

2.6 Analyse du fiche historique :

2.6.1 Analyse de Pareto pour toute les machines de l'entreprise :

Dans cette partie on va appliquer l'analyse PARETO pour toutes les machines de l'entreprise pendant les 3 mois (voir tableau 4 et Annexe 2) :

Tableau 4 : Mode de défaillance et le temps d'arrêt pour l'ensemble des machines

MACHINE	T.A (min)	Pourcentage	Pourcentage cumulé
TUBE 3	1112	27,79%	27,79%
TUBE 2	735	18,37%	46,15%
TUBE 1	731	18,27%	64,42%
REFENDEUSE	703	17,57%	81,98%
PROFILEUSE 2	194	4,85%	86,83%
NERVESCO	163	4,07%	90,90%
PANNE	130	3,25%	94,15%
POND ROULANT	92	2,30%	96,45%
RIDELLE	33	0,82%	97,28%
PROFILEUSE 1	30	0,75%	98,03%
PLANE	27	0,67%	98,70%
PROFILEUSE 4	19	0,47%	99,18%
PRESSE	18	0,45%	99,63%
PROFILEUSE 5	15	0,37%	100,00%
ONDULEUSE	0	0,00%	100,00%
PROFILEUSE 3	0	0,00%	100,00%

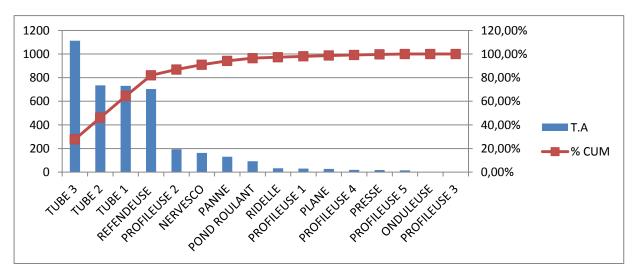


Figure 27 : Diagramme de PARETO des durées de pannes de toutes les machines

Lesson Les Commentaire :

D'après ce diagramme nous constatons que les machines les plus critiques durant Les 3 mois : Février et Mars et Avril, qui dépassent les 80% sont :

- La machine Tube 1.
- La machine Tube 2.
- La machine Tube 3.

2.6.2 Analyse Pareto des causes des pannes pour les machines critiques :

L'analyse Pareto effectuer pour toute les machines de l'entreprise nous a permet de classer par ordre d'importance des arrêts des machines à partir d'une base connaissance d'une période 3 mois (Février, Mars et Avril). Les machines critiques sont (voir tableau 5, 6 et 7):

a) Machine tube I

Tableau 5 : Mode de défaillance et le temps d'arrêt pour la machine tube I

Panne	TA	Pourcentage	Cumulée
PANNE DE L'ENCODEUR	254,00	21,77%	21,77%
FABRIQUATION D'UN MECANISME DE MONTAGE ENCODEUR	180,00	15,42%	37,19%
PANNE MECANIQUE DE COUPE	180,00	15,42%	52,61%
PANNE POMPE DE LUBRIFICATION	140,00	12,00%	64,61%
PANNE ELECTRIQUE DE LA POMPE DU RESERVE	85,00	7,28%	71,89%
CONTRÔLE ROULEMENTSDU PALIER N°10	68,00	5,83%	77,72%
FIXATION DES AXES	56,00	4,80%	82,52%
PANNE DE LA TABLE	35,00	3,00%	85,52%
PANNE ELECTRIQUE DE LA MACHINE	28,00	2,40%	87,92%
PANNE MECANIQUE DU COURROIE	28,00	2,40%	90,32%
PANNE ELECTRIQUE POSTE SOUDAGE	25,00	2,14%	92,46%
CASSE CARDONE	20,00	1,71%	94,17%
PANNE ELECTRIQUE DE POSTE DE FIL DE ZING	20,00	1,71%	95,89%
VARIATION DE LONGEUR DE LA BARRE	20,00	1,71%	97,60%
FIXATON DU CARDANE N3	18,00	1,54%	99,14%
PANNE MECANIQUE DU RESERVE	10,00	0,86%	100,00%

b) Diagramme de PARETO du tube I:

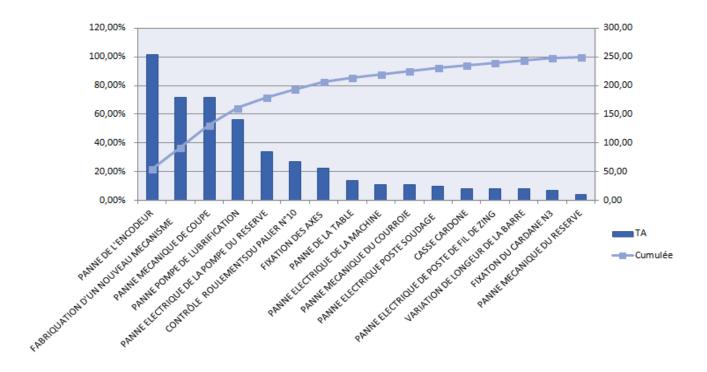


Figure 28 : Diagramme de PARETO de la machine tube I

Commentaire :

Pour la machine tube I on constate que les pannes les plus critiques, qui influencent dans un premier lieu sur le bon fonctionnement de la machine durant les trois mois et qui dépassent les 80% sont (voir figure 28) :

- Panne de l'encodeur
- Fabrication d'un nouveau mécanisme de montage de l'encodeur
- Panne mécanique de coupe
- Panne pompe de lubrification
- Panne électrique de la pompe du réserve
- Contrôle roulements du palier N°10

c) Machine tube II:

Tableau 6 : Mode de défaillance et le temps d'arrêt pour la machine tube II

Panne	TA	Poucentage%	Cum%
MARCHE AUTOMATIQUE DU RESERVE NE FONCTIONNE PAS	720	25,22%	25,22%
CHANGEMENT DE BAGUE DE PALIER ET ROULEMENT	650	22,77%	47,99%
PANNE POSTE DE SOUDAGE H.F	361	12,64%	60,63%
FIXATION DU CARDAN DU CHARIOT DE COUPE	233	8,16%	68,79%
PANE DU CHARIOT DE COUPE DE LA MACHINE	184	6,44%	75,24%
PANNE POSTE DE SOUDAGE H.F	180	6,30%	81,54%
PANNE MECANIQUE DE LA CARDAN DU CHARIOT DE COUPE	80,00	2,80%	84,34%
PANNE DE L'ENCODEUR	51,00	1,79%	86,13%

d) Diagramme de PARETO du tube II:

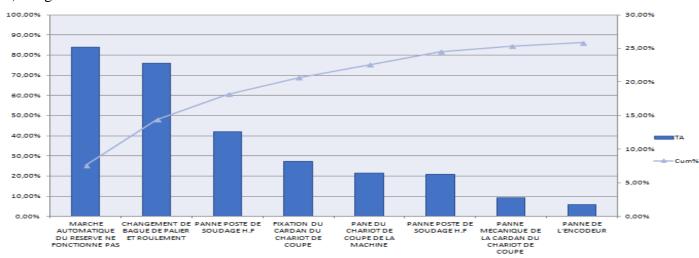


Figure 29 : Diagramme de PARETO de la machine tube II

Commentaire:

En analysant les données, pour la machine tube II on constate que la marche automatique du réserve qui ne fonctionne pas ,le changement de bague de palier ,la panne poste de soudage H.F ,fixation du cardan du chariot de coupe et la panne du chariot de coupe de la machine influencent dans un premier lieu sur le bon fonctionnement de cette machine.(voir figure 29)

e) Machine tube III:

Tableau 7: Mode de défaillance et le temps d'arrêt pour la machine tube III

CHANGEMENT ROULEMENT PALIER PROBLEME DU CHARIOT DE COUPE ARRET POMPE BASSIN DE LUBRIFIANT PANNE DE L'ENCODEUR 2 2 2 2 3 3 4 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		pourcentage%	cum%
PROBLEME DU CHARIOT DE COUPE 1 ARRET POMPE BASSIN DE LUBRIFIANT 1 PANNE DE L'ENCODEUR 5	541	38,05%	38,05%
ARRET POMPE BASSIN DE LUBRIFIANT 1 PANNE DE L'ENCODEUR 5	200,00	14,06%	52,11%
PANNE DE L'ENCODEUR 5	155,00	10,90%	63,01%
	112,00	7,88%	70,89%
DANNE ELECTRICITE DE LA CAPTE ELECTRONICITE	51,00	3,59%	74,47%
PANNE ELECTRIQUE DE LA CARTE ELECTRONIQUE	50,00	3,52%	77,99%
PANNE PONT ROULANT 4	45,00	3,16%	81,15%
PANNE POMPE DE LUBRIFICATION 3	35,00	2,46%	83,61%
VIBRATION DE L'AXE DU PALIER N°9 3	31,00	2,18%	85,79%
PANNE DE LA LAME DE DECOUPAGE 2	23,00	1,62%	87,41%
PANNE DE DEROULEUR 1	15,00	1,05%	88,47%
PANNE DE LA TABLE 1	15,00	1,05%	89,52%

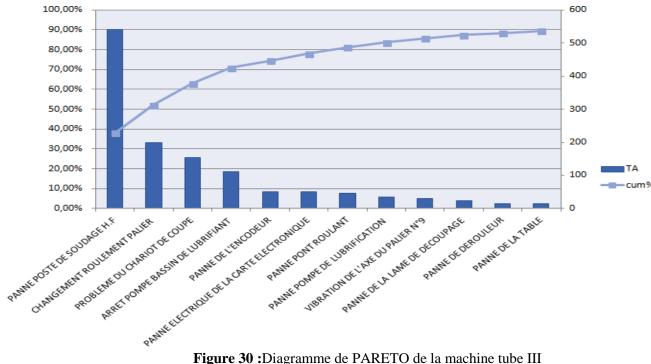


Figure 30 : Diagramme de PARETO de la machine tube III

Commentaire:

D'après ces résultats, on remarque que la panne poste de soudage H.F changement des roulements, problème du chariot de coupe, arrêt pompe bassin de lubrifiant, panne de l'encodeur et panne électrique de la carte électronique sont les plus dominants parmi tous les motifs d'arrêt. (voir figure 30)

→ Après avoir effectué une étude Pareto qui nous a permis de savoir les pannes les plus fréquentes, nous passerons maintenant à calculer l'indicateur de performance et de fiabilité.

2.6.3 Calcul de disponibilité :

Le service maintenance de SOFAFER à défini la disponibilité machine comme indicateur de suivi de leur parc matériel :

a) Définition de l'indicateur :

la disponibilité est l'aptitude d'un bien ou d'une entité à être en état d'accomplir une fonction requise dans des conditions données, à un instant donné ou pendant un intervalle de temps donné, en supposant que la fourniture des moyens extérieurs nécessaires soit assurée

La disponibilité moyenne sur un intervalle de temps donné peut être évaluée par le rapport :

➤ MTBF : (indice de fiabilité) est le temps moyen entre défaillance

La somme des temps de bon fonctionnement inclut les temps d'arrêt hors défaillance et le temps de micro-arrêts.

➤ MTTR : (indice de maintenabilité) est le moyen des temps technique de réparation

b) Indicateur de performance pour les 3 machines pendant les 3 mois :

❖ Mois Février 2018 :

Tableau 8 : calcule d'indicateur de performance et fiabilité pour février

Résultats du mois 2 / 2018 Parc Machines										
SERVICE	Machines	NBRE DE PANNES	TEMPS D'O Heures	UVERTURE Minutes	TAT	TBF (minutes)	MTTR	MTBF	DISPONIBILITÉ	Objectif DISPONIBILITÉ
	TUBE 1	12	283,00	16980	296	16684,00	24,67	1390,33	98,257%	100%
TUBE	TUBE 2	13	168,00	10080	1219	8861,00	93,77	681,62	87,907%	100%
	TUBE 3	15	120,00	7200	209	6991,00	13,93	466,07	97,097%	100%

