� alternativement, le transport axoplasmique altéré en

périphérie de la plaque modifierait le fonctionnement

d’une série d’organites, dont les vésicules contenant le Zn,

au niveau des neurites. Dans ces structures, le métal

pourrait rendre compte de l’hyperphosphorylation de
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tau et de la formation des PHF. Les résultats des études en

cours devraient prochainement préciser ces mécanismes.

2. Le fer

Outre le Zn, d’autres métaux sont impliqués dans des

pathologies neurologiques. C’est par exemple le cas du Cu

dans la maladie de Wilson. Il s’agit d’une maladie génétique

autosomique récessive caractérisée par une accumulation de

ce métal dans divers organes dont le foie et le cerveau. Elle est

provoquée par une mutation dans un gène codant pour une

ATPAse, ATP7B, qui est une pompe à Cu, et s’accompagne une

accumulation cellulaire de Cu (Madsen et Gitlin, 2007 ; Trocello

et al., 2009). Le Fe, l’élément trace le plus abondant du corps

humain, est également associé à plusieurs pathologies

neurodégénératives comme l’ataxie de Friedrich (Babady

et al., 2007 ; Puccio, 2009), la plus fréquente des ataxies

héréditaires, ou la maladie de Parkinson (MP). Celle-ci se

caractérise par l’atteinte préférentielle de neurones dopami-

nergiques du mésencéphale et, en particulier, ceux localisés

dans la substance noire pars compacta (SNpc). Malgré l’identi-

fication de gènes impliqués dans des formes héréditaires de la

maladie, l’étiologie des formes sporadiques (très majoritaires,

puisqu’elles représentent 90 % des cas) reste incertaine.

Plusieurs anomalies cellulaires et moléculaires pourraient

contribuer au dysfonctionnement et à la mort neuronale.

L’accumulation de protéines (peut-être en lien avec un

dysfonctionnement du protéasome), un déficit d’activité du

complexe I de la chaı̂ne respiratoire mitochondriale et un état

de stress oxydant participeraient à la cascade d’événements

dégénératifs (Dauer et Przedborski, 2003). Les groupes dirigés

par Youdim et Riederer furent parmi les premiers à mettre en

évidence une augmentation importante des taux de Fe

ferrique (Fe III) et totaux dans la SN de cerveaux de patients

parkinsoniens (Sofic et al., 1988). Cette observation, qui a été

par la suite confirmée par de nombreuses études, soulève un

certain nombre de questions, notamment celles concernant

les mécanismes d’entrée du Fe ainsi que ceux impliqués dans

sonhoméostasie intracellulaire dans laMP. Ces questions sont

d’autant plus pertinentes que le rôle pathogénique du Fe a été

formellement démontré dans plusieurs modèles expérimen-

taux in vitro et in vivo de la maladie (Berg et al., 2002 ; Dexter

et al., 1989 ; Gorell et al., 1995 ; Hirsch et al., 1991 ; Kaur et al.,

2003 ; Morris et Edwardson, 1994).

Parmi les voies d’entrée du Fe dans leparenchyme cérébral et

potentiellement altérées au cours de la MP, celle impliquant la

liaison de la transferrine (Tf) diferrique à son récepteur de haute

affinité (TfR) a été le sujet de nombreuses investigations. Des

étudesde liaisonutilisantde laTfmarquée à l’iode125ontpermis

demontrer un faible niveau de liaison du ligand dans la SNpc de

sujets sains et une absence de modifications macroscopiques

chez les sujets parkinsoniens (Faucheux et al., 1993). Cependant,

une réduction de 50 % de la densité des sites de liaison à la

transferrine au niveau des corps cellulaires des neurones

dopaminergiques de la SNpc a été observée chez les sujets

parkinsoniens (Faucheux et al., 1997). Si le récepteur à la

transferrine ne semble pas être impliqué dans l’augmentation

des tauxdeFe au seindesneuronesdopaminergiques, qu’en est-

il des autres systèmes de transport et en particulier du récepteur

à la lactoferrine (LfR) dont l’expression neuronale et vasculaire a

été rapportée dans le mésencéphale chez l’homme (Faucheux

et al., 1995) ? Des études immuno-histochimiques ont en fait

démontré que l’immunoréactivité pour le LfR était augmentéede

façon significative dans la SNpc de patients parkinsoniens, aussi

bien au niveau de la microvasculature que dans les neurones

dopaminergiquesmélanisés (Faucheuxetal., 1995). Enoutre,une

corrélation positive entre l’intensité de l’immunoréactivité pour

le LfR et la perte neuronale a été mise en évidence suggérant un

lien étroit entre l’augmentation de LfR et la dégénérescence

dopaminergique. Cette hypothèse est renforcée par l’augmenta-

tion concomitante de l’immunoréactivité pour la lactoferrine (Lf)

