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1 Introduction 

This introduction will briefly cover the motivations for the work presented, the major 

objectives, and the previous work done in the applicable fields. 

1.1 Motivation 

Sliding systems occur throughout industrial and natural processes.  The resultant 

frictional heating and mechanical loads are a major driver of expensive maintenance costs.  

Brakes, bearings, and other rolling/rotating systems all exhibit this sliding behavior.  Outside of 

rotating machinery, other sliding systems such as certain machining processes, internal ballistics 

in guns, and guide rails (such as in an optical disc drive).  In the natural world, biotribology 

includes the rubbing of joints.  In other words, tribological processes occur everywhere there is 

relative motion.  In each of these systems, components (such as tooling) have demonstrated that 

they eventually wear out under their operating conditions.  Thus, in the course of one’s 

observations of these systems, one must be able to detect the near onset of failure.  The closer 

one can get (reliably, and without actual failure), the more economical the system.  One of the 

key steps, therefore, is to know how to effectively instrument these systems. 

The physical effects at sliding contacts involve a complicated interaction of thermal, 

mechanical, and chemical processes.  The real area of contact inside the nominal contact zone is 

of critical importance to the understanding these complete processes, particularly the temperature 

behavior of the system.  As the real contact area is reduced, the surface temperature increases 

significantly.  This increase is because there is less material under the contact that must absorb 

the same amount of energy.  Indeed, if one has a significant uncertainty in the knowledge of the 

real contact area, estimating the surface temperature rise is effectively impossible.  This 

relationship is demonstrated in Figure 1.1 where the average contact temperature rise is shown 

versus assumed contact area for some selected metals [1]. (1) 
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Figure 1.1: Analytical result of temperature rise over real contact area [1]. 

The temperature rise is expressed as the change in temperature divided by the friction coefficient. 

 

Notable about these trends is the large orders of magnitude, shown on the log-log plot.  

As displayed in figure, without knowledge of the real area of contact, the order of magnitude of 

the temperature rise cannot even be estimated.  Because the temperature of a material 

significantly influences its chemistry and certain physical properties, knowledge of the peak 

temperatures is important.  Overheating of the material as a result of frictional interaction can 

result in mechanical failure of the part, or excursion of the mechanical properties from the 

anticipated design properties.  These effects can render the part useless.  Because the real contact 

area strongly affects the peak temperatures, the real area of contact is extremely important.  

Some of the consequences of high temperatures caused by frictional heating are tribochemistry, 

chemical oxidation, wear, thermal expansion, thermal cracking, melting, work hardening, and 

property changes. 

 This contact area depends greatly on many things.  Chemistry and solid mechanics are of 

primary importance.  These interrelationships are very complex and difficult to characterize.  

These interrelationships result in distinct modeling difficulties.  Further, these contacts can be 

rather fractal-like.  This fractal-like appearance makes determining the real contact area very 

complex, because as one looks closer at each contact, more and more area is seen to be in 

contact.  This behavior can be seen in Figure 1.2 [2].  This particular image was taken in 

conjunction with experiments run for [3].  This image depicts a polystyrene coated steel ball 
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fretting against sapphire optical flats.  The sapphire enables one to look through it in the infra-red 

spectrum and directly observe the contacts.  The imaging capabilities could resolve down to the 

10 micron scale. (2), (3) 

 

 

Figure 1.2: Sample picture of an actual contact [2]. 

 

It is, however, frequently possible to determine a nominal contact area through various 

means.  One can tell, by looking at the above picture, that the contact is limited to the roughly 

circular region where all of the dark patches are located.  Many times, however, the nominal 

contact area is determined by observing wear scars after the experiment.  This determination is 

frequently done using scanning electron microscopy.  An example of this method is provided 

below in Figure 1.3.  This picture is an image of a similar pin-on-disk system with a silicon wear 

scar created by a diamond pin.   
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Figure 1.3: Silicon wear scar showing a localized contact [2]. 

 

Finally, in the majority of systems, since most materials are opaque to available 

instrumentation, it is impossible to directly observe the contact.  That, combined with the above 

two issues of importance and complexity, make the determination of the real area of contact a 

very difficult, but critical, field of study.   

1.2 Objectives 

The objectives of this thesis are as follows: 

 To estimate a time invariant real area of contact and surface temperature through the 

use of thermal measurements in 1D and 2D systems. 

 To provide experimental design guidance regarding measurement locations for the 

estimation of the real contact area. 
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1.3 Previous Research 

Much previous work has been done regarding parameter estimation, heat transfer, and 

real contact area.  However, most of the literature regarding the real contact area involves direct 

modeling using more statistically generated surfaces and surface mechanics, or attempting to 

understand something about it using analysis of scarring.  The literature that does regard 

estimating the real contact area uses several different means of estimation.  The most frequent 

method seemed to be function estimation.   

Much of the tribological literature either uses very simplified models of, or 

experimentally estimates, contact area as a means to get at very important topics such as flash 

temperature (the peak temperature at the interface between the two bodies).  Flash temperature is 

important because, at elevated temperatures, certain mechanisms for surface chemistry can be 

activated that can cause damage to the physical system.  This research is of interest as it shows 

the importance of flash temperature, and its dependence on contact area.  The works which cover 

this material include [1, 3-14]. (4),(5),(6),(7),(3),(8),(9),(10),(11),(12),(13),(1), and(14). 

The analysis using surface mechanics involves direct modeling using an initial surface 

based on some measurements of real surfaces or simply measuring the time dependent contact 

area [3].  It then evolves the contact through time allowing for deformations and other assorted 

physical phenomena to act.  The measurements of the real surfaces can take the form of scanning 

electron microscopy, average surface roughness measurements, and the like.  The measurement 

of the real contact area has been done using scanning infrared microscopy through a sapphire 

disk (because of sapphire’s transparency in the IR).  The works that approach this discussion in 

this manner are [3, 9, 15-22]. (3) (15),(16),(3),(17),(9),(18),(19),(20), (21), and(22). 

Function estimation techniques assume a (frequently polynomial) function where the 

parameters of the function are estimated.  This approach implies, for instance, if the contact were 

approximated to be quadratic, there would be 3 parameters to estimate, with there being only a 

single contact.  However, other means are utilized.  The primary drawback to almost all the 

literature regarding the estimation is that they study a very concrete example with little in terms 

of generalized results.   

Of particular interest in this category were works [23] and [24].  These particular works 

studied three different means of function estimation for the heat flux distribution in a grinding 
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process.  These techniques are not suitable for allowing a random contact distribution, but 

provide useful insight into a single particular type of system.  (23) (24) 

One work [25], does present the dimensionless equations, but because the work was 

focused on grinding processes, it only utilizes a finite rectangular prism, and thus lacks a study of 

periodic boundaries, as would be present in rotors.  Further, it does not delve into a study of the 

behavior of the estimation technique under various parameter values.  The paper also presented 

more of a function estimation scheme than a true parameter estimation technique.  (25) 

Much of the available literature regarding parameter estimation deals with generic 

inverse heat conduction.  Inverse heat conduction has been studied for quite some time, as it is a 

necessary capability in many applications.  One such application is in propulsion engineering 

regarding the heat flux through the wall of rocket/jet engines [26].  However, of most interest to 

this thesis is the study of the stability and resolving capability of various inverse heat transfer 

techniques.  The relevant works are [27-35].  Of particular interest is [27], as it provides very 

clear descriptions of multiple methods of parameter estimation.  The descriptions are clear 

enough on the mathematics to enable one to rapidly implement the methods for whatever 

application. (26) (27) (28),(29),(30),(31),(32),(33),(34),(35) 

The direct thermal model is the final aspect of the problem that requires discussion.  The 

direct thermal model was derived using fundamental techniques.  The formulation of the 

governing equations uses techniques presented in undergraduate heat transfer texts such as [36] 

and the course notes [37] for the graduate conduction class.  After the full formulation, further 

techniques can be used to further simplify the model to reduce the computational load.  Of 

particular interest is the high Peclet number simplification which, while repeated mathematically 

in this thesis, is further confirmed in [38].  This simplification is able to remove one direction of 

conduction, the finite difference solution of which is one of the big computational loads.  Finally, 

in order to more easily develop numerical models for and solve the system as derived, a modified 

cellular automata technique was utilized.  This technique prior to its modification is well 

demonstrated in [39]. (36) (37) (38) (39)   
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2 Overview of Research 

This research requires the development of mathematical models of the physics pertaining 

to the temperature fields evolved in sliding solids undergoing frictional heating in order to infer 

the real area of contact.  The system, both mathematically and physically, can be seen below in 

Figure 2.1.   

 

Figure 2.1: The parameter estimation process. 

The physical system as it conceptually could be measured and how it relates to the math. 

 

The model must start from a proposed physical system, and be evolved mathematically 

through a direct numerical model that is used in a parameter estimation scheme to approximate 

the contact distribution from which the real area of contact is inferred. 

2.1 The Physical System 

This paper deals with a two body system undergoing frictional heating.  Figure 2.2 

depicts a possible physical setup for this system, consisting of a light-colored rotating structure 

(2) that is rubbing against a dark-colored static pad (1) over a localized area.  Braking type 

systems inspired this construct.  The presumed direction of rotation is depicted in the figure. 
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Figure 2.2:  Physical System Depiction. 

This system is well suited to wrapped boundaries, such that conditions at  𝒙 = 𝟎 equal conditions at 𝒙 = 𝑳𝒙.  The 

inset is a detailed view of the interface. 

 

The inset to Figure 2.2 shows an exaggerated, schematic close-up of the contact region.  

One can see the rough, uneven contact.  Frictional heat generation will occur at the points where 

the two regions are actually in contact, and be dependent on the pressure of the contact and the 

velocity of the moving material. 

2.2 Solution of the Direct Problem 

Mathematically, the direct problem is the determination of the response of a system with 

known forcing functions and system parameters.  This problem is represented in Figure 2.3.  This 

is the classic type of problem found in most engineering analysis, where the system’s excitation 

and characteristics are known, but the response is not.  Mathematically, the direct problem is 

well-posed.  This statement implies that a solution exists, is stable, and is unique.  This statement 

further means that for any given forcing function, there is one and only one solution, and that the 

result will not become unstable under small changes to input data [27]. (27) 

  

2 

1 
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Forcing Functions 

√ 
Initial conditions 

Sources 

 

→ 

 

System 

√ 
System parameters 

→ 

 

Response 

? 
Behavior of system 

 

Figure 2.3: Schematic representation of the direct problem. 

 

Mathematically, the physics surrounding the direct problem in this case are complex 

enough to make it impossible to achieve an analytical solution.  Thus, one must choose from any 

number of numerical methods to arrive at a computational solution.  In order to achieve a faster 

simulation that would allow the multiple iterations necessary to perform parameter estimation, a 

modified cellular automata method was chosen to handle the multi-physics. 

 

Modified Cellular Automata 

This modified cellular automata technique is a means of breaking up large, difficult to 

solve, multi-physics models into smaller, more easily digested bits.  It requires feeding the result 

of each single/reduced multi-physics system into the next, and solving iteratively through small, 

appropriately chosen time steps for the physics involved.  A single advancement is represented 

pictorially in Figure 2.4.  This rule based method of advancing each of the individual physics 

independently has the advantage of enabling each of the physics to be solved using the technique 

best suited to it.  The mathematics of this method proceeds in a stepwise fashion and therefore 

lacks simultaneity, however.  Thus, the time steps must be small to avoid the risk of nonphysical 

results. 
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𝑡𝑘         

 

Internal 

condition 1 

↑ 
Process 1 

↑ 
Response 

𝑘 − 1 

 Internal 

condition 2 

↑ 
Process 2 

↑ 
Internal 

condition 1 

 Internal 

condition 𝑙 
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Process 𝑙 
↑ 
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condition 

𝑙 − 1 

 Response 𝑘 

↑ 

Process 𝐿 

↑ 
Internal 

condition 

𝐿 − 1 

⋱ ⋱ 

  

𝑡𝑘−1        

 

⋮ … ⋮ … ⋮ … ⋮ 

𝑡2 

   

⋱ 

   

 Internal 

condition 1 

↑ 
Process 1 

↑ 
Response 1 

 Internal 

condition 2 

↑ 
Process 2 

↑ 
Internal 

condition 1 

 Internal 

condition 𝑙 
↑ 

Process 𝑙 
↑ 

Internal 

condition 

𝑙 − 1 

 Response 2 

↑ 

Process 𝐿 

↑ 
Internal 

condition 

𝐿 − 1 

⋱ ⋱ 

  

𝑡1        

 Internal 

condition 1 

↑ 
Process 1 

↑ 
Initial 

condition 

 Internal 

condition 2 

↑ 
Process 2 

↑ 
Internal 

condition 1 

 Internal 

condition 𝑙 
↑ 

Process 𝑙 
↑ 

Internal 

condition 

𝑙 − 1 

 Response 1 

↑ 

Process 𝐿 

↑ 
Internal 

condition 

𝐿 − 1 

  

⋱ ⋱ 

 

Figure 2.4: Pictorial representation of the modified cellular automata method. 

 

2.3 Parameter Estimation 

There are two major types of inverse problems.  Both of the inverse problems are 

mathematically ill-posed.  The solution is not necessarily unique, and very frequently is not 
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stable for small changes in the input conditions.  The two types of inverse problem are the 

estimation of the forcing functions, and the estimation of system parameters.  Both require the 

estimation of something required to cause the observed response in the data.  In the estimation of 

the forcing function case, the system is fully characterized.  By knowing the response of the 

system, one can estimate what the excitation must have been.  This problem is graphically 

represented in Figure 2.5. 

 

 

Forcing Function 

? 
 

→ 

 

System 

√ 
→ 

 

Response 

√ 

 

Figure 2.5: Schematic representation of the estimation of the forcing function. 

 

The other type of inverse problem is system parameter estimation. Parameter estimation 

problems are the class of problem where the excitation is known and the response is measured.  

By knowing the response of the system to the excitation, one can estimate the system parameters 

that caused the response.  This is the case that is discussed in this thesis.  The distribution of 

contacts and the total real area of contact are physical parameters of the system.  Parameter 

estimation frequently exhibits instability in its mathematics because of singular or near-singular 

matrices that appear in the math.  The means by which these are handled are discussed in chapter 

5.  A schematic representation of the parameter estimation problem is shown in Figure 2.6. 

 

 

Forcing Function 

√ 
 

→ 

 

System 

? 
→ 

 

Response 

√ 

 

Figure 2.6: Schematic representation of the estimation of system parameters. 
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3 Physical Formulation of the Direct Model 

The first step in determining the parameter values of an incompletely defined system is to 

define a functional mathematical model of the physical system.  This chapter develops the 

models that will be used in the analysis of the two dimensional, two body (2D, 2B) frictional 

system and its degenerates. 

3.1 2D, 2B System 

The most general system that will be considered is the 2D, 2B problem.  This allows 

easier depictions of the system, as well as reduced computational time.   

3.1.1 General Physical Schematic 

Figure 3.1 depicts a schematic view of the unwrapped physical system of Figure 2.2.  The 

top portion of the figure depicts the geometric arrangement with the dimensions and coordinate 

system shown.  The double wavy lines at the left and right of the second body indicate that the 

boundary wraps around to the other side.  This notation is used throughout the figures of this 

paper.   

 

 

↑ 

𝐿𝑦1
 

 

↓ 

  

←  𝐿𝑥1
  → 

Body 1: Stationary 

𝑦 ↑ 𝑥 → 

 ↑    𝑉 → 

 𝐿𝑦2
 Body 2: Moving  Wrapped BC 

← ↓ 𝐿𝑥2
  → 

 

 

   Contact #2    

↓↓↓↓↓↓↓↓ Contact #3 

Contact #1  ↓↓↓↓↓↓↓↓ ↓↓↓↓↓↓↓↓↓↓↓↓↓↓ 

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ ↓↓↓↓↓↓↓↓ ↓↓↓↓↓↓↓↓↓↓↓↓↓↓ 

→ 𝑥 ← 𝐿𝑐𝑜𝑛  → 𝑉 → 
   

↑ 𝑦 
 

Body 2: Moving  

 

 

Figure 3.1: Schematic portrayal of the physical system in Figure 2.2. 

Three contacts of varying intensity are depicted. 
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The bottom portion of the figure depicts a close up of the nominal contact region of the 

second body.  One of the objectives of the research is to determine approximately what the real 

contact area must be to produce the observed temperatures.  The figure depicts individual 

contacts of varying intensity and size.  The real contact area is the sum of each of the individual 

contact areas.   

3.1.2 General Contact Area Profile 

The contacts can be thermally represented as a heat flux distribution (e.g. as uniform 

distributions for plastic contacts, or Hertzian distributions for elastic contacts).  The only region 

where this distribution can be positive is over the nominal contact zone.  Points of zero contact 

between the two bodies are, by definition, zero.  Thus, the mathematical representation is 

 𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 = 𝑞𝑓𝑟𝑖𝑐 ∙ 𝑓𝑑 𝑥, 𝑡  3.1 

The total power dissipated by friction  𝑞𝑓𝑟𝑖𝑐   is calculated by: 

 𝑞𝑓𝑟𝑖𝑐 = 𝜇𝑘𝐹𝑛𝑉 3.2 

 

where 𝜇𝑘  is the sliding coefficient of friction, 𝐹𝑛  is the normal force, and 𝑉 is the velocity of the 

solid.  The contact distribution, 𝑓𝑑 𝑥, 𝑡 , behaves according to the following two constraints: 

 
𝐿𝑧  𝑓𝑑 𝑥, 𝑡 𝑑𝑥

𝐿𝑐𝑜𝑛

= 1 
3.3 

 𝑓𝑑 𝑥, 𝑡 = 0,      𝑥 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑧𝑜𝑛𝑒 3.4 

This contact distribution has units of 
1

𝑙𝑒𝑛𝑔𝑡 𝑕2
.  This distribution will give insight to 

multiple aspects of the contact region.  It depicts the shape of the actual heat flux distribution.  

This distribution will also have a shape similar to that of the pressure distribution, as mechanical 

work is the means by which the heat is evolved.  Because the power dissipated as heat is 

modeled as equation 3.2, the pressure and heat flux profiles will necessarily be proportional to 

each other.  Sample shapes are provided below in Figure 3.2.  Each of the distributions integrates 

to unity. 
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Figure 3.2: Sample contact distributions. 

 

The distributions show how bodies can come into contact over the nominal contact 

region.  The ‘multiple contacts’ distribution is the viewpoint paradigm with which this paper 

approaches the problem.  This paradigm allows for multiple, irregularly shaped contacts, with the 

minimum resolution being the size of the spatial discretization of the model. 

Further, since the contact distribution was derived on the basis that it is zero in regions of 

zero contact, it also gives insight into the size of the real contact area.  One can look at the 

distribution as being such that the regions with a large relative value of the contact distribution 

are contacts.  The converse is also true, where low value regions of the contact distribution are 

where the two bodies are not in contact.   

3.1.3 Formulation of the 2D, 2B Problem 

Now that the heat addition through friction is represented as a heat flux distribution, the 

system can now be modeled as a standard heat transport process. The depiction of the problem 

setup can be found in Figure 3.3.  Figure 3.3 depicts the flows of energy in and out of the control 

volumes in each body.  One can see that the stationary Body 1 undergoes a purely conductive 

behavior, while the moving Body 2 exhibits advective behavior in addition to conduction.   
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 𝑕1, 𝑇∞  

 

 

𝑕1, 𝑇∞  

Body 1 

Stationary 

 

−𝑘1𝐿𝑧Δ𝑥  
𝜕𝑇1

𝜕𝑦
 
𝑦+Δ𝑦

 

↑↑↑↑ 

 

Initially, 
 𝑇1 𝑡=0 = 𝑇10

 𝑥, 𝑦  

𝑕1 , 𝑇∞  

 

→ 

−𝑘1𝐿𝑧Δ𝑦  
𝜕𝑇1

𝜕𝑥
 
𝑥
 

→ 

 

 

 

𝜌1𝑐1𝐿𝑧Δ𝑥Δ𝑦
𝜕𝑇1

𝜕𝑡
 

 

 

→ 

−𝑘1𝐿𝑧Δ𝑦  
𝜕𝑇1

𝜕𝑥
 
𝑥+Δ𝑥

 

→ 

  

↑↑↑↑ 

−𝑘1𝐿𝑧Δ𝑥  
𝜕𝑇1

𝜕𝑦
 
𝑦

 

 

 

 

𝑕2, 𝑇∞  
 

Contact Zone: 

↑↑↑↑ 

𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 = 𝑞𝑓𝑟𝑖 𝑐1

′′  𝑥, 𝑡 + 𝑞𝑓𝑟𝑖 𝑐2

′′  𝑥, 𝑡  

                                          ↓↓↓↓ 

𝑇1𝑐𝑜𝑛 = 𝑇2𝑐𝑜𝑛  

 

𝑕2 , 𝑇∞  
 

 

Wrapped 

BC’s 

 Body 2: 

Moving 

 

−𝑘2𝐿𝑧Δ𝑥  
𝜕𝑇2

𝜕𝑦
 
𝑦+Δ𝑦

 

↑↑↑↑ 

 𝑉 → 

Wrapped 

BC’s 

 

𝜌2𝑐2𝑉𝐿𝑧Δ𝑦 𝑇2 𝑥 → 

 

−𝑘2𝐿𝑧Δ𝑦  
𝜕𝑇2

𝜕𝑥
 
𝑥
→ 

 

 

 

𝜌2𝑐2𝐿𝑧Δ𝑥Δ𝑦
𝜕𝑇2

𝜕𝑡
 

 

 

→ 𝜌2𝑐2𝑉𝐿𝑧Δ𝑦 𝑇2 𝑥+Δ𝑥  

 

→ −𝑘2𝐿𝑧Δ𝑦  
𝜕𝑇2

𝜕𝑥
 
𝑥+Δ𝑥

 

  ↑↑↑↑ 

−𝑘2𝐿𝑧Δ𝑥  
𝜕𝑇2

𝜕𝑦
 
𝑦

 

 

Initally, 
 𝑇2 𝑡=0 = 𝑇20

 𝑥, 𝑦  

  

𝑕2, 𝑇∞  

 

 

Figure 3.3: Geometric layout of the heat transfer equations by control volume analysis. 

