
D.11.1 Discretized function spaces

The exterior problem (D.8) is solved numerically with the boundary element method

by employing a Galerkin scheme on the variational formulation of an integral equation.

We use on the boundary surface Γ Lagrange finite elements of type either P1 or P0. The

surface Γ is approximated by the triangular mesh Γh, composed by T flat triangles Tj ,

for 1 ≤ j ≤ T , and I nodes ri ∈ R
3, 1 ≤ i ≤ I . The triangles have a diameter less or

equal than h, and their vertices or corners, i.e., the nodes ri, are on top of Γ, as shown in

Figure D.5. The diameter of a triangle K is given by

diam(K) = sup
x,y∈K

|y − x|. (D.188)

Γ

Γh

FIGURE D.5. Mesh Γh, discretization of Γ.

The function space H1/2(Γ) is approximated using the conformal space of continuous

piecewise linear polynomials with complex coefficients

Qh =
{
ϕh ∈ C0(Γh) : ϕh|Tj

∈ P1(C), 1 ≤ j ≤ T
}
. (D.189)

The space Qh has a finite dimension I , and we describe it using the standard base functions

for finite elements of type P1, denoted by {χj}Ij=1 and illustrated in Figure D.6. The base

function χj is associated with the node rj and has its support suppχj on the triangles that

have rj as one of their vertices. On rj it has a value of one and on the opposed edges of

the triangles its value is zero, being linearly interpolated in between and zero otherwise.

Γh

χj

rj0

1

FIGURE D.6. Base function χj for finite elements of type P1.
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The function space H−1/2(Γ), on the other hand, is approximated using the conformal

space of piecewise constant polynomials with complex coefficients

Ph =
{
ψh : Γh → C | ψh|Tj

∈ P0(C), 1 ≤ j ≤ T
}
. (D.190)

The space Ph has a finite dimension T , and is described using the standard base functions

for finite elements of type P0, denoted by {κj}Tj=1, shown in Figure D.7, and expressed as

κj(x) =

{
1 if x ∈ Tj,

0 if x /∈ Tj.
(D.191)

Γh

κj

Tj

0

1

FIGURE D.7. Base function κj for finite elements of type P0.

In virtue of this discretization, any function ϕh ∈ Qh or ψh ∈ Ph can be expressed as

a linear combination of the elements of the base, namely

ϕh(x) =
I∑

j=1

ϕj χj(x) and ψh(x) =
T∑

j=1

ψj κj(x) for x ∈ Γh, (D.192)

where ϕj, ψj ∈ C. The solutions µ ∈ H1/2(Γ) and ν ∈ H−1/2(Γ) of the variational

formulations can be therefore approximated respectively by

µh(x) =
I∑

j=1

µj χj(x) and νh(x) =
T∑

j=1

νj κj(x) for x ∈ Γh, (D.193)

where µj, νj ∈ C. The function fz can be also approximated by

fhz (x) =
I∑

j=1

fj χj(x) for x ∈ Γh, with fj = fz(rj), (D.194)

or

fhz (x) =
T∑

j=1

fj κj(x) for x ∈ Γh, with fj =
fz(r

j
1) + fz(r

j
2) + fz(r

j
3)

3
, (D.195)

depending on whether the original integral equation is stated in H1/2(Γ) or in H−1/2(Γ).

We denote by r
j
d , for d ∈ {1, 2, 3}, the three vertices of triangle Tj .
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D.11.2 Discretized integral equations

a) First extension by zero

To see how the boundary element method operates, we apply it to the first integral equa-

tion of the extension-by-zero alternative, i.e., to the variational formulation (D.183). We

characterize all the discrete approximations by the index h, including also the impedance

and the boundary layer potentials. The numerical approximation of (D.183) leads to the

discretized problem that searches µh ∈ Qh such that ∀ϕh ∈ Qh〈µh
2

+ Sh(Zhµh) −Dh(µh), ϕh

〉
=
〈
Sh(f

h
z ), ϕh

〉
. (D.196)

Considering the decomposition of µh in terms of the base {χj} and taking as test functions

the same base functions, ϕh = χi for 1 ≤ i ≤ I , yields the discrete linear system

I∑

j=1

µj

(
1

2
〈χj, χi〉 + 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉

)
=

I∑

j=1

fj 〈Sh(χj), χi〉. (D.197)