❖ Mois Mars 2018 :

Tableau 9 : calcule d'indicateur de performance et fiabilité pour mars

	Résultats du mois 10 / 2017											
Parc Machines												
CEDVICE Machines	Machines	NBRE DE PANNES	TEMPS D'OUVERTURE		TAT	TBF	MTTR	MTBF	DISPONIBILITÉ	Objectif		
SERVICE	Waciiiles		Heures	Minutes	IAI	(minutes)	WITTE	WITDI	DISPONIBILITE	DISPONIBILITÉ		
	TUBE 1	12	90,00	5400	731	4669,00	60,92	389,08	86,463%	100%		
TUBE	TUBE 2	13	215,00	12900	703	12197,00	54,08	938,23	94,550%	100%		
	TUBE 3	15	164,00	9840	1112	8728,00	74,13	581,87	88,699%	100%		

❖ Mois Avril 2018 :

Tableau 10 : calcule d'indicateur de performance et fiabilité pour avril

	Résultats du mois 10 / 2017											
Parc Machines												
CEDVICE	Machines	NBRE DE	TEMPS D'OU	TEMPS D'OUVERTURE		TBF	MTTR	MTBF	DISPONIBILITÉ	Objectif		
SERVICE	wachines	PANNES	Heures	Minutes	TAT	(minutes)	IVIIIK	WIIDF	DISPONIBILITE	DISPONIBILITÉ		
	TUBE 1	12	126,00	5400	160	5240,00	13,33	436,67	97,037%	100%		
TUBE	TUBE 2	13	223,00	12900	510	12390,00	39,23	953,08	96,047%	100%		
	TUBE 3	15	285,00	9840	791	9049,00	52,73	603,27	91,961%	100%		

Récapitulation :

Le tableau suivant montre les taux de disponibilité des trois machines durant les trois mois (voir tableau 11) :

Tableau 11 : calcule d'indicateur de performance pour les 3 mois

KPI Machines	Février	Mars	Avril
TUBE 1	98,25%	86,46%	97,03%
TUBE 2	87,90%	94,55%	96,04%
TUBE 3	97,09%	88,69%	91,96%

→ Le calcul de cet indicateur pour notre base de donnée nous a permis d'indiquer la machine la plus critique pendant ces 3 mois qui a la disponibilité la plus faible : la machine Tube 2.

2.7 La mise à jour du plan de maintenance préventive

2.7.1 Plan de maintenance préventive actuel :

On a remarqué que le plan de la maintenance préventive n'est pas efficace car il contient des actions non appliquées ou non actualisées.(voir figure 31)