Visible in this figure are all of the transport flows in and out of general internal differential control volumes (of 

dimensions 𝚫𝒙, 𝚫𝒚, 𝑳𝒛).  Further, boundary and initial conditions are placed as appropriate. 

 

Of further note from this image is the description of the boundary conditions.  The 

boundary conditions are shown near the surface where they take effect.  Convective boundary 

conditions are denoted simply with the coefficient and the temperature.   
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Of major importance are the coupling conditions at the contacts, namely the continuity of 

temperature and conservation of energy.  Conservation of energy requires that the total frictional 

heat must be divided between the two bodies.  The frictional heat flux, 𝑞𝑓𝑟𝑖𝑐
′′ , is considered as 

known, and was characterized in section 3.1.2.  However, the heat partition, 𝑞𝑓𝑟𝑖 𝑐1

′′  and 𝑞𝑓𝑟𝑖 𝑐2

′′ , are 

unknown and must be determined as part of the overall solution. 

The actual governing equations for the two bodies in Figure 3.3 can be readily deduced at 

this point.  By summing the flows in and out of the differential control volume as shown in 

Figure 3.3 in body 1, one gains the following relationship: 

 𝜌1𝑐1𝐿𝑧Δ𝑥Δ𝑦
𝜕𝑇1

𝜕𝑡

= −𝑘1𝐿𝑧  Δ𝑦   
𝜕𝑇1

𝜕𝑥
 
𝑥
−   

𝜕𝑇1

𝜕𝑥
 
𝑥

+  𝜕
2𝑇1

𝜕𝑥2
 
𝑥

Δ𝑥  

+ Δ𝑥   
𝜕𝑇1

𝜕𝑦
 
𝑦

−   
𝜕𝑇1

𝜕𝑦
 
𝑦

+  𝜕
2𝑇1

𝜕𝑦2
 
𝑦

Δ𝑦    

3.5 

By a few algebra steps, one can reduce this to acquire Equation 3.6: 

 𝜕𝑇1

𝜕𝑡
= 𝛼1  

𝜕2𝑇1

𝜕𝑥2
+
𝜕2𝑇1

𝜕𝑦2
  3.6 

This is the anticipated result of a two dimensional, purely conductive system. This equation 

governs the flow of heat inside body 1. 

Body 2 can be handled much the same as body 1, with the exception that it has an 

additional pair of energy flows as a result of advection through the sides of the control volume.  

The following relationship is the result of summing the heat flows in and out of the control 

volume in body 2 in Figure 3.3. 
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 𝜌2𝑐2𝐿𝑧Δ𝑥Δ𝑦
𝜕𝑇2

𝜕𝑡

= −𝑘2𝐿𝑧  Δ𝑦   
𝜕𝑇2

𝜕𝑥
 
𝑥
−   

𝜕𝑇2

𝜕𝑥
 
𝑥

+  𝜕
2𝑇2

𝜕𝑥2
 
𝑥

Δ𝑥  

+ Δ𝑥   
𝜕𝑇2

𝜕𝑦
 
𝑦

−   
𝜕𝑇2

𝜕𝑦
 
𝑦

+  𝜕
2𝑇2

𝜕𝑦2
 
𝑦

Δ𝑦   

+ 𝜌2𝑐2𝑉𝐿𝑧Δ𝑦   𝑇2 𝑥 −   𝑇2 𝑥 +  𝜕𝑇2

𝜕𝑥
 
𝑥
Δ𝑥   

3.7 

By a few algebra steps, one can reduce this to acquire Equation 3.8: 

 𝜕𝑇2

𝜕𝑡
= 𝛼2  

𝜕2𝑇2

𝜕𝑥2
+
𝜕2𝑇2

𝜕𝑦2
 − 𝑉

𝜕𝑇2

𝜕𝑥
 3.8 

This equation is the anticipated result of a two dimensional, conductive-advective system. This 

equation governs the flow of heat inside body 2. 

3.1.4 2D, 2B Formulation Results 

The results of the formulation can be represented in a form where the governing 

equations and boundary/initial conditions are located in the representation where they physically 

perform their action.  For instance, the left and right hand (x) boundary conditions for body 1 

appear in Figure 3.4 next to the edges of the solid where they would take effect.  This 

representation should readily demonstrate the transformation of Figure 3.3 from setting up the 

control volume analysis to a final representation of the formulation of the problem. 
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−𝑘1

𝜕𝑇1

𝜕𝑦
= 𝑕1 𝑇1 − 𝑇∞  

@𝑦 = 𝐿𝑦1
 

 

 

𝑘1

𝜕𝑇1

𝜕𝑥
= 𝑕1 𝑇1 − 𝑇∞  

@𝑥 = −
𝐿𝑐𝑜𝑛

2
 

Body 1: Stationary 

𝜕𝑇1

𝜕𝑡
= 𝛼1  

𝜕2𝑇1

𝜕𝑥2
+
𝜕2𝑇1

𝜕𝑦2
  

 
 𝑇1 𝑡=0 = 𝑇10

 𝑥, 𝑦  

 

 

−𝑘1

𝜕𝑇1

𝜕𝑥
= 𝑕1 𝑇1 − 𝑇∞  

@𝑥 =
𝐿𝑐𝑜𝑛

2
 

 

 

−𝑘2

𝜕𝑇2

𝜕𝑦
= 𝑕2 𝑇2 − 𝑇∞  

@𝑦 = 0, 𝑥 < −
𝐿𝑐𝑜𝑛

2
 

↑↑↑↑ 

𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 = −𝑘1

 𝜕𝑇1

𝜕𝑦
 
𝑦=0

+ 𝑘2
 𝜕𝑇2

𝜕𝑦
 
𝑦=0

 

↓↓↓↓           
𝑇1𝑐𝑜𝑛 = 𝑇2𝑐𝑜𝑛  

 

 

−𝑘2

𝜕𝑇2

𝜕𝑦
= 𝑕2 𝑇2 − 𝑇∞  

@𝑦 = 0,   𝑥 >
𝐿𝑐𝑜𝑛

2
 

← −−−−−−−𝐿𝑐𝑜𝑛 −−− −−−−→ 

Body 2: Moving  

𝜕𝑇2

𝜕𝑡
= 𝛼2  

𝜕2𝑇2

𝜕𝑥2
+
𝜕2𝑇2

𝜕𝑦2
 − 𝑉

𝜕𝑇2

𝜕𝑥
 

 
 𝑇2 𝑡=0 = 𝑇20

 𝑥, 𝑦  

 

𝑉 → 

𝑘2

𝜕𝑇2

𝜕𝑥
= 𝑕2 𝑇2 − 𝑇∞  

@𝑦 = −𝐿𝑦2
 

 
Figure 3.4: 2D, 2B formulation summarized by physical location. 

The key items to note are the additional advective heat transfer mechanism in body 2 and the partition of heat 

between the two bodies. 

 

Table 3.1 shows the formulation of the problem expressed in a more conventional form, 

where one can see the complete set of equations and boundary/initial conditions for the transport 

equations involving the two bodies.  It is demonstrated that each body has 2 boundary conditions 

in each direction and an initial temperature distribution, as required by the different derivatives 

involved. 
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Table 3.1: 2D, 2B formulation summarized in tabular form. 

 

  

Body 1 

 

 

Body 2 

 

Equation: 

 

 

𝜕𝑇1

𝜕𝑡
= 𝛼1  

𝜕2𝑇1

𝜕𝑥2
+
𝜕2𝑇1

𝜕𝑦2
  

 

 

𝜕𝑇2

𝜕𝑡
= 𝛼2  

𝜕2𝑇2

𝜕𝑥2
+
𝜕2𝑇2

𝜕𝑦2
 − 𝑉

𝜕𝑇2

𝜕𝑥
 

 

 

y-Boundary 

Condition: 

 

Back surface condition: 

 

−𝑘1
 𝜕𝑇1

𝜕𝑦
 
𝑦=𝐿𝑦1

= 𝑕1   𝑇1 𝑦=𝐿𝑦1
− 𝑇∞  

 

Back surface condition: 

 

𝑘2
 𝜕𝑇2

𝜕𝑦
 
𝑦=−𝐿𝑦2

= 𝑕2   𝑇2 𝑦=−𝐿𝑦2
− 𝑇∞  

 

Coupling condition (contact region): 

 

𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 = 𝑞𝑓𝑟𝑖 𝑐2

′′  𝑥, 𝑡 + 𝑞𝑓𝑟𝑖 𝑐1

′′  𝑥, 𝑡 = 𝑘2
 𝜕𝑇2

𝜕𝑦
 
𝑦=0

− 𝑘1
 𝜕𝑇1

𝜕𝑦
 
𝑦=0

 

 

𝑇1𝑐𝑜𝑛 = 𝑇2𝑐𝑜𝑛  

 

 

 

 

Non contact condition: 

 

−𝑘2
 𝜕𝑇2

𝜕𝑦
 
𝑦=0

= 𝑕2  𝑇2 𝑦=0 − 𝑇∞  

 

 

x-Boundary 

Condition: 

 

 

 

𝑘1
 𝜕𝑇1

𝜕𝑥
 
𝑥=0

= 𝑕1  𝑇1 𝑥=0 − 𝑇∞  

 

−𝑘1
 𝜕𝑇1

𝜕𝑥
 
𝑥=𝐿𝑥1

= 𝑕1   𝑇1 𝑥=𝐿𝑥1
− 𝑇∞  

Wrapped condition: 

 
 𝑇2 

𝑥=−
𝐿𝑥2

2

=  𝑇2 
𝑥=

𝐿𝑥2
2

 

 

 𝜕𝑇2

𝜕𝑥
 
𝑥=−

𝐿𝑥2
2

=  𝜕𝑇2

𝜕𝑥
 
𝑥=

𝐿𝑥2
2

 

 

 

Initial 

Condition: 

 

 
 𝑇1 𝑡=0 = 𝑇10

 𝑥, 𝑦  
 

 𝑇2 𝑡=0 = 𝑇20
 𝑥, 𝑦  

 

3.2  Formulation of the 2D, 1B Problem 

In order to arrive at the two dimensional, one body (2D, 1B) formulation, one simply 

must degenerate the 2D, 2B formulation results.  In this case, in order to remove the second 

(non-moving) body, one needs to make the simplifying assumption that all of the heat evolved is 

transported into the moving body.  The results in Figure 3.5, therefore, look very similar to the 

results achieved in Figure 3.4.  The primary differences are that, obviously, the stationary body is 
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removed, and that the coupling conditions have been reduced to a heat flux (as opposed to the 

coupled conditions). 

 

−𝑘2

𝜕𝑇2

𝜕𝑦
= 𝑕2 𝑇2 − 𝑇∞  

@𝑦 = 0, 𝑥 < −
𝐿𝑐𝑜𝑛

2
 

 

𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 = 𝑞𝑓𝑟𝑖 𝑐2

′′  𝑥, 𝑡 = 𝑘2
 𝜕𝑇2

𝜕𝑦
 
𝑦=0

 

↓↓↓↓ 

−𝑘2

𝜕𝑇2

𝜕𝑦
= 𝑕2 𝑇2 − 𝑇∞  

@𝑦 = 0,   𝑥 >
𝐿𝑐𝑜𝑛

2
 

Body 2: 

Moving 

 

𝜕𝑇2

𝜕𝑡
= 𝛼2  

𝜕2𝑇2

𝜕𝑥2
+
𝜕2𝑇2

𝜕𝑦2
 − 𝑉

𝜕𝑇2

𝜕𝑥
 

 
 𝑇2 𝑡=0 = 𝑇20

 𝑥, 𝑦  

 

𝑉 → 

𝑘2

𝜕𝑇2

𝜕𝑥
= 𝑕2 𝑇2 − 𝑇∞  

@𝑦 = −𝐿𝑦2
 

 
Figure 3.5: 2D, 1B formulation summarized by physical location. 

 

Following in the form of Table 3.1, Table 3.2 shows the formulation expressed in the 

same tabularized form.  Once again, all boundary and initial conditions are accounted for as 

required by the formulated equation for the moving body.   
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Table 3.2: 2D, 1B formulation summarized in tabular form. 

 

  

Body 2 

 

 

Equation: 

 

 

𝜕𝑇2

𝜕𝑡
= 𝛼2  

𝜕2𝑇2

𝜕𝑥2
+
𝜕2𝑇2

𝜕𝑦2
 − 𝑉

𝜕𝑇2

𝜕𝑥
 

 

 

y-Boundary 

Condition: 

 

Back surface condition: 

 

𝑘2
 𝜕𝑇2

𝜕𝑦
 
𝑦=−𝐿𝑦2

= 𝑕2   𝑇2 𝑦=−𝐿𝑦2
− 𝑇∞  

 

Contact condition: 

 

𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 = 𝑞𝑓𝑟𝑖 𝑐2

′′  𝑥, 𝑡 = 𝑘2
 𝜕𝑇2

𝜕𝑦
 
𝑦=0

 

 

Non contact condition: 

 

−𝑘2
 𝜕𝑇2

𝜕𝑦
 
𝑦=0

= 𝑕2  𝑇2 𝑦=0 − 𝑇∞  

 

 

x-Boundary 

Condition: 

 

Wrapped condition: 

 
 𝑇2 

𝑥=−
𝐿𝑥2

2

=  𝑇2 
𝑥=

𝐿𝑥2
2

 

 

 𝜕𝑇2

𝜕𝑥
 
𝑥=−

𝐿𝑥2
2

=  𝜕𝑇2

𝜕𝑥
 
𝑥=

𝐿𝑥2
2

 

 

 

Initial 

Condition: 

 

 
 𝑇2 𝑡=0 = 𝑇20

 𝑥, 𝑦  

3.3  Formulation of the 1D, 2B Problem 

If the solids involved are small enough in the ‘y’ direction, such that the gradients are 

negligible, then the model can be considered one dimensional.  This statement implies that: 

 𝑇 𝑥, 𝑦, 𝑡 ≅ 𝑇 𝑥, 𝑡  3.9 

In order to arrive at the one dimensional, two body (1D, 2B) formulation results, one 

must degenerate the 2D, 2B formulation results.  For this particular case, it is mathematically 

more difficult to attain.  Conceptually, one simply integrates over the y-domain for each 

equation.  The major steps of these integrations are shown. 
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For body 1, the integration is over the domain  0, 𝐿𝑦1
 , thus the integral setup is as 

follows: 

 
 𝜌1𝑐1Δ𝑥𝐿𝑧

𝜕𝑇1

𝜕𝑡
𝑑𝑦

𝐿𝑦1

𝑦=0

=  𝑘1Δ𝑥𝐿𝑧  
𝜕2𝑇1

𝜕𝑥2
+
𝜕2𝑇1

𝜕𝑦2
 𝑑𝑦

𝐿𝑦1

𝑦=0

 3.10 

By performing the integration and assuming negligible temperature changes in the ‘y’ direction, 

the result is: 

 
𝜌1𝑐1Δ𝑥𝐿𝑧

𝜕𝑇1

𝜕𝑡
𝐿𝑦1

= 𝑘1Δ𝑥𝐿𝑧
𝜕2𝑇1

𝜕𝑥2
𝐿𝑦1

+ 𝑘1Δ𝑥𝐿𝑧   
𝜕𝑇1

𝜕𝑦
 
𝑦=𝐿𝑦1

−  𝜕𝑇1

𝜕𝑦
 
𝑦=0

  3.11 

By substituting in the boundary conditions and re-arranging algebraically, the final result is: 

 𝜕𝑇1

𝜕𝑡
= 𝛼1

𝜕2𝑇1

𝜕𝑥2
−

𝑕1

𝜌1𝑐1𝐿𝑦1

 𝑇1 − 𝑇∞ +
𝑞𝑓𝑟𝑖𝑐 ,1
′′  𝑥, 𝑡 

𝜌1𝑐1𝐿𝑦1

 3.12 

For body 2, the integration is over the domain  −𝐿𝑦2
, 0 .  The math is, again, much the 

same, however the 𝑦 = 0 boundary condition is more complex.  The integral setup is as follows: 

 
 𝜌2𝑐2Δ𝑥𝐿𝑧

𝜕𝑇2

𝜕𝑡
𝑑𝑦

0

𝑦=−𝐿𝑦2

=  𝑘2Δ𝑥𝐿𝑧  
𝜕2𝑇2

𝜕𝑥2
+
𝜕2𝑇2

𝜕𝑦2
 𝑑𝑦

0

𝑦=−𝐿𝑦2

− 𝑉𝜌2𝑐2Δ𝑥𝐿𝑧
𝜕𝑇2

𝜕𝑥
𝑑𝑦

0

𝑦=−𝐿𝑦2

 

3.13 

By integrating and neglecting ‘y’ direction variations, the result is: 

 𝜌2𝑐2Δ𝑥𝐿𝑧𝐿𝑦2

𝜕𝑇2

𝜕𝑡

= 𝑘2Δ𝑥𝐿𝑧𝐿𝑦2

𝜕2𝑇2

𝜕𝑥2
+ 𝑘2Δ𝑥𝐿𝑧   

𝜕𝑇2

𝜕𝑦
 
𝑦=0

−  𝜕𝑇2

𝜕𝑦
 
𝑦=−𝐿𝑦2

 

− 𝑉𝜌2𝑐2Δ𝑥𝐿𝑧𝐿𝑦2

𝜕𝑇2

𝜕𝑥
 

3.14 

By substituting in the boundary conditions and re-arranging algebraically, the final result is: 

 𝜕𝑇2

𝜕𝑡
= 𝛼2

𝜕2𝑇2

𝜕𝑥2
+

𝑞𝑓𝑟𝑖𝑐 ,2
′′  𝑥,𝑡 

𝜌2𝑐2𝐿𝑦2

− 𝑉
𝜕𝑇2

𝜕𝑥

−  𝐻  −
𝐿𝑐𝑜𝑛

2
− 𝑥 + 𝐻  𝑥 −

𝐿𝑐𝑜𝑛
2
 + 1 

𝑕2

𝜌2𝑐2𝐿𝑦2

 𝑇2 − 𝑇∞  
3.15 
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Again, one can use the same depiction method in Figure 3.4 for the degenerated case in 

Figure 3.6.  The integrations performed above remove the ‘𝑦’ functionality of the equations and 

leave the system as a pair of coupled 1D systems.  As compared to Figure 3.4, Figure 3.6 readily 

demonstrates how the ‘𝑦’ boundary conditions are absorbed into the equations over the 

integration, thus leaving only the initial conditions and the ‘𝑥’ boundary conditions.  As an 

additional mathematical note, the multiplier on the convective loss term exists to state when 

convective loss is acting on both surfaces or not. 