This constitutes a system of linear equations that can be expressed as a linear matrix system:
{

Find µ ∈ C
I such that

Mµ = b.
(D.198)

The elements mij of the matrix M are given by

mij =
1

2
〈χj, χi〉 + 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉 for 1 ≤ i, j ≤ I, (D.199)

and the elements bi of the vector b by

bi =
〈
Sh(f

h
z ), χi

〉
=

I∑

j=1

fj 〈Sh(χj), χi〉 for 1 ≤ i ≤ I. (D.200)

The discretized solution uh, which approximates u, is finally obtained by discretizing

the integral representation formula (D.104) according to

uh = Dh(µh) − Sh(Zhµh) + Sh(fhz ), (D.201)

which, more specifically, can be expressed as

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
+

I∑

j=1

fj Sh(χj). (D.202)

By proceeding in the same way, the discretization of all the other alternatives of integral

equations can be also expressed as a linear matrix system like (D.198). The resulting

matrix M is in general complex, full, non-symmetric, and with dimensions I × I for

elements of type P1 and T × T for elements of type P0. The right-hand side vector b is

complex and of size either I or T . The boundary element calculations required to compute

numerically the elements of M and b have to be performed carefully, since the integrals

that appear become singular when the involved triangles are coincident, or when they have

a common vertex or edge, due the singularity of the Green’s function at its source point.
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b) Second extension by zero

In the case of the second integral equation of the extension-by-zero alternative, i.e., of

the variational formulation (D.184), the elements mij that constitute the matrix M of the

linear system (D.198) are given by

mij =
1

2
〈Zhχj, χi〉 − 〈Nh(χj), χi〉 + 〈D∗

h(Zhχj), χi〉 for 1 ≤ i, j ≤ I, (D.203)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj

(
1

2
〈χj, χi〉 + 〈D∗

h(Zhχj), χi〉
)

for 1 ≤ i ≤ I. (D.204)

The discretized solution uh is again computed by (D.202).

c) Continuous impedance

In the case of the continuous-impedance alternative, i.e., of the variational formula-

tion (D.185), the elements mij that constitute the matrix M of the linear system (D.198)

are given, for 1 ≤ i, j ≤ I , by

mij = −〈Nh(χj), χi〉+ 〈D∗
h(Zhχj), χi〉+ 〈ZhDh(χj), χi〉 − 〈ZhSh(Zhχj), χi〉, (D.205)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj 〈χj, χi〉 for 1 ≤ i ≤ I. (D.206)

It can be observed that for this particular alternative the matrix M turns out to be symmet-

ric, since the integral equation is self-adjoint. The discretized solution uh, due (D.116), is

then computed by

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
. (D.207)

d) Continuous value

In the case of the continuous-value alternative, that is, of the variational formula-

tion (D.186), the elements mij that constitute the matrix M , now of the linear system
{

Find ν ∈ C
T such that

Mν = b,
(D.208)

are given by

mij =
1

2
〈κj, κi〉 + 〈ZhSh(κj), κi〉 − 〈D∗

h(κj), κi〉 for 1 ≤ i, j ≤ T, (D.209)

whereas the elements bi of the vector b are expressed as

bi = −
T∑

j=1

fj 〈κj, κi〉 for 1 ≤ i ≤ T. (D.210)
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The discretized solution uh, due (D.124), is then computed by

uh = −
T∑

j=1

νj Sh(κj). (D.211)

e) Continuous normal derivative

In the case of the continuous-normal-derivative alternative, i.e., of the variational for-

mulation (D.187), the elementsmij that conform the matrix M of the linear system (D.198)

are given by

mij =
1

2
〈Zhχj, χi〉 − 〈Nh(χj), χi〉 + 〈ZhDh(χj), χi〉 for 1 ≤ i, j ≤ I, (D.212)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj 〈χj, χi〉 for 1 ≤ i ≤ I. (D.213)

The discretized solution uh, due (D.132), is then computed by

uh =
I∑

j=1

µj Dh(χj). (D.214)

D.12 Boundary element calculations

D.12.1 Geometry

The boundary element calculations build the elements of the matrix M resulting from

the discretization of the integral equation, i.e., from (D.198) or (D.208). They permit thus to

compute numerically expressions like (D.199). To evaluate the appearing singular integrals,

we use the semi-numerical methods described in the report of Bendali & Devys (1986).