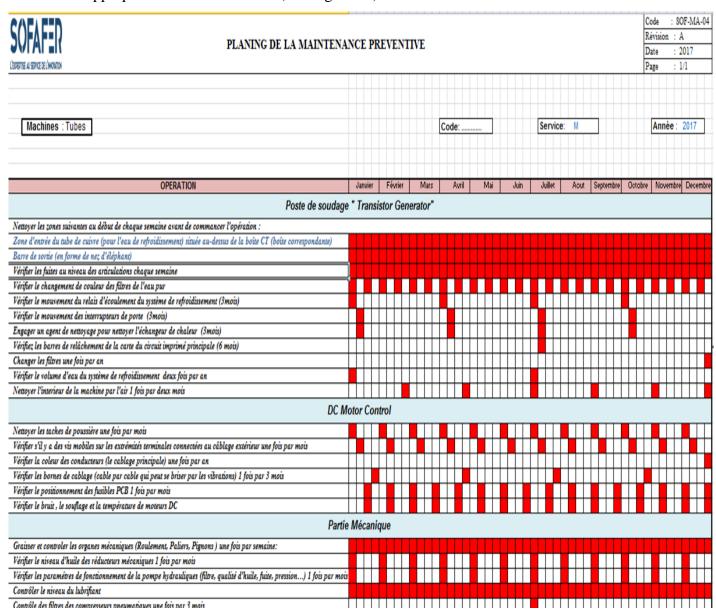


Figure 31 : Planning de la maintenance préventive actuel

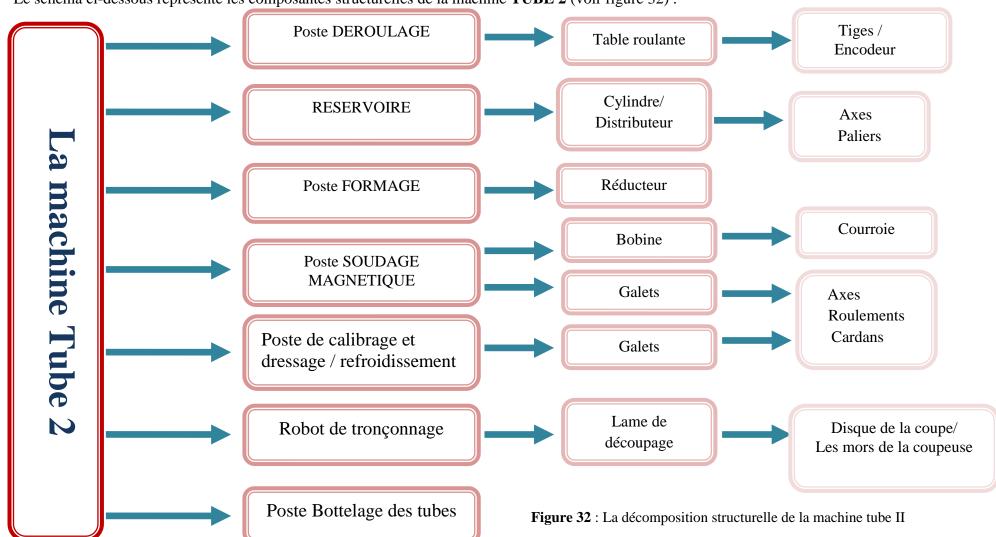
2.7.2 Application de la démarche AMDEC :

a) Définition

L'Analyse des Modes de Défaillances leurs Effets et Criticité est une technique de travail en groupe exhaustive et rigoureuse, très efficace pour la mise en commun de l'expérience et de la compétence de chacun des participants. Elle conduit à la mise en place des actions préventives.

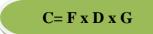
c) Objective de la démarche AMDEC :

L'AMDEC est une technique d'analyse prévisionnelle qui permet d'estimer les risques d'apparition de défaillance ainsi que les conséquences sur le bon fonctionnement du moyen de production, et d'engager les actions correctives nécessaires.


L'objectif principal est l'obtention d'une disponibilité maximale. (Annexe 1)

d) Décomposition structurelle de la machine :

Le schéma ci-dessous représente les composantes structurelles de la machine **TUBE 2** (voir figure 32) :



e) Analyse AMDEC:

Les Criticité des conséquences :

La criticité est en fait la gravité des conséquences de la défaillance, déterminée par calcul :

- **F** : Fréquence d'apparition de la défaillance : elle doit représenter la probabilité d'apparition du mode de défaillance résultant d'une cause donnée.
- **D** : Fréquence de non-détection de la défaillance : elle doit représenter la probabilité de ne pas détecter la cause ou le mode de défaillance avant que l'effet survienne.
- **G**: Gravité des effets de la défaillance : la gravité représente la sévérité relative à l'effet de la défaillance. Chaque critère comporte 4 niveaux de gravité notés de 1 à 4.

Evaluation de la criticité C ou I.P.R (l'Indice de Priorité des Risques).

- **Si I.P.R.** < **12** : Rien à signaler
- Si 12 < I.P.R. < 18 : Surveillance accrue à envisager, à la limite de l'acceptable
- **Si I.P.R.** > **18** : Mise en place d'actions permettant de corriger donc d'améliorer le moyen ou l'installation utilisé.