 

 

𝑘1

𝜕𝑇1

𝜕𝑥
= 𝑕1 𝑇1 − 𝑇∞  

@𝑥 = −
𝐿𝑐𝑜𝑛

2
 

Body 1: Stationary 

𝜕𝑇1

𝜕𝑡
= 𝛼1

𝜕2𝑇1

𝜕𝑥2
−

𝑕1

𝜌1𝑐1𝐿𝑦1

 𝑇1 − 𝑇∞ 

+
𝑞𝑓𝑟𝑖𝑐 ,1
′′  𝑥, 𝑡 

𝜌1𝑐1𝐿𝑦1

 

 
 𝑇1 𝑡=0 = 𝑇1,0 𝑥  

 

 

−𝑘1

𝜕𝑇1

𝜕𝑥
= 𝑕1 𝑇1 − 𝑇∞  

@𝑥 =
𝐿𝑐𝑜𝑛

2
 

  

↑↑↑↑ 
𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 = 𝑞𝑓𝑟𝑖 𝑐1

′′  𝑥, 𝑡 + 𝑞𝑓𝑟𝑖 𝑐2

′′  𝑥, 𝑡  

↓↓↓↓           

 

← 𝐿𝑐𝑜𝑛  → 

Body 2: Moving  𝑉 → 

𝜕𝑇2

𝜕𝑡
= 𝛼2

𝜕2𝑇2

𝜕𝑥2
+

𝑞𝑓𝑟𝑖𝑐 ,2
′′  𝑥,𝑡 

𝜌2𝑐2𝐿𝑦2

− 𝑉
𝜕𝑇2

𝜕𝑥
−  𝐻  −

𝐿𝑐𝑜𝑛
2
− 𝑥 + 𝐻  𝑥 −

𝐿𝑐𝑜𝑛
2
 + 1 

𝑕2

𝜌2𝑐2𝐿𝑦2

 𝑇2 − 𝑇∞  

 
 𝑇2 𝑡=0 = 𝑇20

 𝑥  

 

Figure 3.6: 1D, 2B formulation summarized by physical location. 

 

The above formulation is again tabularized in Table 3.3.  It again demonstrates the 

reduction of the equations to a transient, 1D form.  Only present are the ‘𝑥’ boundary conditions 

and the initial conditions, because in the process of integration across the ‘𝑦’ direction, those 

boundary conditions were used. 
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Table 3.3: 1D, 2B formulation summarized in tabular form. 

 

  

Body 1 

 

 

Body 2 

 

Equation: 

 

 

𝜕𝑇1

𝜕𝑡
= 𝛼1

𝜕2𝑇1

𝜕𝑥2
−

𝑕1

𝜌1𝑐1𝐿𝑦1

 𝑇1 − 𝑇∞ +
𝑞𝑓𝑟𝑖 𝑐1
′′  𝑥,𝑡 

𝜌1𝑐1𝐿𝑦1
 

 

𝜕𝑇2

𝜕𝑡
= 𝛼2

𝜕2𝑇2

𝜕𝑥2
+

𝑞𝑓𝑟𝑖 𝑐2
′′  𝑥,𝑡 

𝜌2𝑐2𝐿𝑦2
− 𝑉

𝜕𝑇2

𝜕𝑥
−

𝑕2

𝜌2𝑐2𝐿𝑦2

 𝑇2 − 𝑇∞ 

∙  𝐻  −
𝐿𝑐𝑜𝑛

2
− 𝑥 + 𝐻  𝑥 −

𝐿𝑐𝑜𝑛
2
 + 1  

 

 

x-Boundary 

Condition: 

 

 

 

𝑘1
 𝜕𝑇1

𝜕𝑥
 
𝑥=0

= 𝑕1  𝑇1 𝑥=0 − 𝑇∞  

 

−𝑘1
 𝜕𝑇1

𝜕𝑥
 
𝑥=𝐿𝑥1

= 𝑕1   𝑇1 𝑥=𝐿𝑥1
− 𝑇∞  

 

Wrapped Condition: 
 𝑇2 

𝑥=−
𝐿𝑥2

2

=  𝑇2 
𝑥=

𝐿𝑥2
2

 

 

 𝜕𝑇2

𝜕𝑥
 
𝑥=−

𝐿𝑥2
2

=  𝜕𝑇2

𝜕𝑥
 
𝑥=

𝐿𝑥2
2

 

 

 

Initial 

Condition: 

 

 
 𝑇1 𝑡=0 = 𝑇10

 𝑥  
 

 𝑇2 𝑡=0 = 𝑇20
 𝑥  

 

3.4 Formulation of the 1D, 1B Problem 

In order to arrive at the one dimensional, one body (1D, 1B) formulation, the static body 

must be removed from the 1D, 2B formulation.  The reduction is much the same procedurally as 

the reduction to the 2D, 1B formulation from the 2D, 2B formulation.  Figure 3.7 shows this 

formulation geometrically.  As with the previous 1B case, all of the heat evolved at the interface 

enters the moving body. 

 

 
𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 = 𝑞𝑓𝑟𝑖 𝑐2

′′  𝑥, 𝑡 = 𝑘2
 𝜕𝑇2

𝜕𝑦
 
𝑦=0

 

↓↓↓↓ 

 

Body 2: Moving  𝑉 → 

𝜕𝑇2

𝜕𝑡
= 𝛼2

𝜕2𝑇2

𝜕𝑥2
+

𝑞𝑓𝑟𝑖𝑐
′′  𝑥,𝑡 

𝜌2𝑐2𝐿𝑦2

− 𝑉
𝜕𝑇2

𝜕𝑥
−  𝐻  −

𝐿𝑐𝑜𝑛
2
− 𝑥 + 𝐻  𝑥 −

𝐿𝑐𝑜𝑛
2
 + 1 

𝑕2

𝜌2𝑐2𝐿𝑦2

 𝑇2 − 𝑇∞  

 
 𝑇2 𝑡=0 = 𝑇20

 𝑥  

 

Figure 3.7: 1D, 1B formulation summarized by physical location. 



25 

 

 

Table 3.4 shows the formulation in a tabular form.  One can readily see that all required 

boundary and initial conditions are present. 

 

Table 3.4: 1D, 1B formulation summarized in tabular form. 

 

  

Body 2 

 

 

Equation: 

 

 

𝜕𝑇2

𝜕𝑡
= 𝛼2

𝜕2𝑇2

𝜕𝑥2
+

𝑞𝑓𝑟𝑖𝑐
′′  𝑥,𝑡 

𝜌2𝑐2𝐿𝑦2
− 𝑉

𝜕𝑇2

𝜕𝑥

−  𝐻  −
𝐿𝑐𝑜𝑛

2
− 𝑥 + 𝐻  𝑥 −

𝐿𝑐𝑜𝑛
2
 + 1 

𝑕2

𝜌2𝑐2𝐿𝑦2

 𝑇2 − 𝑇∞  

 

 

x-Boundary 

Condition: 

 

Wrapped condition: 
 𝑇2 

𝑥=−
𝐿𝑥2

2

=  𝑇2 
𝑥=

𝐿𝑥2
2

 

 

 𝜕𝑇2

𝜕𝑥
 
𝑥=−

𝐿𝑥2
2

=  𝜕𝑇2

𝜕𝑥
 
𝑥=

𝐿𝑥2
2

 

 

 

Initial Condition: 

 

 
 𝑇2 𝑡=0 = 𝑇20

 𝑥  
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4 Solution of the Direct Problem via Modified Cellular Automata 

This chapter deals with the development of the numerical solution to the direct problems 

formulated in Chapter 3.  It will cover the modified cellular automata method and the rules 

developed for this particular set of physics. 

4.1 Basic Concept 

The method of cellular automata is a method of breaking physics up into discrete, rule 

based, solutions that are applied to a given set of conditions in a serial manner.  The formal 

method of cellular automata requires the entire system to be discrete, including the state variable.  

Temperature, by its nature, is not a naturally discrete state variable, and thus to use cellular 

automata, the state variable would have to be artificially discretized.  This behavior is 

undesirable.  However, the concept of breaking a difficult equation up (similar to operator 

splitting) into easier pieces and solving them in a serial manner is very attractive when 

computational times for the full system start to accumulate rapidly.  Thus, we use a modified 

cellular automata method to arrive at the solution to the direct problem. 

The method of modified cellular automata is a technique of breaking up large, difficult to 

solve, multi-physics models into smaller, more easily digested mathematical pieces.  This 

method requires feeding the result of each single (or reduced multi-) physics rule into the next, 

and solving the set of rules iteratively through small, appropriately chosen time steps.  As a result 

of the breaking up of the physics into smaller rules, solved in a serial, rather than simultaneous, 

method, the order of the rule employment can have a small impact on the end result.  However, it 

has been shown [39] that as the time step over which each rule is solved consecutively gets 

smaller, the differences in the results are reduced.  Further, it was shown for the given examples 

that the order did not affect the results enough to make them physically unrealistic. (39) 

The modified cellular automata method allows the user to draw from many well 

developed and understood solution methods.  Finite difference methods, analytical solutions, and 

Runge-Kutta solvers are all available for use in this overall technique.  After developing the 

mathematical model, one must then determine the breakdown of the mathematics into its simpler 

rules for the employment of this method.  As an initial step, one must discretize the independent 

variable dimensions (space and time).  Time is already discretized as a result of the cellular 

approach where the multi-physics are simulated for each major time step.  Space also needs to be 
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discretized based on any requirements regarding the spatial resolution.  This discrete grid can 

visually be represented in Figure 4.1. 

 

t    x    

 

 

       

 

 

   

i-1,k+1 

 

i,k+1 

 

i+1,k+1 

  

 

1,k 

   

i-1,k 

 

i,k 

 

i+1,k 

 t 

 

 

       

 

1,2 

       

 

1,1 

 

2,1 

   

i,1 

  

I,1 

 

x 
 

 

Figure 4.1: Time and space cellular grid example. 

Time is indexed by the ‘k’ variable and space is indexed by ‘i’ (with ‘I’ indicating final spatial index). 

 

More rigorously, the proposed method is generally done as follows.  First, the general 

fundamental governing equation for the system is: 

 𝜕𝑇

𝜕𝑡
=  𝒇𝑙 𝑇 

𝐿

𝑙=1

 4.1 

where 𝑇 is the state variable (in this case, the temperature distribution of the medium), and 

𝒇𝑙   is the 𝑙𝑡𝑕  operator (process) of the multi-physical system.  In the cases looked at in this 

paper, it could be advection, diffusion, or source effects.  Thus, the 𝑙𝑡𝑕  fundamental process of 

the system is: 

 𝜕𝑇

𝜕𝑡
= 𝒇𝑙 𝑇 , 𝑙 = 1,2…𝐿 4.2 

For each of these processes, one must develop a solution technique.  Many will be 

analytically solvent when broken down appropriately.  Those that are not should be reasonably 

easy to solve using other, well understood, methods such as Runge-Kutta or finite differencing.  

The solution of the individual process can be represented: 

 𝑇𝑘+1 = 𝓕𝑙 𝑇𝑘  4.3 
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where 𝓕 is the actual rule that advances the solution one major time step, 𝑇𝑘+1 is the advanced 

solution, and 𝑇𝑘  is the previous iteration’s result.  As previously stated, each of the individual 

𝓕𝑙’s can utilize any number of solution techniques, ranging from purely analytical solutions to 

Runge-Kutta methods.  For any multi-physics system, while solving for a single time step, the 

result of each rule is fed into the next until each rule is used.  Thus, for multiple physics, the 

solution for a single step is: 

𝑇𝑘,1 = 𝓕1 𝑇𝑘 

𝑇𝑘,2 = 𝓕2 𝑇𝑘,1 

𝑇𝑘,3 = 𝓕3 𝑇𝑘,2 

⋮
𝑇𝑘,𝑙 = 𝓕𝑙 𝑇𝑘,𝑙−1 

⋮
𝑇𝑘,𝐿−1 = 𝓕𝐿−1 𝑇𝑘,𝐿−2 

𝑇𝑘+1 = 𝓕𝐿 𝑇𝑘,𝐿−1 

 

where 𝑇𝑘  is the starting condition for the time step, 𝑇𝑘,𝑙  is the intermediate result of the 𝑙𝑡𝑕  rule, 

the 𝓕𝑙’s are the rules, and 𝑇𝑘+1 is the final result, advancing the solution by one time step.  The 

above is graphically rendered in Figure 4.2, using the same notation.  This graphic shows both 

how the data feeds internal to a single time step, and how each time step feeds into the next. 
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𝑡𝑘         

 

𝑇𝑘,1 

↑ 

𝓕1 𝑇𝑘  
↑ 

𝑇𝑘  

 𝑇𝑘,2 

↑ 

𝓕2 𝑇𝑘,1  

↑ 

𝑇𝑘,1 

 𝑇𝑘,𝑙  

↑ 

𝓕𝑙 𝑇𝑘,𝑙−1  

↑ 

𝑇𝑘,𝑙−1 

 𝑇𝑘,𝐿 = 𝑇𝑘+1 

↑ 

𝓕𝐿 𝑇𝑘,𝐿−1  

↑ 

𝑇𝑘,𝐿−1 

⋱ ⋱ 

  

𝑡𝑘−1        

 

⋮ … ⋮ … ⋮ … ⋮ 

𝑡2 

   

⋱ 

   

 𝑇2,1 

↑ 

𝓕1 𝑇2  
↑ 

𝑇2 

 𝑇2,2 

↑ 

𝓕2 𝑇2,1  

↑ 

𝑇2,1 

 𝑇2,𝑙  

↑ 

𝓕𝑙 𝑇2,𝑙−1  

↑ 

𝑇2,𝑙−1 

 𝑇2,𝐿 = 𝑇3 

↑ 

𝓕𝐿 𝑇2,𝐿−1  

↑ 

𝑇2,𝐿−1 

⋱ ⋱ 

  

𝑡1        

 𝑇1,1 

↑ 

𝓕1 𝑇1  
↑ 

𝑇1 

 𝑇1,2 

↑ 

𝓕2 𝑇1,1  

↑ 

𝑇1,1 

 𝑇1,𝑙  

↑ 

𝓕𝑙 𝑇1,𝑙−1  

↑ 

𝑇1,𝑙−1 

 𝑇1,𝐿 = 𝑇2 

↑ 

𝓕𝐿 𝑇1,𝐿−1  

↑ 

𝑇1,𝐿−1 

⋱ ⋱ 

  

 

Figure 4.2: Graphical representation of the modified cellular automata feed-through. 

 

A single step can be more concisely rendered mathematically as: 

 
𝑇𝑘+1 = 𝓕𝐿  𝓕𝐿−1  …𝓕𝑙  …𝓕2 𝓕1 𝑇𝑘      4.4 

Then, to advance further, repeat the process over time. 

For a given transport process, one will likely have an equation that includes diffusion, 

advection, proportional loss, and source terms.  An example is the 1D, 1B process of section 3.4 

which is: 
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 𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2   
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

− 𝑉
𝜕𝑇

𝜕𝑥 
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

−
1

𝜏
 𝑇 − 𝑇∞        

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙
𝑙𝑜𝑠𝑠

+ 𝑆𝑐 
𝑠𝑜𝑢𝑟𝑐𝑒

 
4.5 

This equation can be broken down into three or four processes.  These processes are: 

 
𝒇𝑎𝑑𝑣  𝑇𝑘 = −𝑉

𝜕𝑇

𝜕𝑥
 4.6 

 
𝒇𝑑𝑖𝑓𝑓  𝑇𝑘 = 𝛼

𝜕2𝑇

𝜕𝑥2
 4.7 

 
𝒇𝑃𝐿 𝑇𝑘 = −

1

𝜏
 𝑇 − 𝑇∞  4.8 

 𝒇𝑠𝑜𝑢𝑟𝑐𝑒  𝑇𝑘 = 𝑆𝑐  4.9 

Because advective mechanics are simple when standalone, but difficult when mixed with 

other mechanics, the advection term can be separated out and handled very accurately with its 

own rule.  This result is the primary reason to use this modified cellular automata technique.  The 

diffusion mechanics, with the spatial grid shown above in Figure 4.1, is easily handled using a 

finite-difference solver.  The proportional loss and source terms have analytical solutions, even 

when taken together.  This allows the set of processes to be reduced to three. 

The following sections discuss each of the individual rules, and their respective solution 

methods. 

4.2 Advection Rule 

The advection rule models the bulk transport behavior of the system.  It is represented by 

the bulk transport term of the governing equation.  It appears in the equation governing the 

moving body.  The basic advection process with motion only in the ‘𝑥’ direction is: 

 𝜕𝑇

𝜕𝑡
= −𝑉

𝜕𝑇

𝜕𝑥
 4.10 

This particular piece of reduced physics can be solved analytically.  The analytical 

solution is as follows: 

 𝑇 𝑥, 𝑦, 𝑡 = 𝑇0 𝑥 − 𝑉𝑡, 𝑦  4.11 

where 𝑇0 𝑥, 𝑦  is the initial temperature distribution and 𝑇 𝑥, 𝑦, 𝑡  is the distribution at time 

equal to 𝑡.  The interpretation of this result is that the initial distribution, under no other driving 

behaviors, simply shifts along the ‘𝑥’ axis as time proceeds.  This solution produces an 
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extremely simple rule for a process that can be very difficult to deal with when mixed with other 

processes.  This can be depicted as seen in Figure 4.3.  It shows that, at each time step, that the 

shape does not change.  The shape only translates as time progresses. 

 

 

Figure 4.3: Graphical depiction of advection. 

 

If the major time step  Δ𝑡  over which each of the iterations of the automata is performed 

satisfies: 

 
Δ𝑡 =

𝑁𝑥Δ𝑥

𝑉
 4.12 

then the solution advects by 𝑁𝑥  nodes.  Thus, one can simply have the computer shift the 

solution (according to whatever bookkeeping method is used programmatically) to the next step, 

in an exact solution.  As a result of this, the implementation of the direct solution uses this 

method to determine the major time step.  Thus the rule is: 

 𝑇𝑘+1 𝑥, 𝑦 = 𝓕𝑎𝑑𝑣  𝑇𝑘 = 𝑇𝑘 𝑥 − 𝑁𝑥Δ𝑥, 𝑦  4.13 

4.3 Source Partition Rule 

As far as the knowledge of the forcing functions in this example is concerned, what we 

know is the total heat flux distribution.  However, the actual partition of heat into the two solids 

is not known.  This lack of knowledge leads to the need to approximate how the interface 

partitions the heat.  This partition is a function of the thermal properties and current temperature 

distributions of the solids. 

As a result of the physical contact at the contact junctures, one must account for 

conduction at the interface, along with the energy imparted to the system by friction.  

𝑇 𝑥, 𝑦, 𝑡  



32 

 

Mathematically, this conduction term appears, but one must ensure that the conduction is 

removed if the contact distribution is zero.  Thus, over regions where 𝑓𝑑 𝑥, 𝑡 > 0, the following 

boundary conditions apply: 

 
𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 = 𝑞𝑓𝑟𝑖 𝑐2

′′  𝑥, 𝑡 + 𝑞𝑓𝑟𝑖 𝑐1

′′  𝑥, 𝑡 = 𝑘2
 𝜕𝑇2

𝜕𝑦
 
𝑦=0

− 𝑘1
 𝜕𝑇1

𝜕𝑦
 
𝑦=0

 
4.14 

 𝑇2𝑠 = 𝑇1𝑠 = 𝑇𝑠 4.15 

These conditions state that the frictional energy goes into the two solids, and that the surface 

temperatures are equal at the contacts.  This partition can be visualized in Figure 4.4. 

 

 
𝑞𝑓𝑟𝑖 𝑐1

′′ = −𝑘1𝐿𝑧Δ𝑥  
𝜕𝑇

𝜕𝑦
 
𝑦=0

 

↑↑↑↑ 

 

 𝑞𝑓𝑟𝑖𝑐
′′ ,   𝑇𝑠  

 ↓↓↓↓ 

𝑞𝑓𝑟𝑖 𝑐2

′′ = 𝑘2𝐿𝑧Δ𝑥  
𝜕𝑇

𝜕𝑦
 
𝑦=0

 

 

 

Figure 4.4: Visualization of the heat partition rule. 

 

Approximating these interface conditions using a finite difference method, one gets: 

 
𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 =

2𝑘2

Δ𝑦2

 𝑇𝑠 − 𝑇2 −
2𝑘1

Δ𝑦1

 𝑇1 − 𝑇𝑠  4.16 

By rearranging this expression, one can determine the surface temperature: 

 

𝑇𝑠 =
𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 +

2𝑘1
Δ𝑦1

𝑇1 +
2𝑘2
Δ𝑦2

𝑇2

2𝑘1

Δ𝑦1
+

2𝑘2

Δ𝑦2

 4.17 

This equation is a very useful result that is used to determine the partition of heat, and can be 

used in post-computational analysis for further insight. 