We consider the elemental interactions between two triangles TK and TL of a mesh Γh.

The unit normal points always inwards of the domain encompassed by the mesh Γh.

We denote the triangles more simply just as K = TK and L = TL. As depicted in

Figure D.8, the following notation is used:

• |K| denotes the area of triangle K.

• |L| denotes the area of triangle L.

• rK1 , r
K
2 , r

K
3 denote the ordered vertices or corners of triangle K.

• rL1 , r
L
2 , r

L
3 denote the ordered vertices or corners of triangle L.

• nK ,nL denote the unit normals of triangles K and L (oriented with the vertices).

The vertices of the triangles are obtained by renumbering locally the nodes ri, 1 ≤ i ≤ I .

Furthermore, as shown in Figure D.9, we also use the notation:

• hK1 , hK2 , hK3 denote the heights of triangle K.

• hL1 , hL2 , hL3 denote the heights of triangle L.

• τK1 , τ
K
2 , τ

K
3 denote the unit edge tangents of triangle K.
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K

L

O

nK

nL

rK
1

rK
2

rL
1

rL
2

rK
3

rL
3

FIGURE D.8. Vertices and unit normals of triangles K and L.

• τL1 , τ
L
2 , τ

L
3 denote the unit edge tangents of triangle L.

• νK1 ,ν
K
2 ,ν

K
3 denote the unit edge normals of triangle K.

• νL1 ,ν
L
2 ,ν

L
3 denote the unit edge normals of triangle L.

The unit edge tangents and normals are located on the same plane as the respective triangle.

K

νK
1

rK
1

rK
2

rL
1

rL
2

rK
3

rL
3

hK
1

hK
3

hK
2

L

hL
1 hL

3

hL
2

τK
2

τK
1

νK
2

νK
3

τK
3 νL

2

τL
2

νL
1

τL
1

τL
3

νL
3

FIGURE D.9. Heights and unit edge normals and tangents of triangles K and L.

For the parametric description of the triangles, shown in Figure D.10, we take into

account the notation:

• r(x) denotes a variable location on triangle K (dependent on variable x).

• r(y) denotes a variable location on triangle L (dependent on variable y).
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• rKc , r
L
d denote the vertices of triangles K and L, being c, d ∈ {1, 2, 3}.

Triangle K can be parametrically described by

r(x) = rKc + sc ν
K
c + pcτ

K
c , 0 ≤ sc ≤ hKc , c ∈ {1, 2, 3}, (D.215)

where

− s1

hK1
(rK1 − rK2 ) · τK1 ≤ p1 ≤

s1

hK1
(rK3 − rK1 ) · τK1 , (D.216)

− s2

hK2
(rK2 − rK3 ) · τK2 ≤ p2 ≤

s2

hK2
(rK1 − rK2 ) · τK2 , (D.217)

− s3

hK3
(rK3 − rK1 ) · τK3 ≤ p3 ≤

s3

hK3
(rK2 − rK3 ) · τK3 . (D.218)

Similarly, triangle L can be parametrically described by

r(y) = rLd + td νLd + qdτ
L
d , 0 ≤ td ≤ hLd , d ∈ {1, 2, 3}, (D.219)

where

− t1
hL1

(rL1 − rL2 ) · τL1 ≤ q1 ≤
t1
hL1

(rL3 − rL1 ) · τL1 , (D.220)

− t2
hL2

(rL2 − rL3 ) · τL2 ≤ q2 ≤
t2
hL2

(rL1 − rL2 ) · τL2 , (D.221)

− t3
hL3

(rL3 − rL1 ) · τL3 ≤ q3 ≤
t3
hL3

(rL2 − rL3 ) · τL3 . (D.222)

Thus the parameters pc, sc, qd, and td can be expressed as

pc =
(
r(x) − rKc

)
· τKc , c ∈ {1, 2, 3}, (D.223)

sc =
(
r(x) − rKc

)
· νKc , c ∈ {1, 2, 3}, (D.224)

qd =
(
r(y) − rLd

)
· τLd , d ∈ {1, 2, 3}. (D.225)

td =
(
r(y) − rLd

)
· νLd , d ∈ {1, 2, 3}. (D.226)