dans lesneuronesnigrauxdesujetsparkinsoniensainsiquedans

le modèle expérimental murin d’intoxication par le 1-méthyl-4-

phényl-1,2,3,6-tétrahydropyridine (MPTP) (Fillebeen et al., 2001).

Toutefois, ces variations d’expressionde la Lf et de son récepteur

ont également été rapportées dans d’autres affections neurolo-

giques et en particulier dans la MA, la maladie de Pick, le

syndrome de Down, la sclérose latérale amyotrophique et la

maladie de Guam (Kawamata et al., 1993 ; Leveugle et al., 1994 ;

Rebeck et al., 1995). Cela conforte l’idée que l’expression

anormalement élevée du couple Lf/LfR pourrait ne représenter

qu’une conséquence commune de la mort neuronale et pose la

questiondeson implicationdirectedans lesprocessusphysiopa-

thologiques de la MP.

D’autresmécanismes de transport du Fe ont été étudiés dans

cettemaladie neurologique. Il s’agit notamment du transporteur

de métaux divalents DMT-1 dont l’expression est considéra-

blement augmentée dans la SN de patients atteints de la MP

(Salazar et al., 2008). Cette augmentation a également été

rapportée dans le mésencéphale ventral de souris intoxiquées

par le MPTP et ce, en concomitance avec l’élévation des niveaux

de Fe et de stress oxydant dans cette région cérébrale, suggérant

un lien possible entre ces évènements. La preuve irréfutable du

rôle de DMT1 dans l’accumulation nigrale de Fe et la mort des

neuronesdopaminergiquesdansdesmodèlesexpérimentauxde

la MP a été obtenue grâce à la manipulation d’animaux porteurs

d’une mutation naturelle dans le gène codant pour DMT1 et

associée à une chute d’activité du transporteur. Chez la souris

(microcytique) comme chez le rat (Belgrade), cette mutation

confère aux animaux une plus grande résistance aux effets

neurotoxiques du MPTP et de la 6-hydroxydopamine (Salazar

et al., 2008).

Enfin, l’accumulation excessive de Fe dans les neurones

dopaminergiques au cours de la MP pourrait également être

expliquée par un dysfonctionnement des systèmes d’export

cellulairedecemétal. C’est lecasnotammentde la ferroportine,

dont l’expression nigrale chute de façon importante aussi bien

chez le rat lésé à la 6-hydroxydopamine que chez la souris

intoxiquée par le MPTP (Lee et al., 2009 ; Wang et al., 2007).

Comme le montrent de récentes études in vitro, la régulation

négative de la ferroportine dans les neurones dopaminergiques

est directement associée à une élévation des taux de Fe et du

stress oxydant dans ces cellules (Song et al., 2010).

L’accumulation du Fe dans la SN des patients parkinso-

niens pourrait être d’autant plus dommageable que les

systèmes de régulation homéostatique du Fe semblent être

également altérés. En effet, alors que l’augmentation cellulaire

des taux de Fe devrait conduire à une baisse d’activité de

liaison des IRP aux IRE présents dans les transcrits codant pour

le TfR et la ferritine (afin de diminuer les capacités de transport
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duFedans les cellules toutenaugmentant les capacités tampon