By substituting the surface temperature into the finite difference approximation of 

𝑞𝑓𝑟𝑖 𝑐1

′′  𝑥, 𝑡 ,  one gets: 
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𝑞𝑓𝑟𝑖 𝑐1

′′ = −
2𝑘1

Δ𝑦1
 𝑇1 −

𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 +

2𝑘1
Δ𝑦1

𝑇1 +
2𝑘2
Δ𝑦2

𝑇2

2𝑘1

Δ𝑦1
+

2𝑘2

Δ𝑦2

  4.18 

This equation can be rearranged to acquire a convenient expression for the heat flux into body 1.  

Further, by using the definition of the total heat flux, one also readily attains the heat flux into 

body 2. 

 

𝑞𝑓𝑟𝑖 𝑐1

′′  𝑥, 𝑡 =

2𝑘1
Δ𝑦1

2𝑘1

Δ𝑦1
+

2𝑘2

Δ𝑦2

 𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 +

2𝑘2

Δ𝑦2

 𝑇2 − 𝑇1   4.19 

 𝑞𝑓𝑟𝑖 𝑐2

′′  𝑥, 𝑡 = 𝑞𝑓𝑟𝑖𝑐
′′  𝑥, 𝑡 − 𝑞𝑓𝑟𝑖 𝑐1

′′  𝑥, 𝑡  4.20 

These results will eventually become the source term in an analytical solution for the effect of 

the boundary and source terms. 

Over domains where the contact distribution is zero, the heat flux into the two bodies 

must be zero: 

 𝑞𝑓𝑟𝑖 𝑐1

′′  𝑥, 𝑡 = 0 4.21 

 𝑞𝑓𝑟𝑖 𝑐2

′′  𝑥, 𝑡 = 0 4.22 

These results, with the temperatures (as needed) evaluated at 𝑡𝑘 , give a roughly constant source 

for a classic Newtonian cooling solution below. 

4.4 Convection plus Source Rule 

The formulation of the convective loss and source depends on whether the model is one 

or two dimensional.  The two dimensional process must be broken up into regions.  The 

convection process only occurs on surface nodes outside the contact area while heat addition 

only occurs inside the contact region. 

4.4.1 Two Dimensional Process 

For surface nodes that are contained inside the contact region, the governing process is: 

 
𝜌𝑐Δ𝑥Δ𝑦𝐿𝑧

𝜕𝑇𝑖
𝜕𝑡

= Δ𝑥𝐿𝑧 ∙ 𝑞𝑓𝑟𝑖 𝑐𝑏𝑜𝑑𝑦
′′  𝑥𝑖 , 𝑡  4.23 

where 𝑞𝑓𝑟𝑖 𝑐𝑏𝑜𝑑𝑦
′′  𝑥𝑖 , 𝑡  is the frictional heat that enters the node.  The subscript ‘body’ simply 

indicates that it is the appropriate part of the heat partition, e.g., that if node 𝑖 is contained in 
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Body 1, then it would be 𝑞𝑓𝑟𝑖 𝑐1

′′  𝑥𝑖 , 𝑡 .  If the source behaves as a constant for each major time 

step (it can change from time step to time step), then the equation becomes: 

 𝜕𝑇𝑖
𝜕𝑡

=
𝑞𝑓𝑟𝑖 𝑐𝑏𝑜𝑑𝑦
′′  𝑥𝑖 

𝜌𝑐Δ𝑦
 4.24 

Conveniently, one can substitute 𝑆𝑐𝑖 =
𝑞𝑓𝑟𝑖 𝑐𝑏𝑜𝑑𝑦
′′  𝑥𝑖 

𝜌𝑐Δ𝑦
 into the process and gain the 

convenient representation of the process as: 

 𝜕𝑇𝑖
𝜕𝑡

= 𝑆𝑐𝑖  4.25 

This is easily integrated to create the rule for these nodes: 

 𝑇𝑘+1 = 𝓕2𝐷𝑠𝑜𝑢𝑟𝑐𝑒  𝑇𝑘 = 𝑆𝑐Δ𝑡 + 𝑇𝑘  4.26 

For the nodes on the surfaces that are parallel to the contact surface outside the nominal 

contact region, the governing process is: 

 
𝜌𝑐Δ𝑥Δ𝑦𝐿𝑧

𝜕𝑇𝑖
𝜕𝑡

= −𝑕Δ𝑥𝐿𝑧 𝑇𝑖 − 𝑇∞  4.27 

Through algebraic manipulation, and with the substitution of 𝜏 =
𝜌𝑐Δ𝑦

𝑕
, the process can be 

represented as: 

 𝜕𝑇𝑖
𝜕𝑡

= −
 𝑇𝑖 − 𝑇∞ 

𝜏
 4.28 

This is easily integrated to give the rule for this process: 

 
𝑇𝑘+1 = 𝓕2𝐷𝑐𝑜𝑛𝑣  𝑇𝑘 = 𝑇∞ +  𝑇𝑘 − 𝑇∞ exp  −

Δ𝑡

𝜏
  4.29 

This is the classic result of a lumped capacity, Newtonian cooling heat transfer problem.  This is 

the result one would expect.  For the nodes that are on the surfaces that are perpendicular to the 

contact surface, with a different time constant of 𝜏 =
𝜌𝑐Δ𝑥

𝑕
, the same result is obtained. 

4.4.2 One Dimensional Process 

For the nodes that are contained within the contact region, the governing process is: 

 𝜌𝑐Δ𝑥𝐿𝑦𝑏𝑜𝑑𝑦 𝐿𝑧
𝜕𝑇𝑖
𝜕𝑡

= −𝑕Δ𝑥𝐿𝑧 𝑇𝑖 − 𝑇∞ + Δ𝑥𝐿𝑧 ∙ 𝑞𝑓𝑟𝑖 𝑐𝑏𝑜𝑑𝑦
′′  𝑥𝑖 , 𝑡  4.30 

again, where 𝑞𝑓𝑟𝑖𝑐 ,𝑏𝑜𝑑𝑦
′′  𝑥𝑖 , 𝑡  is the frictional heat that enters the node.  If the source is again 

treated as a constant for each major time step, then the equation becomes: 
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 𝜕𝑇𝑖
𝜕𝑡

= −
𝑕

𝜌𝑐𝐿𝑦𝑏𝑜𝑑𝑦
 𝑇𝑖 − 𝑇∞ +

𝑞𝑓𝑟𝑖 𝑐𝑏𝑜𝑑𝑦
′′  𝑥𝑖 

𝜌𝑐𝐿𝑦𝑏𝑜𝑑𝑦
 4.31 

In a fashion similar to the two dimensional development, one can make the convenient, choice of 

substitutions: 

 
𝑆𝑐𝑖 =

𝑞𝑓𝑟𝑖 𝑐𝑏𝑜𝑑𝑦
′′  𝑥𝑖 

𝜌𝑐𝐿𝑦𝑏𝑜𝑑𝑦
 4.32 

 
𝜏 =

𝜌𝑐𝐿𝑦𝑏𝑜𝑑𝑦
𝑕

 4.33 

This substitution gives the representation of the process in the contact region as: 

 𝜕𝑇𝑖
𝜕𝑡

= −
 𝑇𝑖 − 𝑇∞ 

𝜏
+ 𝑆𝑐 𝑖  4.34 

This equation has an analytical solution as a simple rule for this process as: 

 
𝑇𝑘+1 = 𝓕1𝐷𝑠𝑜𝑢𝑟𝑐𝑒  𝑇𝑘 = 𝑇∞ + 𝜏𝑆𝑐 +  𝑇𝑘 − 𝑇∞ − 𝜏𝑆𝑐 exp  −

𝛥𝑡

𝜏
  4.35 

Outside the contact region, the process changes to: 

 𝜕𝑇𝑖
𝜕𝑡

= −
2𝑕

𝜌𝑐𝐿𝑦𝑏𝑜𝑑𝑦
 𝑇𝑖 − 𝑇∞  4.36 

And, by using the same substitution for the time constant above, the rule is: 

 
𝑇𝑘+1 = 𝓕1𝐷𝑐𝑜𝑛𝑣  𝑇𝑘 = 𝑇∞ +  𝑇𝑘 − 𝑇∞ exp  −

2Δ𝑡

𝜏
  4.37 

4.5  Diffusion Rule 

The diffusion process models the heat conduction that occurs in the system.  It appears in 

the governing equations for both bodies as: 

 𝜕𝑇

𝜕𝑡
= 𝛼  

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
  4.38 

By recalling the discrete spatial grid from Figure 4.1 that was created for the numerical 

model, one can reformulate the above equation from a partial differential equation into a system 

of ordinary differential equations.  The formulation mathematically appears to be discrete in 

space and continuous in time.  The formulation follows as: 

 𝑑𝑇𝑖,𝑗

𝑑𝑡
= 𝛼  

𝑇𝑖+1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗

Δ𝑥2
+
𝑇𝑖,𝑗+1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗−1

Δ𝑦2
  4.39 
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where the subscripts 𝑖 and 𝑗 indicate the nodal  𝑥, 𝑦  index.  Properly handled, this particular 

formulation can be broken down into two smaller rules, where one performs the conduction in 

one direction first, and then the other.  This method then enables the use of a tridiagonal solver in 

an implicit finite difference scheme, which is computationally very quick.  Thus, the rule 

formulation becomes: 

 𝑇𝑖
𝑘+1 − 𝑇𝑖

𝑘

𝛥𝑡
= 𝛼  

𝑇𝑖+1
𝑘+1 − 2𝑇𝑖

𝑘+1 + 𝑇𝑖−1
𝑘+1

𝛥𝑥2
  4.40 

This equation is readily arranged into a tridiagonal matrix, 𝑨, with upper diagonal 𝒂𝑢 , lower 

diagonal 𝒂𝑙 , and main diagonal 𝒂𝑑 .  This can then be employed in the matrix equation: 

 𝑨𝑻𝑘+1 = 𝑻𝑘  4.41 

This equation is ready for the computer to solve using a tridiagonal solver solver as the solution 

rule.  Thus, the rule is: 

 𝑇𝑘+1 = 𝓕𝑑𝑖𝑓𝑓  𝑇𝑘 = 𝑡𝑟𝑖𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝒂𝑢 , 𝒂𝑑 , 𝒂𝑙 , 𝑇𝑘  4.42 

where the 𝑡𝑟𝑖𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙   operator is the tridiagonal solver, the 𝒂’s are the diagonals, and 𝑇𝑘  is 

the initialization of the solver. 

4.6 Rule Library 

In summation therefore, the rules are: 

 𝑇𝑘+1 = 𝓕𝑎𝑑𝑣  𝑇𝑘 = 𝑇𝑘 𝑥 − 𝑁𝑥Δ𝑥, 𝑦  4.13 

 𝑇𝑘+1 = 𝓕2𝐷𝑠𝑜𝑢𝑟𝑐𝑒  𝑇𝑘 = 𝑆𝑐Δ𝑡 + 𝑇𝑘  4.26 

 𝑇𝑘+1 = 𝓕2𝐷𝑐𝑜𝑛𝑣  𝑇𝑘 = 𝑇∞ +  𝑇𝑘 − 𝑇∞ exp  −
Δ𝑡

𝜏
  4.29 

 𝑇𝑘+1 = 𝓕1𝐷𝑠𝑜𝑢𝑟𝑐𝑒  𝑇𝑘 = 𝑇∞ + 𝜏𝑆𝑐 +  𝑇𝑘 − 𝑇∞ − 𝜏𝑆𝑐 exp  −
𝛥𝑡

𝜏
  4.35 

 𝑇𝑘+1 = 𝓕1𝐷𝑐𝑜𝑛𝑣  𝑇𝑘 = 𝑇∞ +  𝑇𝑘 − 𝑇∞ exp  −
2Δ𝑡

𝜏
  4.37 

 𝑇𝑘+1 = 𝓕𝑑𝑖𝑓𝑓  𝑇𝑘 = 𝑡𝑟𝑖𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝒂𝑢 , 𝒂𝑑 , 𝒂𝑙 , 𝑇𝑘  4.42 

These rules can be mixed and matched to model any combination of these effects.  Also, 

additional rules for other physical effects can be developed and added to the library of rules for 

modeling more complex processes.  
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5 Estimation of Real Area of Contact 

The estimation of the real area of contact requires the use of methods developed to solve 

inverse mathematical problems.  While there are many inverse problem methods, the scheme 

used here is the Levenberg-Marquardt Method. 

5.1 Algorithm 

Parameter estimation problems are a special case of the inverse problem, where the 

forcing functions are known, and the response is known to some degree (has been sampled by 

instrumentation), but some aspect of the system is not known.  This is represented in the context 

of the research problem in Figure 5.1.  The objective is to approximate the contact distribution. 

 

 

Forcing Function 

 

→ 

 

System 

→ 

 

Response 

 

𝑇0 
 

 

𝑞𝑓𝑟𝑖𝑐  

 

𝑘′𝑠 

 

𝑕′𝑠 

 

𝛼′𝑠 

 

𝐿′𝑠 

 

𝑓𝑑 𝑥𝑖 , 𝑡𝑚   𝑉 
𝑌𝑚  

𝑚 = 1,2,… ,𝑀 

 

√ 
 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

 

? √ 

 

√ 

 

Figure 5.1: Depiction of knowns and unknowns in the real area of contact estimation problem. 

 

The addition of the measurement system appears below in Figure 5.2.  The black dots 

show the conceptual locations of the measurements. 

 

   

Sensor 2 

  

 

  

Sensor 1 

  

Sensor 3 

  

Sensor N 

  

 

Figure 5.2: Conceptual layout of measurement locations. 
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The response of the system would be measured experimentally and tabulated against its 

sample time and location for input into the computer (See Table 5.1). 

 

Table 5.1: Sample table of data. 

 

𝑡𝑖𝑚𝑒 𝑆𝑒𝑛𝑠𝑜𝑟 1 𝑆𝑒𝑛𝑠𝑜𝑟 2 … 𝑆𝑒𝑛𝑠𝑜𝑟 𝑁𝑠 
𝑡1 𝑌11

 𝑌21
 … 𝑌𝑁𝑠1

 

𝑡2 𝑌12
 𝑌22

 … 𝑌𝑁𝑠2
 

⋮ ⋮ ⋮ ⋱ ⋮ 
𝑡𝑁𝑡  𝑌1𝑁𝑡

 𝑌2𝑁𝑡
 … 𝑌𝑁𝑠𝑁𝑡

 

 

Mathematically, parameter estimation is done by minimizing the sum of squares of the 

differences between the data and the model.  Mathematically, the sum of squares is: 

 

𝑆 𝜷 =   𝑌𝑚 − 𝑇 𝑚 𝜷  
2

𝑀

𝑚=1

 5.1 

where 𝜷 is the vector of unknown parameters, the 𝑌𝑚 ’s are the data, and the 𝑇 𝑚 ’s are the model 

values at the measurement times and locations for the current set of parameters.  𝑀 is the totality 

of all measurements.  For the physical model presented here, the 𝛽’s are the values of the contact 

distribution evaluated at each nodal location inside the nominal contact zone.  To do this, one 

must find the bottom of the ‘bowl’ formed by the sum of squares as a function of all the 

parameters.  Conceptually, the bowls appear in Figure 5.3.  For one parameter systems, it looks 

like a dip in a line.  For two parameter systems, it looks like a bowl. 

 

 

Figure 5.3: Conceptual representation of one and two parameter sums of squares. 
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The bottom of the hyper-dimensional bowl is located where the derivative of the sum of 

squares with respect to each of the parameters is zero: 

 𝜕𝑆 𝜷 

𝜕𝛽𝑛
= −2  

𝜕𝑇 𝑚 𝜷 

𝜕𝛽𝑛
 𝑌𝑚 − 𝑇 𝑚  𝜷  

𝑀

𝑚=1

= 0 

𝑛 = 1,2, … , 𝑁𝑐𝑜𝑛  

5.2 

The derivative of the model with respect to the various parameters, when in matrix form, 

is called the sensitivity matrix, 𝑿.  The vector of differences is the residuals, 𝑹.  These are: 

 

𝑿 𝜷 =

 
 
 
 
 
 
𝜕𝑇 1
𝜕𝛽1

…
𝜕𝑇 1
𝜕𝛽𝑁

⋮ ⋱ ⋮
𝜕𝑇 𝑀
𝜕𝛽1

…
𝜕𝑇 𝑀
𝜕𝛽𝑁 

 
 
 
 
 

 5.3 

 

𝑹 𝜷 = 𝒀 − 𝑻  𝜷 =  
𝑌1 − 𝑇 1 𝜷 

⋮
𝑌𝑀 − 𝑇 𝑀 𝜷 

  5.4 

Using this matrix notation, Equation 5.2 becomes: 

 𝑿 𝜷 𝑇𝑹 𝜷 = 𝟎 5.5 

Because many of these parameters affect the system nonlinearly, one must use one of 

many iterative methods to solve this equation for the unknown parameters, 𝜷.  These methods 

vary widely, but as a means of keeping the mathematics as physical as possible, while requiring 

some numerical stability, the Levenberg-Marquardt method is used [27].  Most least-squares 

methods are based on the Gauss method.  The Gauss method is a linearized iterative technique, 

or a first order Taylor series.  The Taylor series is developed as follows: (27) 

 

𝑻 𝜷 =   𝜕
𝜉𝑻  𝜷 

𝜕𝜷𝜉
 
𝜷𝑖𝑡𝑒𝑟

 𝜷 − 𝜷𝑖𝑡𝑒𝑟  
𝜉

𝜉!

Ξ

𝜉=0

 5.6 

which, in its first order form expands to: 

 
𝑻 𝜷 = 𝑻  𝜷𝑖𝑡𝑒𝑟  +  𝜕𝑻

  𝜷 

𝜕𝜷
 
𝜷𝑖𝑡𝑒𝑟

 𝜷 − 𝜷𝑖𝑡𝑒𝑟   5.7 

In order to gain the value of the parameters for the next step in the iteration, this can be 

substituted into Equation 5.5, with the derivative substituted to form: 
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 𝑿 𝜷𝑖𝑡𝑒𝑟  
𝑇  𝒀 −  𝑻  𝜷𝑖𝑡𝑒𝑟  + 𝑿 𝜷𝑖𝑡𝑒𝑟   𝜷𝑖𝑡𝑒𝑟 +1 − 𝜷𝑖𝑡𝑒𝑟    = 𝟎 5.8 

This equation can be rearranged to compute the next step in the iteration for 𝜷𝑖𝑡𝑒𝑟 +1: 

 𝜷𝑖𝑡𝑒𝑟 +1 = 𝜷𝑖𝑡𝑒𝑟 +  𝑿𝑖𝑡𝑒𝑟
𝑇 𝑿𝑖𝑡𝑒𝑟  

−1𝑿𝑖𝑡𝑒𝑟
𝑇 𝑹 𝜷𝑖𝑡𝑒𝑟   5.9 

The Gauss method has no enforced numerical stability, and thus, for ill conditioned sensitivity 

matrices ( 𝑿𝑇𝑿 ≅ 0), this equation can become quite unstable.  In order to correct this problem, 

the diagonal of this matrix must be strengthened.  This strengthening is done by adding a 

damping parameter to the diagonal as seen below.   

 𝜷𝑖𝑡𝑒𝑟 +1 = 𝜷𝑖𝑡𝑒𝑟 +  𝑿𝑖𝑡𝑒𝑟
𝑇 𝑿𝑖𝑡𝑒𝑟 + 𝜇𝑖𝑡𝑒𝑟𝛀𝑖𝑡𝑒𝑟  

−1𝑿𝑖𝑡𝑒𝑟
𝑇 𝑹 𝜷𝑖𝑡𝑒𝑟   5.10 

As the solution converges, the Levenberg-Marquardt method reduces the damping parameter 

𝜇𝑖𝑡𝑒𝑟  until convergence.  At convergence, the solution is very nearly the Gauss method, because 

𝜇𝑖𝑡𝑒𝑟  is very nearly zero.  The choice of the diagonal matrix 𝛀𝑖𝑡𝑒𝑟  varies.  For convenience, the 

identity matrix is used [27].  As a matter of computational simplicity, if the model is linear in a 

given parameter, the sensitivity matrix only needs to be computed once.  While, for a given 

linear set of equations, one can directly solve for the least squares values of the parameters, it can 

be very difficult if the matrix is weak on the diagonal.  As a result, this Levenberg-Marquardt 

method can still be utilized to solve this problem.  This technique is the approach used in the 

solutions presented in chapter 6. (27) 

For each iteration, one must compute a new value for the damping parameter.  To do this, 

one must first advance the solution to the 𝑖𝑡𝑒𝑟 + 1 state.  Then, determine if the sum of squares 

has decreased.  If it has not, increase the damping parameter by one order of magnitude and try 

again, discarding the new 𝜷𝑖𝑡𝑒𝑟 +1, and trying again.  If the sum of squares did decrease, retain 

the new 𝜷𝑖𝑡𝑒𝑟 +1 as 𝜷𝑖𝑡𝑒𝑟 , and decrease the damping parameter by one order of magnitude.  