The areas of the triangles K and L are given by

|K| =
1

2
hK1 |rK3 − rK2 | =

1

2
hK2 |rK3 − rK1 | =

1

2
hK3 |rK2 − rK1 |, (D.227)

|L| =
1

2
hL1 |rL3 − rL2 | =

1

2
hL2 |rL3 − rL1 | =

1

2
hL3 |rL2 − rL1 |. (D.228)

The unit normals nK and nL can be computed as

nK =
τK1 × τK2
|τK1 × τK2 | =

τK2 × τK3
|τK2 × τK3 | =

τK3 × τK1
|τK3 × τK1 | , (D.229)

nL =
τL1 × τL2
|τL1 × τL2 |

=
τL2 × τL3
|τL2 × τL3 |

=
τL3 × τL1
|τL3 × τL1 |

. (D.230)

For the unit edge tangents τKc and τLd we have that

τK1 =
rK3 − rK2
|rK3 − rK2 | , τK2 =

rK1 − rK3
|rK1 − rK3 | , τK3 =

rK2 − rK1
|rK2 − rK1 | , (D.231)
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τL1 =
rL3 − rL2
|rL3 − rL2 |

, τL2 =
rL1 − rL3
|rL1 − rL3 |

, τL3 =
rL2 − rL1
|rL2 − rL1 |

, (D.232)

and for the unit edge normals νKc and νLd , that

νKc = τKc × nK , c ∈ {1, 2, 3}, (D.233)

νLd = τLd × nL, d ∈ {1, 2, 3}. (D.234)

K

νK
c

rK
c

rL
d

hK
c

L
hL

d

νL
d

r(x)

sc

r(y)

tdτK
c

τL
d

qd

pc

FIGURE D.10. Parametric description of triangles K and L.

The triangles K and L can be also parametrically described using barycentric coordi-

nates λKc and λLd , i.e.,

r(x) =
3∑

c=1

λKc rKc ,
3∑

c=1

λKc = 1, 0 ≤ λKc ≤ 1, (D.235)

r(y) =
3∑

d=1

λLd r
L
d ,

3∑

d=1

λLd = 1, 0 ≤ λLd ≤ 1. (D.236)

For the elemental interactions between a point x on triangle K and a point y on trian-

gle L, the following notation is also used:

• R denotes the vector pointing from the point x towards the point y.

• R denotes the distance between the points x and y.

These values are given by

R = r(y) − r(x), (D.237)

R = |R| = |y − x|. (D.238)

For the singular integral calculations, when considering the point x as a parameter, the

following notation is also used (vid. Figure D.11):

• RL
1 ,R

L
2 ,R

L
3 denote the vectors pointing from x towards the vertices of triangleL.
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• RL
1 , R

L
2 , R

L
3 denote the distances from x to the vertices of triangle L.

• CL
1 , C

L
2 , C

L
3 denote the edges or sides of triangle L.

• dL denotes the signed distance from x to the plane that contains triangle L.

• ΘL denotes the solid angle formed by the vectors RL
1 , RL

2 , and RL
3 , through which

triangle L is seen from point x (−2π ≤ ΘL ≤ 2π).

L

RL
1

RL
2

RL
3

x ΘL

y

CL
1

CL
2

CL
3

FIGURE D.11. Geometric characteristics for the singular integral calculations.

Thus on triangle L the following holds:

RL
d = rLd − r(x), RL

d = |RL
d |, d ∈ {1, 2, 3}. (D.239)

Likewise as before, we have for d ∈ {1, 2, 3} that

R = RL
d + td νLd + qd τLd , (D.240)

td =
(
R − RL

d

)
· νLd , (D.241)

qd =
(
R − RL

d

)
· τLd . (D.242)

In particular, the edges CL
d are parametrically described by

R = RL
d + hLd νLd + qd τLd . (D.243)

The signed distance dL is constant on L and is characterized by

dL = R · nL = RL
1 · nL = RL

2 · nL = RL
3 · nL. (D.244)

Finally, the solid angle ΘL can be computed by using the formula described in the article

of Van Oosterom & Strackee (1983):

tan

(
ΘL

2

)
=

[
RL

1 RL
2 RL

3

]