du Fe libre via l’expression accrue de Ferritine), l’activité de

liaison des IRP reste inchangée dans la SN des sujets

parkinsoniens (Faucheux et al., 2002). Cette observation est à

mettre en relation avec l’absence de régulation positive des

concentrations de ferritine dans le cerveau des patients

parkinsoniens (Dexter et al., 1991 ; Faucheux et al., 2002 ; Mann

et al., 1994). Comment expliquer un tel paradoxe ? Une des

raisons évoquées est la présence d’une forte concentration de

monoxyded’azote (NO)produitpar laglie inflammatoire (Hunot

et al., 1996 ; Liberatore et al., 1999) qui augmenterait l’activité de

liaison de l’IRP1 au transcrit de la ferritine (Mulero et Brock,

1999) contribuant ainsi à un défaut de synthèse de la protéine

dans les neurones dopaminergiques surchargés en Fe. Une

deuxième possibilité est que le pool de Fe en excès puisse être

principalement localisé dans les granules de neuromélanine et

les inclusions intracytoplasmiques (corps de Lewy) échappant

ainsi aux systèmes de régulation homéostatique. L’augmenta-

tion observée du niveau d’activité redox des agrégats de

neuromélanine chez les patients parkinsoniens (Faucheux

et al., 2003) semble conforter cette hypothèse. Enfin, il est

important de noter que, dans leur très grande majorité, les

études portant sur l’accumulation et les systèmes de régulation

du Fe dans la MP et ses modèles expérimentaux in vivo ont

rarement considéré l’importance que pourraient avoir les

cellules non-neuronales dans ces phénomènes. Ainsi, l’accu-

mulation et le stockage du Fe notamment dans les cellules

microgliales activées (Hirsch et al., 1991 ; Morris et Edwardson,

1994) pourraient en partie expliquer certaines altérations

homéostatiques du Fe dans laMP etmériteraient une attention

toute particulière concernant son impact physiopathologique.

Les quelques exemples présentés ci-dessus illustrent

l’importance des rôles joués par certains éléments traces

dans les fonctions des cellules neurales et leur incidence dans

la survenue de troubles neurologiques. D’autres éléments

essentiels interviennent également tel que le sélénium (Se). Ce

métalloı̈de, via les glutathions peroxydases et les thioredo-

xines réductases, fournit au cerveauunmoyendedéfense face

à la surproduction d’espèces réactives de l’oxygène observée

dans les maladies neurodégénératives. La sélénoprotéine P

permettrait la détoxication des métaux lourds impliqués dans

différentes maladies neurologiques. Elle aurait également un

rôle dans le maintien des fonctions neuronales et cérébrales.

Diverses données cliniques indiquent qu’une carence en Se est

associée à certaines formes d’épilepsies et serait impliquée

dans le développement de la MP, les accidents vasculaires

cérébraux et la MA (Schweizer et al., 2004). Par ailleurs, de

nombreux travaux soulignent l’épargne du Se (et de la

sélénoprotéine P) au niveau du cerveau en cas de carence,

indiquant que le Se aurait un rôle important à ce niveau bien

qu’encore imparfaitement compris (Schweizer et al., 2004).

Un autre point essentiel à souligner concerne l’influence de

ces éléments sur les fonctions cognitives. L’impact de la carence

martiale sur les difficultés d’apprentissage chez l’enfant est

connu depuis plusieurs décennies. La carence en Zn pourrait

également être associée à des modifications des fonctions

cognitives. L’étude ZENITH, réalisée chez des sujets âgés en

bonne santé, a montré que la supplémentation pouvait être

bénéfique sur certaines fonctions et sans effet sur d’autres.

Concernant le Se, l’étude nationale Étude du vieillissement

artériel (EVA)conduit àdesrésultatscontrastéspouvantenpartie

être expliqués par un manque de sensibilité des marqueurs

utilisés (Se plasmatique) compte tenu de l’épargne du Se

observée au niveau du cerveau en cas de carence. Ainsi,

contrairement à ce qui avait déjà été rapporté (Gao et al.,

2007 ; Smorgon et al., 2004), le bilan réalisé à l’entrée dans l’étude

ne montrait pas d’association entre les concentrations de Se

plasmatique et les performances cognitives. En revanche, les

valeurs de Se étaient prédictives du déclin cognitif (Berr et al.,

2000).