Repeat this procedure until an appropriate stopping criterion is met.  For the purposes of this 

numerical experiment, it will be when the sum of squares is reduced to an acceptable level.  

These criteria are expressed below: 

 𝑆 𝜷𝑖𝑡𝑒𝑟 +1 ≥ 𝑆 𝜷𝑖𝑡𝑒𝑟  → 𝑟𝑒𝑗𝑒𝑐𝑡 𝜷𝑖𝑡𝑒𝑟 +1, 𝜇𝑖𝑡𝑒𝑟 +1 = 10𝜇𝑖𝑡𝑒𝑟  

𝑆 𝜷𝑖𝑡𝑒𝑟 +1 < 𝑆 𝜷𝑖𝑡𝑒𝑟  → 𝑎𝑐𝑐𝑒𝑝𝑡 𝜷𝑖𝑡𝑒𝑟 +1, 𝜇𝑖𝑡𝑒𝑟 +1 = .1𝜇𝑖𝑡𝑒𝑟  
5.11 

The algorithm can be expressed conveniently as a flowchart.  The fundamental flows are 

seen below in Figure 5.4. 
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Figure 5.4: Parameter estimation algorithm flowchart. 
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Upon completion of the procedure detailed above, the results are then ready for further 

analysis and interpretation. 

5.2 Application to Real Area of Contact 

As mentioned in Chapter 3, the estimation of the real area of contact is done by inference 

from the contact distribution.  That requires the estimation method to determine what that 

distribution is.  Since the model is discretized in space, only the mean value of the contact 

distribution over the length of each node needs to be determined.  Thus the number of parameters 

that the model contains is equal to the number of nodes contained within the contact region.  This 

discretization can be seen in Figure 5.5.  Each node has its own value that can be estimated. 

 

 

Figure 5.5: Arbitrary contact distribution discretized for estimation. 

 

Upon estimating the contact distribution, various post-processing methods can be 

employed to determine the number and extent of each real contact.  The sum of the sizes of each 

contact is the estimated contact area.  The resolution on the estimation of the contact area is 

limited to the nodal sizes.  In other words, the minimum contact area is limited to the area of a 

single node. 
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6 Results and Discussion 

This section details the findings of the parameter estimation study as the complexity of 

the models increases.  The values to be estimated are the values of the discretized contact 

distribution as described in section 5.2.  Prior to that, however, the means by which the solutions 

are simplified and normalized is covered.  First, the equations for the 2D, 2B system are 

normalized.  This provides the normalizing variable groups that will be used throughout the 

results.  Then, this section will cover how a high Peclet number changes the model.   

6.1 Non-Dimensionalization of the 2D, 2B Equations  

The set of equations and conditions in Table 3.1 must be non-dimensionalized in order to 

present generalized results.  First, the contact distribution must be made dimensionless.  Since, as 

was discussed in chapter 3, the contact distribution has dimensions of 
1

𝐿2, we should normalize 

the distribution by substituting: 

 𝑞𝑓𝑟𝑖𝑐 ∙ 𝑓𝑑 𝑥 =
𝑞𝑓𝑟𝑖𝑐

𝐿𝑧𝐿𝑐𝑜𝑛
𝐿𝑧𝐿𝑐𝑜𝑛 𝑓𝑑 𝑥 =

𝑞𝑓𝑟𝑖𝑐

𝐿𝑧𝐿𝑐𝑜𝑛
𝑓𝑑

+ 𝑥+  6.1 

where values denoted with a superscript plus are dimensionless.  As part of this process, the ‘x’ 

location is referenced to the start of the contact for convenience in the development of the 

results, as opposed to the centered coordinates used for ease visualization in the formulation. 

Further substituting this into the equations in Table 3.1 results in this condition (with a 

characteristic length to be selected later): 

 

𝑓𝑑
+ 𝑥+ =

 
 

 𝑓+ 𝑥+ , 𝑥+ ≤
𝐿𝑐𝑜𝑛
𝐿𝑐𝑕𝑎𝑟

0,                𝑥+ >
𝐿𝑐𝑜𝑛
𝐿𝑐𝑕𝑎𝑟

  6.2 

where 𝑥+ =
𝑥−

𝐿𝑐𝑜𝑛
2

𝐿𝑐𝑕𝑎𝑟
.  Now, the set of equations and conditions is ready to undergo its 

normalization.  First, a list of independent variables, dependent variables, parameters, and 

parameter groups is important.  This list is presented below in Table 6.1. 

. 
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Table 6.1: List of variables and parameters. 

 

Dependent Variable(s): 

Temperature (static body) 𝜃1 𝐾 

Temperature (moving body) 𝜃2 𝐾 

Independent Variable(s): 

Time 𝑡 𝑠 

Position in x 
𝑥 −

𝐿𝑐𝑜𝑛
2

 
𝑚 

Position in y 𝑦 𝑚 

Parameter(s): 

Velocity 𝑉 
𝑚

𝑠
 

Thermal diffusivity (body 1) 𝛼1 
𝑚2

𝑠
 

Thermal diffusivity (body 2) 𝛼2 
𝑚2

𝑠
 

Convective parameter (body 1) 
𝑕1

𝜌1𝑐1
 

𝑚

𝑠
 

Convective parameter (body 2) 
𝑕2

𝜌2𝑐2
 

𝑚

𝑠
 

Temperature rate  (bulk, body 2) 
𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝐿𝑐𝑜𝑛

 
𝐾

𝑠
 

Contact length 𝐿𝑐𝑜𝑛  𝑚 

Length in ‘x’ (body 2) 𝐿𝑥  𝑚 

Length in ‘y’ (body 1) 𝐿𝑦1
 𝑚 

Length in ‘y’ (body 2) 𝐿𝑦2
 𝑚 

 

Once the list is prepared, then the number of units is determined.  Here, there are three: 

degrees Kelvin, meters, and seconds.  Thus, three independent parameters/parameter groups need 

to be selected for the normalization process.  The selected groups are presented in Table 6.2. 
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Table 6.2: Selected independent reference parameters. 

 

Velocity 𝑉 
𝑚

𝑠
 

Contact length 𝐿𝑐𝑜𝑛  𝑚 

Temperature rate (bulk, body 2) 
𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝐿𝑐𝑜𝑛

 
𝐾

𝑠
 

 

For each of the units, the combination of parameters must be determined.  This is done by 

setting a characteristic value equal to the product of the parameters each raised to a power.  The 

combination of these parameters must result in only one dimension.  The characteristic length is 

determined below in Table 6.3. 

 

Table 6.3: Determination of charateristic length. 

 

𝐿𝑐𝑕𝑎𝑟 =  𝑉 𝑎 𝐿𝑐𝑜𝑛  
𝑏  

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝐿𝑐𝑜𝑛

 

𝑐

 

 
𝑚

𝑠
 
𝑎

 𝑚 𝑏  
𝐾

𝑠
 
𝑐

= 𝑚 

Length 𝑎 + 𝑏 = 1 

Time −𝑎 − 𝑐 = 0 

Temperature 𝑐 = 0 

 𝑎, 𝑏, 𝑐 =  0,1,0  

𝐿𝑐𝑕𝑎𝑟 = 𝐿𝑐𝑜𝑛  

 

The characteristic time is determined below in Table 6.4. 
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Table 6.4: Determination of charateristic time. 

 

𝑡𝑐𝑕𝑎𝑟 =  𝑉 𝑎 𝐿𝑐𝑜𝑛  
𝑏  

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝐿𝑐𝑜𝑛

 

𝑐

 

 
𝑚

𝑠
 
𝑎

 𝑚 𝑏  
𝐾

𝑠
 
𝑐

= 𝑠 

Length 𝑎 + 𝑏 = 0 

Time −𝑎 − 𝑐 = 1 

Temperature 𝑐 = 0 

 𝑎, 𝑏, 𝑐 =  −1,1,0  

𝑡𝑐𝑕𝑎𝑟 =
𝐿𝑐𝑜𝑛
𝑉

 

 

The characteristic temperature rise is determined below in Table 6.5. 

 
Table 6.5: Determination of characteristic temperature rise. 

 

𝜃𝑐𝑕𝑎𝑟 =  𝑉 𝑎 𝐿𝑐𝑜𝑛  
𝑏  

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝐿𝑐𝑜𝑛

 

𝑐

 

 
𝑚

𝑠
 
𝑎

 𝑚 𝑏  
𝐾

𝑠
 
𝑐

= 𝐾 

Length 𝑎 + 𝑏 = 0 

Time −𝑎 − 𝑐 = 0 

Temperature 𝑐 = 1 

 𝑎, 𝑏, 𝑐 =  −1,1,1  

𝜃𝑐𝑕𝑎𝑟 =
𝐿𝑐𝑜𝑛
𝑉

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝐿𝑐𝑜𝑛

=
𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

 

 

Below in Table 6.6 is a summary of the characteristic values that are used in the 

normalization of the equation.  
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Table 6.6: Summary of characteristic values. 

 

Time 𝑡𝑐𝑕𝑎𝑟  
𝐿𝑐𝑜𝑛
𝑉

 

Position 𝐿𝑐𝑕𝑎𝑟  𝐿𝑐𝑜𝑛  

Temperature 𝜃𝑐𝑕𝑎𝑟  
𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

 

 

Having determined the characteristic values, the dimensionless variables need to be 

determined.  This is done by dividing the variable by its characteristic value.  This is shown 

below in Table 6.7. 

 

Table 6.7: Dimensionless variables. 

 

Time 𝑡+ =
𝑡

𝑡𝑐𝑕𝑎𝑟
=

𝑡𝑉

𝐿𝑐𝑜𝑛
 

Position 𝑥+ =
𝑥 −

𝐿𝑐𝑜𝑛
2

𝐿𝑐𝑕𝑎𝑟
=
𝑥 −

𝐿𝑐𝑜𝑛
2

𝐿𝑐𝑜𝑛
 

Temperature 
𝜃+ =

𝜃

𝜃𝑐𝑕𝑎𝑟
=
𝜃𝜌2𝑐2𝐿𝑦2

𝐿𝑧𝑉

𝑞𝑓𝑟𝑖𝑐
 

 

 Since the dimensionless variables have been determined, the equation is now ready for 

normalization.  The first step is to substitute the variables out for the dimensionless groups.  This 

is demonstrated in Table 6.8. 
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Table 6.8: Normalization of Table 3.1. 

 

 Body 1 Body 2 

 

Energy 

Equation: 

 

 

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

∙
𝑉

𝐿𝑐𝑜𝑛

𝜕𝜃1
+

𝜕𝑡+

= 𝛼1

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

1

𝐿𝑐𝑜𝑛
2

∙  
𝜕2𝜃1

+

𝜕𝑥+2 +
𝜕2𝜃1

+

𝜕𝑦+2  

 

 

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

∙
𝑉

𝐿𝑐𝑜𝑛

𝜕𝜃2
+

𝜕𝑡+

= 𝛼2

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

1

𝐿𝑐𝑜𝑛
2

∙  
𝜕2𝜃2

+

𝜕𝑥+2 +
𝜕2𝜃2

+

𝜕𝑦+2 

−
𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

𝑉

𝐿𝑐𝑜𝑛

𝜕𝜃2
+

𝜕𝑥+
 

 

 

y-Boundary 

Condition: 

 

Back surface condition: 

−𝑘1

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

1

𝐿𝑐𝑜𝑛
 𝜕𝜃1

+

𝜕𝑦+
 
𝑦+=𝐿𝑦1

+

= 𝑕1

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

  𝜃1
+ 𝑦+=𝐿𝑦1

+   

 

Back surface condition: 

𝑘2

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

1

𝐿𝑐𝑜𝑛
 𝜕𝜃2

+

𝜕𝑦+
 
𝑦+=𝐿𝑦2

+

= 𝑕2

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

  𝜃2
+ 𝑦+=𝐿𝑦2

+   

Coupling condition (contact region): 

𝑞𝑓𝑟𝑖𝑐

𝐿𝑧𝐿𝑐𝑜𝑛
𝑓𝑑

+ 𝑥+ =
𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

1

𝐿𝑐𝑜𝑛
 𝑘2

 𝜕𝜃2
+

𝜕𝑦+
 
𝑦+=0

− 𝑘1
 𝜕𝜃1

+

𝜕𝑦+
 
𝑦+=0

  

 

𝜃1𝑐𝑜𝑛
+ = 𝜃1𝑐𝑜𝑛

+  

 

 

 

 

Non contact condition: 

−𝑘2

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

1

𝐿𝑐𝑜𝑛
 𝜕𝜃2

+

𝜕𝑦+
 
𝑦+=0

= 𝑕2

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

  𝜃2
+ 𝑦+=0  

 

 

x-Boundary 

Condition: 

 

𝑘1

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

1

𝐿𝑐𝑜𝑛
 𝜕𝜃1

+

𝜕𝑥+
 
𝑥+=0

= 𝑕1

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

  𝜃1
+ 𝑥+=0  

−𝑘1

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

1

𝐿𝑐𝑜𝑛
 𝜕𝜃1

+

𝜕𝑥+
 
𝑥+=𝐿𝑥1

+

= 𝑕1

𝑞𝑓𝑟𝑖𝑐

𝜌2𝑐2𝐿𝑦2
𝐿𝑧𝑉

  𝜃1
+ 𝑥+=𝐿𝑥1

+   

Wrapped condition: 
 𝜃2

+ 𝑥+=0 =  𝜃2
+ 𝑥+=𝐿𝑥2

+  

 

 𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=0

=  𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=𝐿𝑥2

+

 

 

 

Initial 

Condition: 

 

 
 𝜃1

+ 𝑡+=0 = 𝜃10
+  𝑥+, 𝑦+  

 
 𝜃2

+ 𝑡+=0 = 𝜃20
+  𝑥+, 𝑦+  

 

After manipulation, the table reduces to Table 6.9: 
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Table 6.9: Normalized equations. 

 

 Body 1 Body 2 

 

Energy 

Equation: 

 

 

𝜕𝜃1
+

𝜕𝑡+
=

𝛼1

𝑉𝐿𝑐𝑜𝑛
 
𝜕2𝜃1

+

𝜕𝑥+2 +
𝜕2𝜃1

+

𝜕𝑦+2  

 

 

𝜕𝜃2
+

𝜕𝑡+
=

𝛼2

𝑉𝐿𝑐𝑜𝑛
 
𝜕2𝜃2

+

𝜕𝑥+2 +
𝜕2𝜃2

+

𝜕𝑦+2 −
𝜕𝜃2

+

𝜕𝑥+
 

 

 

y-Boundary 

Condition: 

 

Back surface condition: 

−  𝜕𝜃1
+

𝜕𝑦+
 
𝑦+=𝐿𝑦1

+

=
𝑕1𝐿𝑐𝑜𝑛
𝑘1

  𝜃1
+ 𝑦+=𝐿𝑦1

+   

 

Back surface condition: 

 𝜕𝜃2
+

𝜕𝑦+
 
𝑦+=𝐿𝑦2

+

=
𝑕2𝐿𝑐𝑜𝑛
𝑘2

  𝜃2
+ 𝑦+=𝐿𝑦2

+   

Coupling condition (contact region): 

𝑓𝑑
+ 𝑥+ =

𝛼2

𝐿𝑦2
𝑉
  
𝜕𝜃2

+

𝜕𝑦+
 
𝑦+=0

−
𝑘1

𝑘2

 𝜕𝜃1
+

𝜕𝑦+
 
𝑦+=0

  

 

𝜃1𝑐𝑜𝑛
+ = 𝜃1𝑐𝑜𝑛

+  

 

 

 

 

Non contact condition: 

−  𝜕𝜃2
+

𝜕𝑦+
 
𝑦+=0

=
𝑕2𝐿𝑐𝑜𝑛
𝑘2

  𝜃2
+ 𝑦+=0  

 

 

x-Boundary 

Condition: 

 

 

 𝜕𝜃1
+

𝜕𝑥+
 
𝑥+=0

=
𝑕1𝐿𝑐𝑜𝑛
𝑘1

  𝜃1
+ 𝑥+=0  

−  𝜕𝜃1
+

𝜕𝑥+
 
𝑥+=𝐿𝑥1

+

=
𝑕1𝐿𝑐𝑜𝑛
𝑘1

  𝜃1
+ 𝑥+=𝐿𝑥1

+   

Wrapped condition: 
 𝜃2

+ 𝑥+=0 =  𝜃2
+ 𝑥+=𝐿𝑥2

+  

 𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=0

=  𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=𝐿𝑥2

+

 

 

 

Initial 

Condition: 

 

 
 𝜃1

+ 𝑡+=0 = 𝜃10
+  𝑥+, 𝑦+  

 
 𝜃2

+ 𝑡+=0 = 𝜃20
+  𝑥+, 𝑦+  

 

The Stanton and Peclet Numbers, along with parameter ratios as defined by: 

 
𝑆𝑡 =

𝑕2

𝜌2𝑐2𝑉
 

𝑃𝑒 =
𝑉𝐿𝑐𝑜𝑛
𝛼2

 

𝑘1
+ =

𝑘1

𝑘2
 

𝑕1
+ =

𝑕1

𝑕2
 

𝛼1
+ =

𝛼1

𝛼2
 

6.3 

can be substituted into the equation to result in Table 6.10: 
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Table 6.10: Normalized 2D, 2B equations with dimensionless parameters. 

 

 Body 1 Body 2 

 

Energy 

Equation: 

 

 

𝜕𝜃1
+

𝜕𝑡+
=
𝛼1

+

𝑃𝑒
 
𝜕2𝜃1

+

𝜕𝑥+2 +
𝜕2𝜃1

+

𝜕𝑦+2  

 

 

𝜕𝜃2
+

𝜕𝑡+
=

1

𝑃𝑒
 
𝜕2𝜃2

+

𝜕𝑥+2 +
𝜕2𝜃2

+

𝜕𝑦+2 −
𝜕𝜃2

+

𝜕𝑥+
 

 

 

y-Boundary 

Condition: 

 

Back surface condition: 

−  𝜕𝜃1
+

𝜕𝑦+
 
𝑦+=𝐿𝑦1

+

=
𝑕1

+

𝑘1
+ 𝑆𝑡 ∙ 𝑃𝑒  

 𝜃1
+ 𝑦+=𝐿𝑦1

+   

 

Back surface condition: 

 𝜕𝜃2
+

𝜕𝑦+
 
𝑦+=𝐿𝑦2

+

= 𝑆𝑡 ∙ 𝑃𝑒   𝜃2
+ 𝑦+=𝐿𝑦2

+   

Coupling condition (contact region): 

𝑓𝑑
+ 𝑥+ =

1

𝐿𝑦2
+ 𝑃𝑒

  
𝜕𝜃2

+

𝜕𝑦+
 
𝑦+=0

− 𝑘1
+  𝜕𝜃1

+

𝜕𝑦+
 
𝑦+=0

  

 

𝜃1𝑐𝑜𝑛
+ = 𝜃1𝑐𝑜𝑛

+  

 

 

 

 

Non contact condition: 

−  𝜕𝜃2
+

𝜕𝑦+
 
𝑦+=0

= 𝑆𝑡 ∙ 𝑃𝑒  𝜃2
+ 𝑦+=0  

 

 

x-Boundary 

Condition: 

 

 

 𝜕𝜃1
+

𝜕𝑥+
 
𝑥+=0

=
𝑕1

+

𝑘1
+ 𝑆𝑡 ∙ 𝑃𝑒 

 𝜃1
+ 𝑥+=0  

−  𝜕𝜃1
+

𝜕𝑥+
 
𝑥+=𝐿𝑥1

+

=
𝑕1

+

𝑘1
+ 𝑆𝑡 ∙ 𝑃𝑒  

 𝜃1
+ 𝑥+=𝐿𝑥1

+   

Wrapped condition: 
 𝜃2

+ 𝑥+=0 =  𝜃2
+ 𝑥+=𝐿𝑥2

+  

 𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=0

=  𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=𝐿𝑥2

+

 

 

 

Initial 

Condition: 

 

 
 𝜃1

+ 𝑡+=0 = 𝜃10
+  𝑥+, 𝑦+  

 
 𝜃2

+ 𝑡+=0 = 𝜃20
+  𝑥+, 𝑦+  

 

 In the same form as chapter 3, these equations can be simplified down to the reduced 

cases.  The non-dimensional form of the 2D, 1B set follows in Table 6.11. 
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Table 6.11: Normalized 2D, 1B equations with dimensionless parameters. 