RL
1R

L
2R

L
3 + (RL

1 · RL
2 )RL

3 + (RL
1 · RL

3 )RL
2 + (RL

2 · RL
3 )RL

1

, (D.245)

where −2π ≤ ΘL ≤ 2π and where the triple scalar product
[
RL

1 RL
2 RL

3

]
= RL

1 · (RL
2 × RL

3 ) = RL
2 · (RL

3 × RL
1 ) = RL

3 · (RL
1 × RL

2 ) (D.246)

represents the signed volume of the parallelepiped spanned by the vectors RL
1 , RL

2 , and RL
3 .
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D.12.2 Boundary element integrals

The boundary element integrals are the basic integrals needed to perform the boundary

element calculations. In our case, by considering a, b ∈ {0, 1} and c, d ∈ {1, 2, 3}, they

can be expressed as

ZAc,da,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
G(x,y) dL(y) dK(x), (D.247)

ZBc,d
a,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
∂G

∂ny

(x,y) dL(y) dK(x), (D.248)

ZCc,d
a,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
∂G

∂nx

(x,y) dL(y) dK(x), (D.249)

where the parameters sc and td depend respectively on the variables x and y, as stated

in (D.224) and (D.226). When the triangles have to be specified, i.e., ifK = Ti and L = Tj ,

then we state it respectively as ZAc,da,b(Ti, Tj), ZB
c,d
a,b(Ti, Tj), or ZCc,d

a,b(Ti, Tj), e.g.,

ZAc,da,b(Ti, Tj) =

∫

Ti

∫

Tj

(
sc
hKc

)a(
td
hLd

)b
G(x,y) dγ(y) dγ(x). (D.250)

It should be observed that (D.249) can be expressed in terms of (D.248):

ZCc,d
a,b(Ti, Tj) = ZBd,c

b,a(Tj, Ti), (D.251)

since the involved operators are self-adjoint. It occurs therefore that all the integrals that

stem from the numerical discretization can be expressed in terms of the two basic boundary

element integrals (D.247) and (D.248).

For this to hold true, the impedance is discretized as a piecewise constant function Zh,

which on each triangle Tj adopts a constant value Zj ∈ C, e.g.,

Zh|Tj
= Zj =

1

3

(
Z
(
r
Tj

1

)
+ Z

(
r
Tj

2

)
+ Z

(
r
Tj

3

))
. (D.252)

Now we can compute all the integrals of interest. We begin with the ones that are

related with the finite elements of type P0, which are easier. It can be observed that

〈κj, κi〉 =

∫

Γh

κj(x)κi(x) dγ(x) =

{
|Ti| if j = i,

0 if j 6= i.
(D.253)

We have likewise that

〈ZhSh(κj), κi〉 =

∫

Γh

∫

Γh

Zh(x)G(x,y)κj(y)κi(x) dγ(y) dγ(x)

= ZiZA
c,d
0,0(Ti, Tj), (D.254)

which is independent of c, d ∈ {1, 2, 3}. It holds similarly that

〈D∗
h(κj), κi〉 =

∫

Γh

∫

Γh

∂G

∂nx

(x,y)κj(y)κi(x) dγ(y) dγ(x) = ZBd,c
0,0(Tj, Ti), (D.255)

501



which is again independent of c, d ∈ {1, 2, 3}. We consider now the integrals for the finite

elements of type P1. By taking as zero the sum over an empty set, we have that

〈χj, χi〉 =

∫

Γh

χj(x)χi(x) dγ(x) =





∑

K∋ri

|K|
6

if j = i,

∑

K∋ri,rj

|K|
12

if i 6= j.
(D.256)

In the same way, it occurs that

〈Zhχj, χi〉 =





∑

K∋ri

ZK |K|
6

if j = i,

∑

K∋ri,rj

ZK |K|
12

if i 6= j.
(D.257)

We have also that

〈Sh(χj), χi〉 =

∫

Γh

∫

Γh

G(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

(
ZA

cKi , d
L
j

0,0 − ZA
cKi , d

L
j

0,1 − ZA
cKi , d

L
j

1,0 + ZA
cKi , d

L
j

1,1

)
, (D.258)

where the local subindexes cKi and dLj are always such that

rKcKi
= ri and rLdL

j
= rj, (D.259)

and where we use the more simplified notation

ZA
cKi , d

L
j

a,b = ZA
cKi , d

L
j

a,b (K,L). (D.260)