Cette revue a tenté de mieux cerner l’importance physio-

pathologique de certains métaux dans la physiologie neuro-

nale et l’impact d’une carence ou d’une surcharge sur les

cellules du SNC et les performances cognitives. Ces aspects

ont fait l’objet d’une journée scientifique organisée par

l’Institut des métaux en biologie de Grenoble (IMBG), le

22 septembre 2009 à Minatec (Grenoble). Tous les aspects de

la neurobiologie des métaux n’ont pu être traités dans cette

revue. Si une dérégulation de l’homéostasie cellulaire des

métaux semble bien documentée dans nombre de pathologies

neurologiques, l’impact sur la santé humaine d’une exposition

aux métaux reste encore mal compris. Présents dans notre

environnement quotidien, ils constituent une importante

source de pollution (Azimi et al., 2005 ; Hernandez et al.,

2003). La Commission d’orientation du plan national santé

environnement (2004) a clairement indiqué que les métaux

constituent, avec les solvants organiques et certains pestici-

des, les principaux polluants neurotoxiques et que leurs

impacts sur la santé humaine sont sous-évalués. Ainsi, les

rôles du Cu ou de métaux neurotoxiques comme l’Al, le Hg, le

Cd ou le Pb n’ont pas été abordés ici en détail mais le lecteur

pourra consulter d’excellentes publications récentes sur ce

sujet (Denhez, 2007 ; Landrigan et al., 2005 ; Molina-Holgado

et al., 2007 ; Wright et Baccarelli, 2007). Les données

épidémiologiques d’une exposition aux métaux lourds sont

fragmentaires mais elles font apparaı̂tre qu’une fraction

importante de la population serait touchée par ce phénomène.

Par exemple, une étudede l’Inserma estimé qu’en France, près

de 2 % des enfants auraient une plombémie supérieure à

100 mg/L (valeur de base des populations non exposées)

(Inserm, 1999 ; Tratner, 2003) traduisant une exposition au

plomb. La neurobiologie desmétaux étant l’objet d’un nombre

sans cesse croissant d’études et de publications, nul doute que

les années à venir apporteront des résultats prometteurs et

nouveaux qui approfondiront notre compréhension des rôles

joués par ces cations dans les fonctions cérébrales et dans la

survenue de maladies neurologiques.
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Résumé 
 

Les canaux TRPC6 sont des canaux cationiques non sélectifs perméables au calcium et 
au sodium. In vitro, ils laissent passer du manganèse, du baryum ou du fer. Ces canaux 
peuvent être activés par des analogues du diacylglycérol (SAG ou OAG) et par l’hyperforine 
(un antidépresseur d’origine végétal). Des expériences de dosages par ICP-OES, d’imagerie 
synchrotron et d’imagerie de fluorescence du FluoZin-3 ont montré que les cellules HEK 
surexprimant TRPC6 sont enrichies en zinc. Ces cellules sont plus sensibles à un stress 
oxydant et produisent plus d’espèces réactives de l’oxygène que les cellules HEK non 
transfectées. Dans les cellules HEK exprimant TRPC6, l’entrée de zinc en réponse au SAG 
est plus importante que celle observée dans les cellules HEK ou HEK-TRPC3.  

Les canaux TRPC6 sont exprimés dans les neurones corticaux. En réalisant des 
expériences d’imagerie de fluorescence et d’électrophysiologie, nous avons observé que 
l’activation de ces canaux par le SAG ou par l’hyperforine permettait l’entrée de zinc dans les 
neurones. La taille du pool de zinc fixé sur des protéines à groupement thiols est augmentée 
après un influx de zinc via TRPC6. Ceux-ci forment donc une voie d’entrée pour ce métal 
dans les neurones corticaux embryonnaires. 

 
 Dans certains types cellulaires, les canaux TRPC6 participent à l’entrée calcique 
déclenchée en réponse à la déplétion du stock calcique du réticulum (canaux SOC). 
Cependant, dans les neurones corticaux, les voies SOC et activées par l’hyperforine possèdent 
des propriétés pharmacologiques distinctes suggérant que les canaux TRPC6 ne participent 
pas à la voie SOC. 
 
 L’homéostasie des métaux dans les neurones est perturbée par l’hyperforine. Cet 
antidépresseur diminue la taille des pools de calcium et de zinc des mitochondries à la fois 
lors de traitements aigus et chroniques. Une relocalisation du zinc est observée dans les 
neurones traités de façon chronique à l’hyperforine ainsi qu’une augmentation de l’expression 
des métallothionéines à la fois in vitro et in vivo. Chez la souris, la quantité de soufre du 
cerveau est augmentée lors un traitement à l’hyperforine. Celle-ci serait donc un 
antidépresseur qui module les capacités de stockage du zinc en augmentant le nombre de 
groupements thiols cellulaires.  
 