 

  

Body 2 

 

 

Energy 

Equation: 

 

 

𝜕𝜃2
+

𝜕𝑡+
=

1

𝑃𝑒
 
𝜕2𝜃2

+

𝜕𝑥+2 +
𝜕2𝜃2

+

𝜕𝑦+2 −
𝜕𝜃2

+

𝜕𝑥+
 

 

 

y-Boundary 

Condition: 

 

Back surface condition: 

 

 𝜕𝜃2
+

𝜕𝑦+
 
𝑦+=𝐿𝑦2

+

= 𝑆𝑡 ∙ 𝑃𝑒   𝜃2
+ 𝑦+=𝐿𝑦2

+   

 

Contact condition: 

 

𝑓𝑑
+ 𝑥+ =

1

𝐿𝑦2
+ 𝑃𝑒

 𝜕𝜃2
+

𝜕𝑦+
 
𝑦+=0

 

 

Non contact condition: 

  

−  𝜕𝜃2
+

𝜕𝑦+
 
𝑦+=0

= 𝑆𝑡 ∙ 𝑃𝑒  𝜃2
+ 𝑦+=0  

 

 

x-Boundary 

Condition: 

 

Wrapped condition: 

 
 𝜃2

+ 𝑥+=0 =  𝜃2
+ 𝑥+=𝐿𝑥2

+  

 𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=0

=  𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=𝐿𝑥2

+

 

 

 

Initial 

Condition: 

 

 
 𝜃2

+ 𝑡+=0 = 𝜃20
+  𝑥+, 𝑦+  

 

The non-dimensional form of the 1D, 2B set follows in Table 6.12. 
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Table 6.12: Normalized 1D, 2B equations with dimensionless parameters. 

 

  

Body 1 

 

 

Body 2 

 

Energy 

Equation: 

 

 

𝜕𝜃1
+

𝜕𝑡+
=
𝛼1

+

𝑃𝑒

𝜕2𝜃1
+

𝜕𝑥+2 −
𝑕1

+𝛼1
+

𝐿𝑦1
+ 𝑘1

+ 𝑆𝑡𝜃1
+

+
𝛼1

+

𝑘1
+

𝐿𝑦2
+

𝐿𝑦1
+
𝑓𝑑

+ 𝑥+  

 

 

𝜕𝜃2
+

𝜕𝑡+
=

1

𝑃𝑒

𝜕2𝜃2
+

𝜕𝑥+2 −
𝜕𝜃2

+

𝜕𝑥+
+ 𝑓𝑑

+ 𝑥+ −
𝑆𝑡

𝐿𝑦2
+
𝜃2

+

∙  𝐻 𝑥+ − 1 + 1  
 

 

x-Boundary 

Condition: 

 

 

 𝜕𝜃1
+

𝜕𝑥+
 
𝑥+=0

=
𝑕1

+

𝑘1
+ 𝑆𝑡 ∙ 𝑃𝑒 

 𝜃1
+ 𝑥+=0  

−  𝜕𝜃1
+

𝜕𝑥+
 
𝑥+=𝐿𝑥1

+

=
𝑕1

+

𝑘1
+ 𝑆𝑡 ∙ 𝑃𝑒  

 𝜃1
+ 𝑥+=𝐿𝑥1

+   

 

Wrapped Condition: 
 𝜃2

+ 𝑥+=0 =  𝜃2
+ 𝑥+=𝐿𝑥2

+  

 𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=0

=  𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=𝐿𝑥2

+

 

 

Initial 

Condition: 

 

 
 𝜃1

+ 𝑡+=0 = 𝜃10
+  𝑥+  

 
 𝜃2

+ 𝑡+=0 = 𝜃20
+  𝑥+  

 

 And finally, for the 1D, 1B set, the non-dimensional forms are as follows in Table 6.13. 

 

Table 6.13: Normalized 1D, 1B equations with dimensionless parameters. 

 

  

Body 2 

 

 

Energy Equation: 

 

 

𝜕𝜃2
+

𝜕𝑡+
=

1

𝑃𝑒

𝜕2𝜃2
+

𝜕𝑥+2 −
𝜕𝜃2

+

𝜕𝑥+
+ 𝑓𝑑

+ 𝑥+ −
𝑆𝑡

𝐿𝑦2
+
𝜃2

+ ∙  𝐻 𝑥+ − 1 + 1  

 

 

x-Boundary 

Condition: 

 

Wrapped condition: 
 𝜃2

+ 𝑥+=0 =  𝜃2
+ 𝑥+=𝐿𝑥2

+  

 𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=0

=  𝜕𝜃2
+

𝜕𝑥+
 
𝑥+=𝐿𝑥2

+

 

 

 

Initial Condition: 

 

 
 𝜃2

+ 𝑡+=0 = 𝜃20
+  𝑥+  
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6.2 High Peclet Simplification 

The need for the diffusion process, particularly in the one dimensional models, can vary.  

In many circumstances, the heat transfer along the ‘𝑥’ direction is highly dominated by the 

advective transfer.  This relation can be seen by taking the ratios of the processes: 

 
  
𝜕𝑇
𝜕𝑡
 
𝑎𝑑𝑣

 

  
𝜕𝑇
𝜕𝑡
 
𝑑𝑖𝑓𝑓

 

=
 𝑉

𝜕𝑇
𝜕𝑥
 

 𝛼
𝜕2𝑇
𝜕𝑥2 

 6.4 

If one views the heat transfer from the perspective of the bulk behavior of the moving 

solid, one gains the picture of having three distinct regions near the contact zone.  This is 

represented in Figure 6.1. 

 

 

Upstream Region 

 

𝐿𝑐𝑜𝑛  

Contact Region 

 

 

Downstream Region 

 

Figure 6.1: Bulk visualization for determining physical length scale. 

 

The convenient physical length scale for determining the bulk heat transfer behaviors is 

𝐿𝑐𝑜𝑛 .  Thus, approximating the above ratio with finite difference based on that scale gives the 

Peclet Number: 

 
 𝑉

𝜕𝑇
𝜕𝑥
 

 𝛼
𝜕2𝑇
𝜕𝑥2 

≅
𝑉
Δ𝑇
𝐿𝑐𝑜𝑛

𝛼
Δ𝑇
𝐿𝑐𝑜𝑛2

=
𝑉 ∙ 𝐿𝑐𝑜𝑛

𝛼
= 𝑃𝑒 6.5 

Thus, if the Peclet Number is greater than about 10 or 100, the diffusion heat transfer is 

overwhelmed by the advective transfer.  For instance, if one takes a braking system for a car, 

with 16’’ wheels, a 10’’ steel brake rotor, with a 2’’ long pad, and is traveling at 75 mph, the 

Peclet Number is approximately 60000.  This result means that the advective transfer is 

approximately 60000 times greater than the diffusive behavior, thus overwhelming the diffusive 

transfer. 

In the event where the Peclet Number does not support ignoring the ‘𝑥’ diffusion, or 

when taking a two dimensional model where gradients in ‘𝑦’ cannot be neglected, then one must 

solve Equation 4.38 numerically.   

https://www.bestpfe.com/
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6.3 One Body Problems 

Presented here are the one body problem results.  These results present many issues 

involved in estimating the discretized contact distribution (as seen in Figure 5.5) using 

measurements in the moving body.  These results, in reality, most resemble either those of a low 

conductivity stationary body, or a moving body with large velocity since the moving body is 

assumed to get all of the frictional heating. 

6.3.1 1D, 1B Cases 

The 1D, 1B construct is a very useful starting point.  It demonstrates many of the 

difficulties involved in measurement, as well as many of the basic trends, without being 

excessively computationally intensive.  This construct grants a quick, but coarse view of the 

system.  The important assumption in the one dimensional case is that the material is thin enough 

to approximate the temperature as being the same across the ‘𝑦’ direction.  The non-dimensional 

formulation is presented above in Table 6.13.  For 𝑃𝑒 ≫ 1, the required dimensionless 

parameters reduce to 𝐿𝑥
+,

𝑆𝑡

𝐿𝑦
+, and 𝑓𝑑

+. 

 

Numerical Resolution Case 

 This first case looks at the direct model, to determine how fine of a spatial resolution is 

necessary to achieve good enough convergence.  Most importantly, the results must all exhibit 

the same trends, and be roughly the same value.  Because the application is the determination of 

trends, an exact convergence is not required.  Presented below in Table 6.14 are the physical 

system parameters used to determine the temperature distribution.  A flat or uniform contact area 

covering 10% of the moving body is used.  The direct model solutions with 100 and 200 nodes 

are presented here.  This results in 10 and 20 discrete contacts, respectively. 

 

Table 6.14: Physical parameters for the numerical resolution case. 

 

Physical Parameters 

𝐿𝑥
+ 10 
𝑆𝑡

𝐿𝑦
+ 0.1 

𝑓𝑑
+ 𝑥+   1 𝑥+ ≤ 1

0 𝑥+ > 1
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 With the use of these parameters, the temperature solution can be determined as seen 

below in Figure 6.2.  The first plot in the figure shows the solution with 100 nodes.  The second 

plot shows the solution with 200 nodes.  These plots qualitatively demonstrate similar behaviors. 

 

 

Figure 6.2: Temperature fields for 100 and 200 node simulations. 

 

 Of particular interest is that the ‘front’ of the propagating heat is visible.  As a result of 

the wrapped boundary condition, the temperature ‘steps’ up dramatically every time the material 

has had a chance to cycle through every location.  That means, every 𝑡+ = 10, there is a step up, 

until the solution achieves a steady solution as a result of the convective loss.  With regard to the 

numerical convergence of the solution, there is no immediately visible difference in the solution 

between the two graphs above.  Thus, for the purposes of this study, 100 nodes for the 1D case is 

sufficiently converged. 

 

Example Case 

This first estimation case presented here is to provide a sample result for a single run of 

the parameter estimation technique.  The system presented below has physical and measurement 
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shown to provide sufficient accuracy, from the above numerical resolution case.  This scheme 

results in 10 discrete values of the contact distribution. 

 

Table 6.15: Parameter values for sample case. 

 

Physical Parameters 

𝐿𝑥
+ 10 
𝑆𝑡

𝐿𝑦
+ 0.1 

𝑓𝑑
+ 𝑥+   1 𝑥+ ≤ 1

0 𝑥+ > 1
  

Measurement Parameters 

𝑁𝑠 1 

𝑥𝑠
+ 1.5 

±𝑒𝑟𝑟+ (simulated) ±0.02 

 

 Upon running the case presented above, data was simulated using the above provided 

error, in conjunction with MATLAB’s pseudo-random number generator, which is defined from 

zero to one.  Thus, this simulated data was generated by the following method: 

 𝑌𝑚
+ = 𝑇𝑒𝑥𝑎𝑐𝑡

+ + 𝑒𝑟𝑟+ ∙ 2 𝑟𝑎𝑛𝑑 𝑙𝑒𝑛𝑔𝑡𝑕 𝑡+ , 1 − .5  6.6 

The dimensionless temperature rise over time for the selected measurement location is 

presented below in Figure 6.3.  This shows the variations seen in the data as a result of simulated 

measurement error. 

 

Figure 6.3: Sample dimensionless temperature data taken at a normalized location of xs
+=1.5. 
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There are several interesting characteristics in this graph.  First, there is the expected lag 

of Δ𝑡+ = 0.5 in the data before any action happens, as the heated material still must transport 

forward a distance of Δ𝑥+ = 0.5.  Second, a temperature rise is observed upon every complete 

cycle.  This step happens every dimensionless time of 𝑡+ = 10 since 𝐿𝑥
+ = 10.  This data is then 

used in the parameter estimation software discussed above in chapter 5.  The software then 

provides the answer that causes the model to most closely mimic the data.  Since Δ𝑥+ = 0.1, 

there are ten parameters to be estimated.  The contact distribution estimated by the parameter 

estimation routine is presented in Figure 6.4. 

 

Figure 6.4: Dimensionless contact distribution comparison. 

 

The actual distribution is uniform over the nominal contact.  The parameter estimation 

method is able to simulate this distribution reasonably well.  This demonstrates that the quality of 
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Table 6.16: Parameter values for contact distribution study. 

 

Physical Parameters 

𝐿𝑥
+ 10 
𝑆𝑡

𝐿𝑦
+ 0.1 

𝑓𝑑
+ 𝑥+  𝑣𝑎𝑟𝑖𝑒𝑠 

Measurement Parameters 

𝑁𝑠 1 

𝑥𝑠
+  0 → 10  

±𝑒𝑟𝑟+ (simulated) ±0.02 

 

Upon running the above cases, raw data was simulated in the same way as the example.  

The dimensionless temperature rise was simulated in all nodes.  A sample of the simulated data 

is provided below in Figure 6.5.  Again, it should be noted that the characteristics mentioned in 

the example case still applies here. 

 

Figure 6.5: Dimensionless data simulated at 1.1 and 6.1 contact lengths. 
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These data were used to estimate the contact distributions as seen below in Figure 6.6.   

 

Figure 6.6: Estimated dimensionless contact distributions for various input distributions. 

The actual distribution is the solid line, and the estimated distribution is the dashed line. 
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It can be noted that, for 𝑥𝑠
+ = 6.1, the estimation is of a noticeably lower quality.  This 

makes sense because it is farther away than the 𝑥𝑠
+ = 1.1 case, which estimated the distribution 

quite well.  The topography of the estimation very nearly matches that of what the input 

distribution actually was.  This shows that the estimation method works well, not at just 

determining the average contact, as the flat distribution would indicate, but also a variety of 

others.  Of particular interest is that the computer could randomly generate a distribution like in 

the fourth case, and the estimation technique could determine that distribution.  This indicates 

that the solution does not bias towards a given result. 

As part of the estimation routine, the sensitivity of the temperature to the parameters is 

computed.  Thus, for each measurement, since there are ten parameters, there are ten sensitivity 

time traces.  These can be used to demonstrate numerically why the quality of the estimation by 

the closer node is better than that of the farther node.  The sensitivities are calculated by: 

 
𝑋𝑛

+ =  𝜕𝜃
+

𝜕𝛽𝑛
 
𝑥+=𝑥𝑠

+

 
6.7 

The sensitivity traces for a sample of the parameters is shown below in Figure 6.7.  The 

sensitivity is significantly higher for the closer node than the further node.  Also, since the model 

is linear in the parameters, the sensitivities do not change with the contact distribution.  This 

graph also only has the sensitivity traces with respect to the first, fourth, seventh, and tenth 

parameters. 

 

Figure 6.7: Selected sensitivity coefficients at measurement locations of 1.1  and 6.1. 
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The above graphs are useful, but because there can be many parameters, it can be very 

difficult to look at the sensitivities by themselves.  However, by taking the RMS difference of the 

contact distributions for each of the estimations, one can arrive at a convenient means of 

determining the preferred measurement location.  This RMS value is achieved by: 

 

Δ𝑓𝑑𝑅𝑀𝑆
+ =  

1

𝑁
  𝛽𝑛 − 𝑓𝑑𝑛

+  
2

𝑁

𝑛=1

 6.8 

This method essentially seeks the minimum RMS difference as a function of measurement 

location.  Thus, by characterizing the quality of the estimation against the input distribution with 

a single value, then the data can be plotted in a convenient form.  This is shown below in Figure 

6.8. 

 

Figure 6.8: Contact distribution RMS residuals, with varying contact distributions. 
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estimation system can return a reasonably accurate result without any form of a priori knowledge 

about the distribution, beyond the nominal contact zone.   

 

Effect of Error 

 The next case is presented to show the effect of the simulated error.  As a means to avoid 

observing ‘wrap around’ effects of the bulk transport, the 
𝑆𝑡

𝐿𝑦
+ term has been increased to ensure 

the data achieves a roughly steady state during the first cycle.  The cases involved will study the 

effects of error on the Δ𝑓𝑑𝑅𝑀𝑆
+  plot.  The physical and measurement parameters as they were used 

for this study are below in Table 6.17. 

 

Table 6.17: Parameter values used in the varied error case. 

 

Physical Parameters 

𝐿𝑥
+ 10 
𝑆𝑡

𝐿𝑦
+ 1 

𝑓𝑑
+ 𝑥+   1 𝑥+ ≤ 1

0 𝑥+ > 1
  

Measurement Parameters 

𝑁𝑠 1 

𝑥𝑠
+  0 → 10  

±𝑒𝑟𝑟+ (simulated) ± 0,0.01,0.02  
 

 The error was simulated once and then applied to each ‘actual condition’ node as 

required.  These error traces are presented below in Figure 6.9.   
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Figure 6.9: Simulated error traces. 

 

 As was done above in Figure 6.8, the contact distribution RMS residual plot was 

generated for each error trace.  This is presented below in Figure 6.10.  This results in roughly 

what one would expect, where the zero-error case has a rather smooth curve, and has the lowest 

valued minimum.  The other traces are rougher, but follow the same basic shape, with larger 

residuals. 

 

Figure 6.10: Contact distribution RMS residual for varied error case. 
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Of particular note from this graph is the behavior of the roll-off from 𝑥𝑠
+ = 0 to 1.  The 

leveling off of information shows that the method, when there is no demonstrable sensitivity to a 

parameter, leaves that parameter at its initial seed value.  The initial seed values used throughout 

this paper were zero (indicative of zero contact).  Thus, because the model neglects axial 

conduction, the first node is only sensitive to the first contact parameter, and highly insensitive to 

all the others.  Thus it predicts a distribution of  1,0,0,0,0,0,0,0,0,0 .  The RMS difference 

between the two is √0.9.  The next node has sensitivity to the first two nodes, and thus has an 

RMS difference of √0.8.  This leads to the important observation that measurements taken where 

the RMS residual is unity indicates zero sensitivity to the estimation parameters, and thus that 

measurement location gives no indication of the contact area.  Further, this roll-off behavior 

seems to be preserved throughout the selected error parameters. 

 

Effect of the Length of the Solid 

This next case is presented to show the effect of the length of the rotating body.  In 

particular, this study involves a fixed number of parameters constant and constant nodal spacing, 

while allowing the overall length to change.  Further, to observe the effect of any wrap around 

effects in the simulation, the Stanton parameter was varied.  The physical and measurement 

parameters as they were used for this study are below in Table 6.18. 

 

Table 6.18: Parameter values used in the total length study. 

 

Physical Parameters 

𝐿𝑥
+  2,5,10  
𝑆𝑡

𝐿𝑦
+  5,1,0.5  

𝑓𝑑
+ 𝑥+   1 𝑥+ ≤ 1

0 𝑥+ > 1
  

Measurement Parameters 

𝑁𝑠 1 

𝑥𝑠
+  0 → 𝐿𝑥

+  
±𝑒𝑟𝑟+ (simulated) ±0.02 

 

The RMS contact distribution residual (Δ𝑓𝑑𝑅𝑀𝑆
+ ) traces of this case are shown below in 

Figure 6.11.  For 
𝑆𝑡

𝐿𝑦
+ = 5, the traces all fall directly on top of each other.  This is what one would 
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anticipate as the result because, as stated above, the Stanton parameter was selected to prevent 

the appearance of wrap around effects.  Thus, the material must be roughly ambient temperature 

by 𝑥+ = 2.  Otherwise, if the data is allowed to wrap around, the quality of the data in the shorter 

material in the contact region is improved over the others because the information from the 

previous iteration is preserved.  As 
𝑆𝑡

𝐿𝑦
+ is allowed to decrease for a given 𝐿𝑥

+, the residuals get 

smaller, and the effective measurement range increases. 

 

Figure 6.11: Contact distribution residual for the total lengths of Lx
+=10, 5, 2. 
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the immediate downstream location that has the best access to information about the action from 

the whole contact.   

 

Effect of the Nominal Contact Zone 

This next case is presented to show the effect of the length of the nominal contact area.  

In particular, this study involves varying the number of parameters while maintaining the same 

nodal spacing and overall length 𝐿𝑥 .  The physical and measurement parameters as they were 

used for this study are below in Table 6.19. 

 

Table 6.19: Parameter values used in the contact length study. 