Additionally it holds that

〈Sh(Zhχj), χi〉 =

∫

Γh

∫

Γh

Zh(y)G(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

ZL

(
ZA

cKi , d
L
j

0,0 − ZA
cKi , d

L
j

0,1 − ZA
cKi , d

L
j

1,0 + ZA
cKi , d

L
j

1,1

)
. (D.261)

Furthermore we see that

〈ZhSh(Zhχj), χi〉 =

∫

Γh

∫

Γh

Zh(x)Zh(y)G(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

ZKZL

(
ZA

cKi , d
L
j

0,0 − ZA
cKi , d

L
j

0,1 − ZA
cKi , d

L
j

1,0 + ZA
cKi , d

L
j

1,1

)
. (D.262)

Likewise it occurs that

〈Dh(χj), χi〉 =

∫

Γh

∫

Γh

∂G

∂ny

(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

(
ZB

cKi , d
L
j

0,0 − ZB
cKi , d

L
j

0,1 − ZB
cKi , d

L
j

1,0 + ZB
cKi , d

L
j

1,1

)
. (D.263)
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It holds moreover that

〈ZhDh(χj), χi〉 =

∫

Γh

∫

Γh

Zh(x)
∂G

∂ny

(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

ZK

(
ZB

cKi , d
L
j

0,0 − ZB
cKi , d

L
j

0,1 − ZB
cKi , d

L
j

1,0 + ZB
cKi , d

L
j

1,1

)
. (D.264)

We have also that

〈D∗
h(χj), χi〉 =

∫

Γh

∫

Γh

∂G

∂nx

(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

(
ZB

dL
j , c

K
i

0,0 − ZB
dL

j , c
K
i

1,0 − ZB
dL

j , c
K
i

0,1 + ZB
dL

j , c
K
i

1,1

)
, (D.265)

where the change in index order is understood as

ZB
dL

j , c
K
i

b,a = ZB
dL

j , c
K
i

b,a (L,K). (D.266)

Similarly it occurs that

〈D∗
h(Zhχj), χi〉 =

∫

Γh

∫

Γh

Zh(y)
∂G

∂nx

(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

ZL

(
ZB

dL
j , c

K
i

0,0 − ZB
dL

j , c
K
i

1,0 − ZB
dL

j , c
K
i

0,1 + ZB
dL

j , c
K
i

1,1

)
. (D.267)

And finally, for the hypersingular term we have that

〈Nh(χj), χi〉 = −
∫

Γh

∫

Γh

G(x,y)
(
∇χj(y) × ny

)
·
(
∇χi(x) × nx

)
dγ(y) dγ(x)

= −
∑

K∋ri

∑

L∋rj

ZA
cKi , d

L
j

0,0

hK
cKi
hL
dL

j

(
νKcKi

× nK

)
·
(
νLdL

j
× nL

)
. (D.268)

It remains now to compute the integrals (D.247) and (D.248), which are calculated in

two steps with a semi-numerical integration, i.e., the singular parts are calculated analyti-

cally and the other parts numerically. First the internal integral for y is computed, then the

external one for x. This can be expressed as

ZAc,da,b =

∫

K

(
sc
hKc

)a
ZF d

b (x) dK(x), (D.269)

ZF d
b (x) =

∫

L

(
td
hLd

)b
G(x,y) dL(y), (D.270)

and

ZBc,d
a,b =

∫

K

(
sc
hKc

)a
ZGd

b(x) dK(x), (D.271)

ZGd
b(x) =

∫

L

(
td
hLd

)b
∂G

∂ny

(x,y) dL(y). (D.272)
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This kind of integrals can be also used to compute the terms associated with the dis-

cretized solution uh. Using an analogous notation as in (D.250), we have that

Sh(κj) =

∫

Γh

G(x,y)κj(y) dγ(y) = ZF d
0 (Tj)(x), (D.273)

which is independent of d ∈ {1, 2, 3}. Similarly it holds that

Sh(χj) =

∫

Γh

G(x,y)χj(y) dγ(y) =
∑

L∋rj

(
ZF

dL
j

0 (L)(x) − ZF
dL

j

1 (L)(x)

)
, (D.274)

and

Sh(Zhχj) =

∫

Γh

Zh(y)G(x,y)χj(y) dγ(y) =
∑

L∋rj

ZL

(
ZF

dL
j

0 (L)(x) − ZF
dL

j

1 (L)(x)

)
.