Nous allons appliquer l'analyse AMDEC pour chaque élément de la machine TUBE 2.

L'évaluation de la criticité « C » sera réalisée par les trois indicateurs suivants :

> Fréquence :

Tableau 12: Fréquence d'apparition de la défaillance

Fréquence d'occurrence		Définition				
Très faible	1	Défaillance rare				
Faible	2	Défaillance possible				
Moyenne	3	Défaillance fréquente				
Forte	4	Défaillance très fréquente				

> Gravité:

Tableau 13 : Gravité des effets de la défaillance

Niveau de gravité		Définition				
Mineure	1	Défaillance mineure : arrêt de production : moins de 15 minutes Aucune dégradation notable				
Significative	2	Défaillance significative : arrêt de production de 15 minutes à une heure. Remis en état de courte durée ou petite réparation ; déclenchent du Produit				
Moyenne	3	Défaillance moyenne : arrêt de production 1 heure à 2 heures changement matériel défectueux nectaire				
Majeure	4	Défaillance majeure : arrêt de production 2 heures et plus intervention importante sur le sous-ensemble production des pièces non conformes non détectées				

> Détection :

Tableau14: Fréquence de non-détection de la défaillance

Niveau de non détection		Définition				
Détection évidente Détection visuelle	1	Défaillance détectable à 100% Détection certaine de la défaillance Signe évident d'une dégradation Dispositif de détection automatique (alarme)				
détection après action de technicien	2	Défaillance détectable Signe de la défaillance facilement détectable mais nécessite une action particulière (visite).				
détection difficile	3	Signe de la défaillance Difficilement détectable peu exploitable ou nécessitant Une action ou des moyens complexes (démontage)				
Détection impossible	4	Défaillance indétectable Aucun signe de la défaillance				

Tableau AMDEC de la machine TUBE 2 :

Tableau 15: le tableau AMDEC pour la machine tube II

	Mode de						
Composant	Défaillance	Causes	Effets	\mathbf{F}	G	D	C
Les mors de la machine coupeuse	Blocage	Niveau d'huile insuffisant dans la pompe	Déformation des Tubes	3	4	2	24
Disque de la coupe	Rupture	Les mesures fournis par l'encodeur ne sont pas Exactes	Arrêt de la machine	4	3	1	12
Les roulements	Grippage	-Mauvaise qualité -Fuite d'eau -Manque de graisse	Détachement des Galets	1	3	2	6
Les galets	Fissure Déformation	Certains galets ne peuvent pas supporter la grande épaisseur du feuillard	Non-conformité des Tubes	1	2	2	4
Cardan de la machine tube	Fissure	La grande vitesse	Arrêt du robot	1	4	1	4

la table roulante	Mouvement non transmet	Disfonctionnement fin de Course	Accumulation des tubes	1	2	1	2
Paliers	Mal fixation	Problème de graissage	Production des tubes non conformés	2	1	2	4
Les Axes	Déformation	-Casse du filetage -Le jeu avec les roulements des paliers	Détachement des portes galets	2	3	2	12
Les tiges	Fissure	-Fissure à cause du l'utilisation d'une grande épaisseur -Contact des tiges avec la partie ouvert du tube	Détachement des galets	2	2	2	8
Courroie	désolidarisation	La grande chaleur	Arrêt du robot de tronçonnage	2	1	1	2
Distributeur	disfonctionnement	Fuite d'eau/d'air/ Huile : problèmes des Joints	Arrêt de la pompe	1	3	4	12
Encodeur	L'accouplement	Rupture du disque de la coupe. Production des tubes de longueur non conformes		3	4	2	12

♣ Hiérarchisation des défaillances selon la criticité :

Dans le tableau ci-dessous on va classer les éléments de la TUBE 2 par le coefficient de criticité :

Tableau 16 : Classement de criticité.