 

Physical Parameters 

𝐿𝑥
+  2,5,10  
𝑆𝑡

𝐿𝑦
+ 0.1 

𝑓𝑑
+ 𝑥+   1 𝑥+ ≤ 1

0 𝑥+ > 1
  

Measurement Parameters 

𝑁𝑠 1 

𝑥𝑠
+  0 → 𝐿𝑥

+  
±𝑒𝑟𝑟+ (simulated) ±0.02 

 

The critical results of this study are the behavior of the RMS contact residual trace as a 

function of 𝐿𝑥
+.  Presented below in Figure 6.12 are the RMS residual traces for the above 

prescribed values of 𝐿𝑥
+.  As 𝐿𝑥

+ increases, since the total number of nodes was maintained to be 

the same, the number of parameters to be estimated is decreased.  Thus, when 𝐿𝑥
+ = 2, the 

nominal contact consumes half the available surface.  This means that sensors located 

immediately downstream of the contact are still half the total length away from the first node of 

potential contact, thus reducing its sensitivity to the value of the contact there.   
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Figure 6.12: Contact distribution RMS residual for various dimensionless lengths. 

 

Further, as the number of parameters increases, it is obvious that the method itself 

becomes unstable.  A single data trace of 250 points was insufficient to gain any accuracy about 

the topography of the contact when the number of parameters being estimated was 50  𝐿𝑥
+ = 2 .  

This is well shown below in Figure 6.13.  This is the contact distribution as estimated by 𝑥𝑠
+ = 1. 

 

Figure 6.13: Sample contact distribution from the 50 parameter case. 
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It should be noted that, while the average of the estimated distribution is indeed very 

close to 1, it maintains no sense of the actual topography of the input function. 

 

Number of Sensors Study 

This final case study for the 1D, 1B model discusses the preferred positioning of up to 

three sensors worth of data collection.  This is important because, if an experimenter has access 

to multiple measurement devices (as is frequently the case), understanding the interaction of the 

emplacements is essential to getting the best possible results from the measurement construct.  

The physical and measurement parameters as they were used for this study are below in Table 

6.20. 

 

Table 6.20: Parameter values for the multi-sensor system. 

 

Physical Parameters 

𝐿𝑥
+  2,5,10  
𝑆𝑡

𝐿𝑦
+ 1 

𝑓𝑑
+ 𝑥+   1 𝑥+ ≤ 1

0 𝑥+ > 1
  

Measurement Parameters 

𝑁𝑠  1,2,3  
𝑥𝑠

+  0 → 10  
±𝑒𝑟𝑟+ (simulated) ±0.0 

 

Firstly, and most obviously, it is important to know where to measure with a single 

sensor.  Thus, recalling from Figure 6.10, the contact distribution RMS residual for a single 

sensor shows the intuitive result that one would place the sensor immediately downstream of the 

contact. 

 In order to present the interaction of two sensors, the RMS residual data was generated 

for the entire nodal matrix.  This sweep enables a density plot to be generated of the data as it 

varies in both variables.  This can be seen below in Figure 6.14, where the darker the region, the 

smaller the value of the residual.  Most of the graph is showing white, or nearly so.  This is 

indicative of regions of essentially zero sensitivity, where one would not want to take data, if one 



69 

 

was interested in the contact distribution.  It should be noted that the same basic characteristics 

of the above graph are followed, in that the region where good measurements can be achieved is 

roughly between 𝑥𝑠
+ = 1 and 4.  It is notable that the minimum of the data shows that, at least 

computationally, the preferred measurement locations are immediately under the nodes at the 

end of the contact.  This result is not anticipated, but makes sense as long as one recalls that the 

data was generated using zero simulated error.  Thus, maintaining maximum sensitivity to as 

many nodes as possible is the best possible way to estimate the contact distribution. 

 

Figure 6.14: Contact distribution RMS residual density plot. 
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cases, we know that a reasonable set of locations to take the sections is around the downstream 

nodes of contact.  Thus, the sections will be taken at 𝑥𝑠3
+ =  0.8,0.9,1.0,1.1 .  Further, as a result 

of the above data, the amount of data necessary to be generated to come to acceptable 

conclusions has been reduced, and thus data was only generated between 𝑥𝑠
+ = 0 and 2.5.  These 

data are presented below in Figure 6.15. 

 

Figure 6.15: Contact distribution RMS residual plots for various sensor locations. 
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6.3.2 2D, 1B Cases 

Now the cases to be covered are the two dimensional cases.  These cases will give a 

better understanding of how the moving solid behaves in depth.  These cases are built upon the 

understanding developed in the one dimensional cases.  This formulation continues to assume 

that all the heat enters the moving body, but removes the assumption that the material is thin 

enough to assume roughly uniform temperatures in the ‘y’ direction.  The non-dimensional 

formulation is presented above in Table 6.11.  In addition to the required parameters in the 1D, 

1B study, the 2D, 1B study requires the that the thickness 𝐿𝑦
+ be specified.  

 

Numerical Resolution Case 

 This first case again looks at the behavior of the direct model to ensure that the numerical 

method gives physical results that are reasonably converged.  Again, with regard to the 

application of this paper, an exact numerical convergence is not required.  The physical 

parameters used to generate the data are provided in Table 6.21. 

 

Table 6.21: Physical parameters for the 2D numerical resolution study. 

 

Physical Parameters 

𝐿𝑥
+ 10 

𝐿𝑦
+ 0.1 

𝑆𝑡

𝐿𝑦
+ 0.1 

𝑓𝑑
+ 𝑥+   1 𝑥+ ≤ 1

0 𝑥+ > 1
  

 

With the use of these parameters, the temperature solution can be determined.  These 

results are presented below in Figure 6.16.  The first plot in the figure shows the solution with 

100 nodes in the ‘y’ direction at 𝑡+ = 25.  The second plot shows the solution with 200 nodes in 

the ‘y’ direction, again at 𝑡+ = 25.  Both of these cases retain the use of 100 nodes in the ‘x’ 

direction from the previous one dimensional cases.  These plots, qualitatively demonstrate very 

similar behaviors. 
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Figure 6.16: Comparison of dimensionless temperature using 100 and 200 ‘y’ nodes. 

 

This figure shows some very interesting behavior.  As a result of allowing the conductive 

mechanism, one can see that immediately downstream of the source the warmest part of the body 

is actually subsurface.  This result would indicate that for some systems, it may be beneficial to 

measure the temperature downstream of the source and slightly subsurface.  With regard to the 

numerical convergence of the solution, there is no immediately visible difference in the solution 

between the two graphs above.  Thus, for the purposes of this study, 100 nodes in both the ‘𝑥’ 

and ‘𝑦’ directions for the 2D case is sufficiently converged. 

 

Varied ‘y’ Direction measurement location case 

 This case study discusses the effect of the depth of the sensor on the measurement 

quality.  This study is important because when the sensor is placed deeper into the material, the 

data becomes far less sensitive to the contact.  This is because the only means by which energy is 

transferred to the deeper material is through conduction.  Conduction, by and large, is far slower 

than bulk transport.  Also, since it is diffusive in nature, the data becomes less sharp.  Thus, it is 

useful to know how deep one can place the measurement location before the data is useless.  The 

physical and measurement parameters as they were used for this study are below in Table 6.22. 
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Table 6.22: Parameters for the varied ‘y’ measurement location. 

 

Physical Parameters 

𝐿𝑥
+ 10 

𝐿𝑦
+ 1 

𝑆𝑡

𝐿𝑦
+ 1 

𝑓𝑑
+ 𝑥+   1 𝑥+ ≤ 1

0 𝑥+ > 1
  

Measurement Parameters 

𝑁𝑠 1 

𝑥𝑠
+  0 → 2.5  
𝑦𝑠

+  0 → 0.05  
±𝑒𝑟𝑟+ (simulated) ±0.0 

 

 As this case allows both the ‘𝑥’ and ‘y’ positions of the sensor to move, one can now 

determine a field much like those determined above in the multiple sensors in 1D case.  This 

field will give the preferred location of a single sensor in two dimensions.  Further, it will give 

information to the effect of how deep one can place the sensor before there is no useable 

information.  The RMS residual plot of the one sensor in two dimensions is shown below in 

Figure 6.17. 

 

Figure 6.17: Contact distribution RMS residual plot for one sensor in two dimensions. 
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With the relatively large Stanton number, the surface nodes, while providing the smallest 

residuals in the field, have a very limited zone where the results are good.  However, these nodes 

fall off quickly, whereas the subsurface nodes, because they are not directly exposed to 

convection at the surface, retain their energy longer, and thus are more forgiving with regard to 

the location of the sensor in the ‘x’ direction.   

6.4 Two Body Problems 

The two body problems bring added physical realism and complexity to the problem.  

That said, the major issues and trends as presented in the one body problems do not change.  As 

such, the addition of these new difficulties enables the application of the lessons learned above to 

extend the understanding of the more physically realistic situations.  The major aspect that has 

now changed is that one must now account for the partition of heat.  How one divides this is not 

a trivial matter, and was addressed in chapter 4. 

6.4.1 1D, 2B Cases 

Now the case to be covered is the two body case.  This case will give a better 

understanding of how the two solids interact.  The system, as derived in chapter 3, is the ‘pin-on-

disk’ arrangement.  The non-dimensional formulation is presented above in Table 6.12.  This 

implies that the nominal contact area is the whole extent of the static body.  Thus, 𝐿𝑥1
= 𝐿𝑐𝑜𝑛 , 

and thus we can continue to use 𝐿𝑥2
= 𝐿𝑥 .  These cases are built upon the understanding 

developed in the one dimensional, one body cases.  Both bodies are examined and compared.  

The parameters used to generate the case are presented below in Table 6.23. 
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Table 6.23: Parameters for the 1D, 2B sensor study. 

 

Physical Parameters 

𝐿𝑥
+ 10 
𝑆𝑡

𝐿𝑦2

+  0.5 

𝑓𝑑
+ 𝑥+   1 𝑥+ ≤ 1

0 𝑥+ > 1
  

Measurement Parameters 

𝑁𝑠 1 

𝑥𝑠
+  

 0 → 1 𝑏𝑜𝑑𝑦 1
 0 → 10 𝑏𝑜𝑑𝑦 2

  

±𝑒𝑟𝑟+ (simulated) ±0.0 

 

As this case allows the sensor position to be in either body, one can now compare the 

quality of the measurement in the static body with that of the moving body.  This gives two RMS 

contact distribution residual traces.  The two traces can be plotted together to give a comparison 

of their utility.  The Δ𝑓𝑑𝑅𝑀𝑆
+  plots of a single sensor in the different bodies are shown in Figure 

6.18.  The geometry of the system is shown directly above the plot in the figure.  As a means of 

comparing the two residual plots, they are plotted against linear axes rather than semi-

logarithmic scales as done in the previous cases.  

 

1  

2, 𝑉 → 

 

Figure 6.18: Contact distribution RMS residual plot for two bodies with geometry shown. 
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 These plots clearly demonstrate that the static body has a relatively poor capability to 

estimate the contact distribution compared to the moving body at its preferred location 

immediately downstream of the contact.  However, the residuals do get reasonably small.  This 

would seem to be because advection preserves the information more exactly.  Further, if one 

looks at the sensitivity coefficients in the two regions, it shows that for the preferred nodes in 

either body, the node in the moving body sees the information from 𝑥𝑠
+ = 0 sooner than the 

static body.  This is demonstrated in Figure 6.19.   

 

Figure 6.19: Sensitivity coefficients for each body at their preferred location. 

Each trace is for the parameter with which its communication is weakest. 

 

The communication in the static body is slower, and thus the information is less well 

transmitted.  Interestingly, this slow behavior was useful in the two dimensional case because the 

information is preserved as the body advects along.  That allowed sensors to be placed much 

further away from the contact, as long as they were appropriately subsurface, thus making the 

measurement system more forgiving. 
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6.24.  Of particular note is that, for this case a randomly generated contact distribution shows 

that the method can still estimate contact distributions in this complex case. 

 

Table 6.24: Parameters for the demonstration of the 2D, 2B estimation. 

 

Physical Parameters 

𝑕 100
𝑊

𝑚2 ∙ 𝐾
 

𝑇∞  0𝑜𝐶 

𝑐𝐶𝑢  390
𝐽

𝑘𝑔 ∙ 𝐾
 

𝜌𝐶𝑢  8930
𝑘𝑔

𝑚3
 

𝑘𝐶𝑢  
400

𝑊

𝑚 ∙ 𝐾
 

𝐿𝑥  1 𝑚 

𝐿𝑦1
 0.1 𝑚 

𝐿𝑦2
 0.1 𝑚 

𝑞𝑓𝑟𝑖𝑐  1000000 𝑊 

𝑉 10
𝑚

𝑠
 

𝑇0 0𝑜𝐶 

𝐿𝑐𝑜𝑛  0.1 𝑚 

Dimensionless Parameters 

𝑃𝑒 8700 

𝑆𝑡 2.9 × 10−6 

𝐿𝑥
+ 10 

𝐿𝑦2
+  1 

𝑓𝑑
+ 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 

Measurement Parameters 

𝑁𝑠 1 

𝑥𝑠 14 𝑐𝑚 

𝑦𝑠 3 𝑚𝑚 

𝑒𝑟𝑟 ±1𝑜𝐶 

 

 These parameters were selected such that it was assumed that the first millimeter of 

material was inaccessible for measurement (the first millimeter would be the top row of nodes) 

to simulate restricted access to the frictional surface.  Thus, the measurements needed to be taken 

further downstream and not too deep, so as to have good sensitivity to the contact distribution 

parameters.  Thus, the measurement was selected to be at a nodal position just a little under 5 

centimeters downstream, and 3 millimeters deep.  However, provided for comparison is the 

estimation with the sensor at the preferred measurement location.  Both were simulated 
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independently, and thus had differently generated contact distribution data.  The estimated 

distributions are presented below in Figure 6.20. 

 

 

Figure 6.20: Actual and estimated contact distributions for the 2D, 2B demonstration. 

The solid line is the actual contact, and the dashed line is the estimated contact. 

 

From this image, one sees that both measurement locations were able to reasonably back 

out the trends of the contact distribution.  This success shows that the knowledge gained from the 

simpler models is very useful in selecting the measurement criteria in more complex models.  

This case helps validate the understanding gained from the simpler studies performed earlier. 
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7 Recommendations and Conclusions 

Here is a final summary of the work with final conclusions and recommendations for 

future work. 

7.1 Summary 

In summary, a means by which a time invariant real area of contact and surface 

temperature could be estimated using thermal measurements in 1D and 2D systems was 

developed.  This technique utilized formulating a heat transfer model to simulate up to a two 

dimensional, two body sliding system.  This estimation method was then used to provide 

experimental design guidance regarding measurement location for the estimation of the real 

contact area. 

The thesis further covers the conversion of the above heat transfer model into a 

numerical, modified cellular automata technique.  Once the rules for the modified cellular 

automata were developed, the inverse mathematics was covered to provide an understanding as 

to the method used to estimate the contact distribution.  This method was then used on a variety 

of case studies to arrive at conclusions regarding the capabilities of this method to estimate the 

contact distribution. 

7.2 Conclusions 

This thesis has demonstrated that the preferred sensor location in the one and two 

dimensional systems does not change significantly when the contact distribution changes.  Also, 

for the two dimensional estimations, the placement of the sensor was shown to be more forgiving 

if it was placed somewhat subsurface, as the information is preserved longer because the only 

transport mechanisms are conduction and advection.  The addition of error to the data did not 

change the basic trends observed in the preferred location, but it did reduce the quality of the 

estimation of the contact distribution.  Finally, it was shown that, while the moving body of the 

system was the preferred body to instrument, if necessary, the static body could be instrumented 

to achieve a reasonable approximation of the contact area.   

This paper also utilized the two dimensional, two body case as an opportunity to 

demonstrate that the trends gleaned from simplified models can still be applied as the complexity 

increases.  It showed that, through analysis of the residuals plots from simpler cases, information 
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could be used to select the preferred measurement location, as well as acceptable measurement 

locations in the event that the preferred location is, for whatever reason, not accessible. 

7.3 Recommendations 

The success of the demonstration with the two dimensional, two body case indicates that 

the techniques used to develop these results shows promise and that there is significant future 

study that could be done that could provide useful insight.  Of primary interest would be 

allowing the contact distribution to evolve in time.  This investigation would significantly 

increase the number of parameters involved, but would model certain aspects of reality better.  

Secondly, and also of significant importance, would be an experimental validation of the 

modeling done within this paper.  As this work was entirely computational, the question still 

remains about the full behavior in the real world.  This work would likely best be done after the 

extension of this work into the time dependant contact distribution.  Thirdly, and of particular 

interest to this analysis, would be the inclusion of further multi-physical modeling into the 

modified cellular automata method.  This would imply the inclusion of physical processes such 

as chemical effects, mechanical vibrations, mechanics of solids, and electrical current flow 

through the contact.  Each of these provides a potential benefit in terms of more accurate 

modeling of the system.  These benefits add potential insight into the contact distribution. 

While the above mentioned recommendations are probably the most important, there is 

further follow on work that could provide interesting information as well.  These include the 

extension of the model into three dimensions, studying the effect of property ratios, and having 

multiple sensors in the higher dimensional systems.  These all grant further capability to estimate 

the contact distribution.  In particular, with regard to more experimental applications, the 

physical effects of thee dimensional systems or dissimilar materials can have great implications 

on the thermal field evolved in the solid.  The addition of additional sensors in two or three 

dimensional systems can provide a great informational boon to the experimenter. 

To conclude, this work has provided interesting insights to and developed trends 

regarding the estimation of the contact distribution in sliding systems using temperature 

measurements.  It has further laid a ground work for a large body of immediate follow on work 

that could prove fruitful. 
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Appendix 

Parameter Estimation Program: 

function [beta,X,U,t,RMSdT]=paramestimator1_5(betainit,... 
    model,Data,cols,maxRMSdelta,step,alpha); 

  
% general Least Squares parameter estimation program v1.0: 

  
% betainit=initialization values for each beta 

  
% model=function(beta) that produces: 
%                   node.H=hook up coefficients 
%                   node.C=function(t,U) thermal capacities 
%                   node.S=function(t,U) source terms 

  
% model_init=function() that produces 
%                   time=vector of time values corresp. to data 
%                   Y=data 
%                   U0=initial condition for ALL nodes 

  
% cols=which nodes (in order) that make up the data vector 

  
% maxRMSdelta=maximum value the RMS difference can ... 
%               be, in otherwords, convergence criteria 

  
%% Defining loop values (norm) 

  
% parameter initial estimates 
beta=betainit; 

  
% load time vector, data, initial conditions 
[time,U]=model(beta); 

  
% percent change for numerical differentiation in beta  
%step=.05; 
Dat=Data; 
clear Data; 
Data=[]; 
    for k2=1:length(cols); 
        Data=[Data;Dat(:,k2)]; 
    end 
Data=reshape(Data,[],1); 

  
% initialize sensitivity matrix 
X=zeros(length(Data),length(beta)); 

  
%% construction of while loop 

  
% initialize loop variables 
condition=1; 
Sos=inf; 
count=0; 
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%% recast data and solve 

     
    % execute model 
    [t,U]=model(beta); 

  
    %recast relevant model data into single vector 
    clear Ur 
    Ur=[]; 
    for k2=1:length(cols); 
        Ur=[Ur;U(:,cols(k2))]; 
    end 

     
%% loop for all beta 

     
    for k=1:length(beta); 

         
        % set up perturbed parameters 
        betap=beta; 
        betap(k)=beta(k)+step(k); 

         
        % execute model for betap 
        [tp,Up]=model(betap); 

         
        %recast relevant model data into single vector 
        clear Upr 
        Upr=[]; 
        for k2=1:length(cols); 
            Upr=[Upr;Up(:,cols(k2))]; 
        end 

         
        % create sensitivity data by numerical differentiation 
        X(:,k)=(Upr-Ur)/(step(k)); 
    end 

     
%% solution for new beta's 
%   use regularization 

  
% condition will be a boolean 1/0 
while condition; 

  
        % execute model 
    [t,U]=model(beta); 

  
    %recast relevant model data into single vector 
    clear Ur 
    Ur=[]; 
    for k2=1:length(cols); 
        Ur=[Ur;U(:,cols(k2))]; 
    end 

     
    betaold=beta; 
%     beta=betaold+(X'*X)\X'*(Data-Ur); 
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    Omega=eye(length(beta));%diag(diag(X'*X)); 
    beta=(X'*X+alpha*Omega)\... 
                ((X'*X)*betaold+X'*(Data-Ur)); 

  
%% looping condition 

  
    % check for any nonphysical beta results 
%     if any(or(beta<-seed,beta>1+seed)); 
%         beta(find(beta<-seed))=rand(1); 
%         beta(find(beta>1+seed))=1-rand(1); 
%         condition=1; 