 L’hyperforine est présente dans les extraits de millepertuis. Ceux-ci ont diverses cibles 
pharmacologiques, agissant notamment sur la voie de signalisation du BDNF. Nos 
expériences montrent que, lors d’un traitement chronique de souris adultes, l’hyperforine 
augmente l’expression de TrkB et P-TrkB dans le cortex. In vitro, dans les neurones 
corticaux, TrkB, CREB et P-CREB sont surexprimés après un traitement de trois jours à 
l’hyperforine. L’inhibition de la PKA ou le blocage des canaux TRPC6 par le SKF-96365 
empêche l’effet de l’hyperforine. Par ailleurs, la chélation du calcium par le BAPTA-AM 
supprime partiellement l’effet de l’hyperforine. Un traitement chronique avec cet extrait 
végétal semble agir sur une voie dépendante de la PKA et du calcium pour réguler la 
phosphorylation de CREB et l’expression de TrkB. Nos expériences montrent que l’effet de 
l’hyperforine sur les acteurs de la voie du BDNF n’est pas présent au niveau de l’hippocampe 
où l’expression de TrkB n’est pas affectée. De plus, ces traitements n’influencent pas la 
neurogenèse adulte chez la souris. L’hyperforine seule n’explique donc pas les effets 
complexes des extraits de millepertuis sur les activités neuronales.  



Abstract 
 
 
TRPC6 channels are non selective plasma membrane cation channels permeable to calcium 
and sodium. In addition, in vitro data showed that they can transport manganese, barium or 
iron. These channels can be activated by diacylglycerol (DAG) or DAG analogues like SAG 
or OAG. They are also sensitive to hyperforin (a plant extract exhibiting antidepressant 
properties). ICP-OES experiments, X-ray synchrotron imaging and live-cell FluoZin-3 
imaging show that the over expression of TRPC6 in HEK cells increases their zinc and sulfur 
content. This enrichment is associated with an increased sensitivity of transfected cells to 
oxidative stress by enhancing the production of reactive oxygen species in response to 
oxidative insults. The entry of zinc permitted by SAG or hyperforin is more pronounced in 
cells over-expressing TRPC6 when compared to HEK or HEK-TRPC3 cells.  
 TRPC6 channels are expressed in cortical neurons. Electrophysiological recordings 
and experiments with the fluorescent zinc probe FluoZin-3 demonstrated that TRPC6 
channels are permeable to zinc in neurons. The size of the 2-2 'dithiodipyridine (DTDP) 
sensitive pool of zinc is augmented after the entry of this metal through TRPC6. These 
channels form a zinc entry pathway in cortical neurons.  
 In some cell types, TRPC6 are involved in the mechanism of calcium entry in 
response to the depletion of intracellular pools of calcium. This calcium entry occurs via 
store-operated Ca channels (SOC). In our experiments, we have shown that in cortical 
neurons, hyperforin-sensitive channels and SOC are distinct since they exhibit distinct 
pharmacological properties.  
 Hyperforin influences the homeostasis of metals in cortical neurons. We found that 
acute or chronic applications of this antidepressant decreases the size of the mitochondrial 
pools of calcium and zinc. In addition, in vitro and in vivo data show that a chronic treatment 
causes a cellular redistribution of zinc, associated with an increased expression of 
metallothioneins. Furthermore, brains of mice are enriched in sulfur. It seems that this 
antidepressant influences the zinc storage capacities of brain cells by altering the cellular 
expression of thiol-containing molecules.  
 
 Hyperforin is an extract of the medicinal plant St John Worth. This latter one 
possesses complex properties, acting notably on the BDNF pathway. A chronic treatment with 
hyperforin increases the expression of TrkB and P-TrkB in the cortex of mice. In cortical 
neurons, TrkB, CREB and P-CREB are up regulated by a chronic treatment with hyperforin. 
This process is sensitive to inhibitors of PKA, TRPC6 channels and to the chelator of calcium 
BAPTA-AM. On the other hand, a chronic treatment with hyperforin does not influence the 
BDNF pathway in the hippocampus and also does not modulate the adult neurogenesis. Thus, 
the brain effects of hyperforin are distinct from those induced by the whole St John Worth 
extract.  
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