Composant	Criticité
Les mors de la machine coupeuse	24
Disque de la coupe	12
Les Axes	12
Distributeur	12
Encodeur	12
Les tiges	8
Les roulements	6
Les galets	4
Cardan de la machine tube	4
Paliers	4
la table roulante	2
Courroie	2

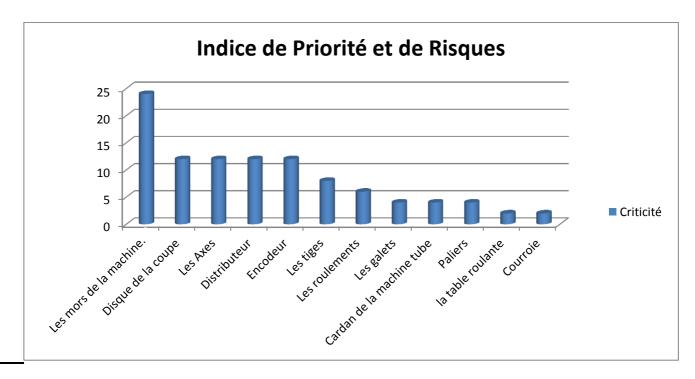


Figure 33 : Diagramme d'indice de Priorité des Risques

2.7.3 Mise à jour du plan de la maintenance préventive:

Comme indiqué en 3.3.1 le plan actuel effectué par le constructeur n'est plus efficace, la raison pour laquelle on l'a mis à jour par rapport à ce qui se passe , selon une analyse AMDEC qui nous a aidé à relever tout ce qui est critique .

Tableau 17: Plan d'action de la maintenance préventive

	Les actions		ériodicite		
Les Organes					Durée
	préventives	J	S	\mathbf{M}	En
					Minutes
Paliers	Vérifier les excès de graissage	X			2
	T 1 'C' 1 1'				
	Lubrifier les paliers		X		30
	Contrôler les charges accidentelles				50
	sur paliers	X			15
Distributeur	Nettoyer les filtres à huile			X	60
	Effectuer les vidanges nécessaires			X	60
	Contrôler les pressions d'huile		X		20
	Vérifier les pompes de circulation			X	10
Les Axes	Contrôler l'usure des arbres.			X	40
	Nettoyer les arbres		X		30
	Resserrer les écrous et les vis.	X			20
	Remettre en place coins et clavettes.	X			10
Les mors de la	Nettoyage des glissières	X			5
machine			+	X	2
coupeuse	Contrôler les fuites de l'huile				
	Vérifier la pompe			X	2
Diagram J. I.	nettoyez les lames du disque en				
Disque de la coupe	ôtant toutes traces de résidus de l'acier		X		15
	Contrôler le liquide de refroidissement		x		5
	Contrôler le serrage des écrous	X			1
	Ausculter le bruit et les vibrations	X			1

	X/Z:C: 1b 1 '1 1 '	1	1_	- 	50
	Vérifier l'usure des rails ou chemins		X		50
	de roulement				
Les roulements	Vérifier le jeu entre les axes des		X		10
	galets et les roulements des paliers.				
Les galets	Contrôler les galets			X	30
Les galets	Controler les galets			^	30
	Vérifier l'usure des galets			X	20
Les joints					
	Examiner les pièces fragiles.		X		5
d'étanchéité					
	Vérifier les pièces flexibles.		X		5
	Contrôler les cardans				15
Cardan de la	Contrôler le serrage des bornes	x			30
machine tube	_				
machine tube	Ausculter le bruit et les vibrations	X			2
	Vérifier le jeu.	X			5
	Nettoyer les cardans.		Х		5
la table roulante	Vérifier le jeu des roues			X	5
Les tiges	Ausculter le bruit et les vibrations	X			5
	Graissage des filetages.		X		15
	Resserrer les écrous et les vis	x			20
	Remettre en place coins et clavette		X		10
Courroie	Vérifier s'il y a des signes d'usure ou				
	de frottement aves les composants de			x	5
	transmission.				
	Vérifier la température de la	X			1
	courroie.				
	Retendre à sa place.	X			2
Encodeur	Encodeur Controller l'état des galets de l'encodeur			x	15

MCours.com