     
    % check convergence if no nonphysical beta's 
        % use sum of squares 
%     else 
        Sosp=Sos; 
        Sos=sum((Ur-Data).^2); 
        if Sosp<Sos; 
            beta=betaold; 
            alpha=alpha*10; 
            condition=1; 
            Sos=Sosp; 
        else 
            condition=Sos>length(Data)*maxRMSdelta^2; 
            alpha=.1*alpha; 
        end 
%     end 

     
    % ensure a few iterations have been completed 
    if count<2; 
        condition=1; 
    end 

     
    % print sum of squares to screen 
%     Sos 

  
    RMSdT=sqrt(Sos/length(Data)); 

     
    if count>10; 
        condition=0; 
        RMSdT 
    end 

     
    % augment counter and print to screen 
    count=count+1; 

     
    % print the beta variable to screen 
%     beta 
%     alpha 
end 
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1D, 1B Direct Model: 

function [t,T]=model_1D1B(fd,qfric,T0,sys,V,tfin); 

  
%% 

  
% sys.c=1; 
% sys.rho=1; 
% sys.Ly=.1; 
% sys.h=1; 
% sys.T_inf=0; 
% sys.dx=.01; 
% sys.L=1; 
% qfric=1000; 
% Nt=length(0:sys.dx:sys.L); 
% Ncon=floor(.1*Nt); 
% fd=(1/(Ncon*sys.dx))*ones(1,Ncon);%[0,.5,0,0,.1,.2,.1,.1,0,0]; 
% T0=zeros(1,Nt); 
% tfin=.25; 
% V=10; 

  
qdp=qfric*fd; 
T_k=T0; 
Nx=1; 
dt=Nx*sys.dx/V; 

  
%% 
T=T_k; 
for k=dt:dt:tfin; 
    [T_k]=source_1D(T_k,qdp,sys,dt); 
    [T_k]=advection_1D(T_k,Nx); 
    T=[T;T_k]; 
end 
t=0:dt:tfin; 

 

2D, 1B Direct Model Driver: 

function [t,T]=model_2D1B_driver(fd,qfric,T0,sys,V,tfin); 

  
% sys.c=1; 
% sys.rho=1; 
% sys.Ly=.1; 
% sys.h=1; 
% sys.T_inf=0; 
% sys.dx=.01; 
% sys.L=1; 
% sys.dy=.01; 
% sys.alpha=10^(-4); 
% qfric=1000; 
% fd=ones(1,10)/(10*sys.dx);%[0,.5,0,0,.1,.2,.1,.1,0,0]; 
% Nx=length(0:sys.dx:sys.L); 
% Ny=length(0:sys.dy:sys.Ly); 
% T0=zeros(Ny,Nx); 
% tfin=.25; 
% V=10; 
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fd=reshape(fd,1,[]); 

  
[t,theta]=model_2D1B(fd,qfric,T0,sys,V,tfin); 

  
[n,m,p]=size(theta); 

  
for k1=1:n; 
    T((1+(k1-1)*m):(k1*m),:)=theta(k1,:,:); 
end 

  
T=T'; 

 

2D, 1B Direct Model: 

function [t,T]=model_2D1B(fd,qfric,T0,sys,V,tfin); 

  
%% 

  
% sys.c=1; 
% sys.rho=1; 
% sys.Ly=.01; 
% sys.h=1; 
% sys.T_inf=0; 
% sys.dx=.01; 
% sys.L=1; 
% sys.dy=.0001; 
% sys.alpha=10^(-4); 
% qfric=1000; 
% fd=ones(1,10)/(10*sys.dx);%[0,.5,0,0,.1,.2,.1,.1,0,0]; 
% Nx=length(0:sys.dx:sys.L); 
% Ny=length(0:sys.dy:sys.Ly); 
% T0=zeros(Ny,Nx); 
% tfin=.25; 
% V=10; 

  
qdp=qfric*fd; 
T_k=T0; 
Nadv=1; 
dt=Nadv*sys.dx/V; 

  
%% 
T=T_k; 
t=0:dt:tfin; 
for k=2:length(t); 
    [T_k]=advection_2D(T_k,Nadv); 
    [T_k]=source_2D(T_k,qdp,sys,dt); 
    [T_k]=conv_2D(T_k,qdp,sys,dt); 
    [T_k]=diff_1D(sys.alpha,sys.dy,dt,T_k); 
    T(:,:,k)=T_k; 
end 

 

  



90 

 

1D, 2B Direct Model Driver: 

function [t,T]=model_1D2B_driver(fd,qfric,T10,T20,sys,V,tfin); 

  
% material 1 is static 
% material 2 is moving 

  
% sys.dx=0.01; 
% sys.h=1; 
% sys.T_inf=0; 
%  
% sys.mat1.c=1; 
% sys.mat1.rho=1; 
% sys.mat1.Ly=.1; 
% sys.mat1.L=.1; 
% sys.mat1.alpha=10^(-4); 
%  
% sys.mat2.c=1; 
% sys.mat2.rho=1; 
% sys.mat2.Ly=.1; 
% sys.mat2.L=1; 
% sys.mat2.alpha=10^(-4); 
%  
% qfric=1; 
% fd=ones(1,10)/(10*sys.dx); 
% Nx1=length(0:sys.dx:(sys.mat1.L-sys.dx)); 
% T10=zeros(1,Nx1); 
% Nx2=length(0:sys.dx:sys.mat2.L); 
% T20=zeros(1,Nx2); 
%  
% tfin=.25; 
% V=10; 

  
[t,T1,T2]=model_1D2B(fd,qfric,T10,T20,sys,V,tfin); 

  
T=[T2,T1]; 

 

1D, 2B Direct Model: 

function [t,T1,T2]=model_1D2B(fd,qfric,T10,T20,sys,V,tfin); 

  
%% 

  
% material 1 is static 
% material 2 is moving 

  
% sys.dx=0.01; 
% sys.h=1; 
% sys.T_inf=0; 
%  
% sys.mat1.c=1; 
% sys.mat1.rho=1; 
% sys.mat1.Ly=.1; 
% sys.mat1.L=.1; 
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% sys.mat1.alpha=10^(-4); 
%  
% sys.mat2.c=1; 
% sys.mat2.rho=1; 
% sys.mat2.Ly=.1; 
% sys.mat2.L=1; 
% sys.mat2.alpha=10^(-4); 
%  
% qfric=1; 
% fd=ones(1,10)/(10*sys.dx); 
% Nx1=length(0:sys.dx:(sys.mat1.L-sys.dx)); 
% T10=zeros(1,Nx1); 
% Nx2=length(0:sys.dx:sys.mat2.L); 
% T20=zeros(1,Nx2); 
%  
% tfin=.25; 
% V=10; 

  
qdp=qfric*fd; 
T1_k=T10; 
T2_k=T20; 
Nadv=1; 
dt=Nadv*sys.dx/V; 

  
mat1.rho=sys.mat1.rho; 
mat1.c=sys.mat1.c; 
mat1.Ly=sys.mat1.Ly; 
mat1.h=sys.h; 
mat1.T_inf=sys.T_inf; 

  
mat2.rho=sys.mat2.rho; 
mat2.c=sys.mat2.c; 
mat2.Ly=sys.mat2.Ly; 
mat2.h=sys.h; 
mat2.T_inf=sys.T_inf; 

  
%% 
T1=T1_k; 
T2=T2_k; 
t=0:dt:tfin; 

  
qdp=reshape(qdp,1,[]); 

  
for k=dt:dt:tfin; 
    [qdp1,qdp2]=source_partition_1D(T1_k,T2_k,qdp,sys); 

     
    % for body 1 
    [T1_k]=source_1D(T1_k,qdp1,mat1,dt); 
    [T1_k]=diff_1D(sys.mat1.alpha,sys.dx,dt,T1_k'); 
        T1_k=T1_k'; 
    T1=[T1;T1_k]; 

     
    % for body 2 
    [T2_k]=source_1D(T2_k,qdp2,mat2,dt); 
    [T2_k]=advection_1D(T2_k,Nadv); 
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    T2=[T2;T2_k]; 
end 

 

2D, 2B Direct Model Driver: 

function [t,T]=model_2D2B_driver(fd,qfric,T10,T20,sys,V,tfin); 

  
%% 

  
% material 1 is static 
% material 2 is moving 

  
% sys.dx=0.01; 
% sys.h=1; 
% sys.T_inf=0; 
% sys.dy=0.001; 
%  
% sys.mat1.c=1; 
% sys.mat1.rho=1; 
% sys.mat1.Ly=.1; 
% sys.mat1.L=.1; 
% sys.mat1.alpha=10^(-4); 
%  
% sys.mat2.c=1; 
% sys.mat2.rho=1; 
% sys.mat2.Ly=.1; 
% sys.mat2.L=1; 
% sys.mat2.alpha=10^(-4); 
%  
% qfric=1; 
% fd=ones(1,10)/(10*sys.dx); 
% Nx1=length(0:sys.dx:(sys.mat1.L-sys.dx)); 
% Ny1=length(0:sys.dy:(sys.mat1.Ly)); 
% T10=zeros(Ny1,Nx1); 
% Nx2=length(0:sys.dx:sys.mat2.L); 
% Ny2=length(0:sys.dy:(sys.mat2.Ly)); 
% T20=zeros(Ny2,Nx2); 
%  
% tfin=.25; 
% V=10; 

  
fd=reshape(fd,1,[]); 

  
[t,theta1,theta2]=model_2D2B(fd,qfric,T10,T20,sys,V,tfin); 

  
[n1,m1,p1]=size(theta1); 
[n2,m2,p2]=size(theta2); 

  
for k1=1:n1; 
    T1((1+(k1-1)*m1):(k1*m1),:)=theta1(k1,:,:); 
end 
T1=T1'; 
for k2=1:n2; 
    T2((1+(k2-1)*m2):(k2*m2),:)=theta2(k2,:,:); 

https://www.bestpfe.com/
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end 
T2=T2'; 

  
T=[T2,T1]; 

  

2D, 2B Direct Model: 

function [t,T1,T2]=model_2D2B(fd,qfric,T10,T20,sys,V,tfin); 

  
%% 

  
% material 1 is static 
% material 2 is moving 

  
% sys.dx=0.01; 
% sys.h=1; 
% sys.T_inf=0; 
% sys.dy=0.001; 
%  
% sys.mat1.c=1; 
% sys.mat1.rho=1; 
% sys.mat1.Ly=.1; 
% sys.mat1.L=.1; 
% sys.mat1.alpha=10^(-4); 
%  
% sys.mat2.c=1; 
% sys.mat2.rho=1; 
% sys.mat2.Ly=.1; 
% sys.mat2.L=1; 
% sys.mat2.alpha=10^(-4); 
%  
% qfric=1; 
% fd=ones(1,10)/(10*sys.dx); 
% Nx1=length(0:sys.dx:(sys.mat1.L-sys.dx)); 
% Ny1=length(0:sys.dy:(sys.mat1.Ly)); 
% T10=zeros(Ny1,Nx1); 
% Nx2=length(0:sys.dx:sys.mat2.L); 
% Ny2=length(0:sys.dy:(sys.mat2.Ly)); 
% T20=zeros(Ny2,Nx2); 
%  
% tfin=.25; 
% V=10; 

  
qdp=qfric*fd; 
T1_k=T10; 
T2_k=T20; 
Nadv=1; 
dt=Nadv*sys.dx/V; 

  
mat1.rho=sys.mat1.rho; 
mat1.c=sys.mat1.c; 
mat1.Ly=sys.mat1.Ly; 
mat1.h=sys.h; 
mat1.T_inf=sys.T_inf; 
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mat1.dy=sys.dy; 

  
mat2.rho=sys.mat2.rho; 
mat2.c=sys.mat2.c; 
mat2.Ly=sys.mat2.Ly; 
mat2.h=sys.h; 
mat2.T_inf=sys.T_inf; 
mat2.dy=sys.dy; 

  
%% 
T1=T1_k; 
T2=T2_k; 
t=0:dt:tfin; 

  
qdp=reshape(qdp,1,[]); 

  
for k=2:length(t); 
    [qdp1,qdp2]=source_partition_2D(T1_k,T2_k,qdp,sys); 

     
    % for body 1 
    [T1_k]=source_2D(T1_k,qdp1,mat1,dt); 
    [T2_k]=conv_2D(T2_k,qdp1,mat1,dt); 
        %x diff 
    [T1_k]=diff_1D(sys.mat1.alpha,sys.dx,dt,T1_k'); 
        T1_k=T1_k'; 
        %y diff 
    [T1_k]=diff_1D(sys.mat1.alpha,sys.dy,dt,T1_k); 
    T1(:,:,k)=T1_k; 

     
    % for body 2 
    [T2_k]=advection_2D(T2_k,Nadv); 
    [T2_k]=source_2D(T2_k,qdp2,mat2,dt); 
    [T2_k]=conv_2D(T2_k,qdp2,mat2,dt); 
    [T2_k]=diff_1D(sys.mat2.alpha,sys.dy,dt,T2_k); 
    T2(:,:,k)=T2_k; 
end 

 

Surface Temperature: 

function Ts=surfaceT_2D(sys,qfric,fd,T1,T2,t); 

  
k1=sys.mat1.alpha*sys.mat1.rho*sys.mat1.c; 
k2=sys.mat2.alpha*sys.mat2.rho*sys.mat2.c; 
Ly1=sys.dy; 
Ly2=sys.dy; 

  
Ncon=length(fd); 

  
for k=1:length(t); 

  
Ts(k,:)=(qfric*fd+(2*k1/Ly1)*T1(1,1:Ncon,k)+(2*k2/Ly2)*T2(1,1:Ncon,k))/... 
        ((2*k1/Ly1)+(2*k2/Ly2)); 
end 
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2D Advection Rule: 

function [T_kp1]=advection_2D(T_k,Nadv); 

  
% T_k is a matrix of values in 2D arrangement 
%       - each row should be a y index 
%       - each column is an x index 
% Nx is the number of nodes shifted 
%       - should normally be 1 

  
[J,I]=size(T_k); 
T_kp1=zeros(J,I); 
for j=1:J; 
    T_kp1(j,:)=advection_1D(T_k(j,:),Nadv); 
end 

 

1D Advection Rule: 

function [T_kp1]=advection_1D(T_k,Nadv); 

  
% T_0 is the input vector 
%       - the book keeping must be such that node i talks to i-1 & i+1 
%       - wrapped condition applies, so node I talks to node 1 
% Nx is the number of nodes to be shifted in this step 
%       - generally speaking, it should be 1 

  
T_k=reshape(T_k,1,length(T_k)); 
T_kp1=[T_k(end-(Nadv-1):end),T_k(1:end-Nadv)]; 

 

Diffusion Rule: 

function U=diff_1D(alpha,delta,dt,U0); 

  
dy=delta; 
%alpha=sys.alpha; 

  
[n,m]=size(U0); 

  
Fo=alpha*dt/(dy^2); 

  
offdiag=-Fo*ones(n-1,1); 
diag=1+2*Fo*ones(n,1); 
diag(1)=1+Fo; 
diag(end)=1+Fo; 

  
for k=1:m; 
    U(:,k)=tridiagonal(diag,offdiag,offdiag,U0(:,k)); 
end 
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Tridiagonal Solver (source uncertain): 

function x = tridiagonal(diag,lower,upper,rhs) 
% tridiagonal: solves a tridiagonal matrix. 
%  
% Syntax: x = tridiagonal(diag,lower,upper,rhs) 
%            
% Input:    diag = diagonal vector of length N 
%           lower = lower diagonal vector of length N-1 
%           upper = upper diagonal vector of length N-1 
%           rhs = right hand side vector of length N 
% 
% Output:   x = solution vector of length N 
% 

  
%% --- determine the number of equations 
N = length(diag); 

  
%% --- eliminate the lower diagonal 
for i = 2:N 
   factor = lower(i-1)/diag(i-1); 
   diag(i) = diag(i)-upper(i-1)*factor; 
   rhs(i) = rhs(i)-rhs(i-1)*factor; 
end 

  
%% --- back substitute 
x(N) = rhs(N)/diag(N); 
for i = N-1:-1:1 
   x(i) = ( rhs(i)-upper(i)*x(i+1) ) / diag(i); 
end 

 

2D Source: 

function [T_kp1]=source_2D(T_k,qdp,sys,dt); 

  
% T_k is a matrix of values in 2D arrangement 
%       - each row should be a y index 
%       - each column is an x index 

  
% sys.c=1; 
% sys.rho=1; 
% sys.Ly=.01; 
% sys.h=.000001; 
% sys.T_inf=0; 
% sys.dx=.01; 
% sys.L=1; 
% sys.dy=.0001; 
% sys.alpha=10^(-4) 
% qfric=1000; 
% fd=.1*ones(1,10);%[0,.5,0,0,.1,.2,.1,.1,0,0]; 
% Nx=length(0:sys.dx:sys.L); 
% Ny=length(0:sys.dy:sys.Ly); 
% T0=zeros(Ny,Nx); 
% tfin=2; 
% V=10; 
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Ncon=length(qdp); 

  
T_kp1=T_k; 

  
T_kp1(1,1:Ncon)=(qdp/(sys.c*sys.rho*sys.dy))*dt+T_k(1,1:Ncon); 

 

1D Source: 

function [T_kp1]=source_1D(T_k,qdp,sys,dt); 

  
%% init T_kp1 

  
T_k=reshape(T_k,1,length(T_k)); 
qdp=reshape(qdp,1,length(qdp)); 
T_kp1=zeros(size(T_k)); 

  
%% source locus 

  
Ncon=length(qdp); 

  
%% sys breakout 

  
T_inf=sys.T_inf; 
h=sys.h; 
Ly=sys.Ly; 
rho=sys.rho; 
c=sys.c; 

  
%% source+conv region solution 

  
T_kp1(1:Ncon)=T_inf+qdp/h+... 
        (T_k(1:Ncon)-T_inf-qdp/h)*exp(-dt*h/(rho*c*Ly)); 

     
%% no source region solution 

  
T_kp1((Ncon+1):end)=T_inf+... 
        (T_k((Ncon+1):end)-T_inf)*exp(-2*dt*h/(rho*c*Ly)); 

 

2D Convection: 

function [T_kp1]=conv_2D(T_k,qdp,sys,dt); 

  
% T_k is a matrix of values in 2D arrangement 
%       - each row should be a y index 
%       - each column is an x index 

  
% sys.c=1; 
% sys.rho=1; 
% sys.Ly=.1; 
% sys.h=1; 
% sys.T_inf=0; 
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% sys.dx=.01; 
% sys.L=1; 
% sys.dy=.01; 
% sys.alpha=10^(-4) 
% qfric=1000; 
% fd=.1*ones(1,10);%[0,.5,0,0,.1,.2,.1,.1,0,0]; 
% Nx=length(0:sys.dx:sys.L); 
% Ny=length(0:sys.dy:sys.Ly); 
% T0=zeros(Ny,Nx); 
% tfin=2; 
% V=10; 

  
[n,m]=size(T_k); 

  
tau=sys.rho*sys.c*sys.dy/sys.h; 

  
Ncon=length(qdp); 

  
T_kp1=T_k; 

  
if m>Ncon; 
    T_kp1(1,(Ncon+1):end)=T_k(1,(Ncon+1):end)*exp(-dt/tau); 
end 
T_kp1(end,:)=T_k(end,:)*exp(-dt/tau); 

 

2D Source Partition: 

function [qdp1,qdp2]=source_partition_2D(T1_k,T2_k,qdp,sys); 

  
Ncon=length(qdp); 

  
k1=sys.mat1.alpha*sys.mat1.rho*sys.mat1.c; 
k2=sys.mat2.alpha*sys.mat2.rho*sys.mat2.c; 
Ly1=sys.dy; 
Ly2=sys.dy; 

   
qdp1=(((k1/Ly1)/((k1/Ly1)+(k2/Ly2)))*... 
    (qdp+(2*k2/Ly2)*(T2_k(1,1:Ncon)-T1_k(1,1:Ncon)))).*abs(sign(qdp)); 
qdp2=qdp-qdp1; 

 

1D Source Partition: 

function [qdp1,qdp2]=source_partition_1D(T1_k,T2_k,qdp,sys); 

  
Ncon=length(qdp); 
k1=sys.mat1.alpha*sys.mat1.rho*sys.mat1.c; 
k2=sys.mat2.alpha*sys.mat2.rho*sys.mat2.c; 
Ly1=sys.mat1.Ly; 
Ly2=sys.mat2.Ly; 

  
qdp1=(((k1/Ly1)/((k1/Ly1)+(k2/Ly2)))*... 
    (qdp+(2*k2/Ly2)*(T2_k(1:Ncon)-T1_k(1:Ncon)))).*abs(sign(qdp)); 
qdp2=qdp-qdp1; 