(D.275)

The remaining term is computed as

Dh(χj) =

∫

Γh

∂G

∂ny

(x,y)χj(y) dγ(y) =
∑

L∋rj

(
ZG

dL
j

0 (L)(x) − ZG
dL

j

1 (L)(x)

)
. (D.276)

D.12.3 Numerical integration for the non-singular integrals

For the numerical integration of the non-singular integrals of the boundary element

calculations we use three-point and six-point Gauss-Lobatto quadrature formulae (cf., e.g.

Cowper 1973, Dunavant 1985). We describe the trianglesK and L by means of barycentric

coordinates as done in (D.235) and (D.236).

a) Three-point Gauss-Lobatto quadrature formulae

As shown in Figure D.12, for the three-point Gauss-Lobatto quadrature we consider,

respectively on the triangles K and L, the points

x1 =
2

3
rK1 +

1

6
rK2 +

1

6
rK3 , y1 =

2

3
rL1 +

1

6
rL2 +

1

6
rL3 , (D.277)

x2 =
1

6
rK1 +

2

3
rK2 +

1

6
rK3 , y2 =

1

6
rL1 +

2

3
rL2 +

1

6
rL3 , (D.278)

x3 =
1

6
rK1 +

1

6
rK2 +

2

3
rK3 , y3 =

1

6
rL1 +

1

6
rL2 +

2

3
rL3 . (D.279)

When considering a function ϕ : L→ C, the quadrature formula is given by

∫

L

(
td
hLd

)b
ϕ(y) dL(y) ≈ |L|

3

3∑

q=1

{(
yq − rLd

)
· νLd

hLd

}b

ϕ(yq). (D.280)

An equivalent formula is used when considering a function φ : K → C, given by

∫

K

(
sc
hKc

)a
φ(x) dK(x) ≈ |K|

3

3∑

p=1

{(
xp − rKc

)
· νKc

hKc

}a

φ(xp). (D.281)
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The Gauss-Lobatto quadrature formula can be extended straightforwardly to a function of

two variables, Φ : K × L→ C, using both formulas shown above. Therefore
∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
Φ(x,y) dL(y)dK(x)

≈ |K| |L|
9

3∑

p=1

3∑

q=1

{(
xp − rKc

)
· νKc

hKc

}a{(
yq − rLd

)
· νLd

hLd

}b

Φ(xp,yq). (D.282)

K

rK
1

rK
2

rL
1

rL
2

rK
3

rL
3

Lx1
x3

x2

y2y3

y1

FIGURE D.12. Evaluation points for the three-point Gauss-Lobatto quadrature formulae.

b) Six-point Gauss-Lobatto quadrature formulae

For the six-point Gauss-Lobatto quadrature we consider respectively on the trianglesK

and L, as depicted in Figure D.13, the points

x1 = α1r
K
1 + α2r

K
2 + α2r

K
3 , y1 = α1r

L
1 + α2r

L
2 + α2r

L
3 , (D.283)

x2 = α2r
K
1 + α1r

K
2 + α2r

K
3 , y2 = α2r

L
1 + α1r

L
2 + α2r

L
3 , (D.284)

x3 = α2r
K
1 + α2r

K
2 + α1r

K
3 , y3 = α2r

L
1 + α2r

L
2 + α1r

L
3 , (D.285)

x̃1 = β1r
K
1 + β2r

K
2 + β2r

K
3 , ỹ1 = β1r

L
1 + β2r

L
2 + β2r

L
3 , (D.286)

x̃2 = β2r
K
1 + β1r

K
2 + β2r

K
3 , ỹ2 = β2r

L
1 + β1r

L
2 + β2r

L
3 , (D.287)

x̃3 = β2r
K
1 + β2r

K
2 + β1r

K
3 , ỹ3 = β2r

L
1 + β2r

L
2 + β1r

L
3 , (D.288)

where

α1 = 0.816847572980459, α2 = 0.091576213509771, (D.289)

β1 = 0.108103018168070, β2 = 0.445948490915965. (D.290)

The weights are given by

αw = 0.109951743655322, βw = 0.223381589678011. (D.291)
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When considering a function ϕ : L→ C, the quadrature formula is given by

∫

L

(
td
hLd

)b
ϕ(y) dL(y) ≈ αw|L|

3∑

q=1

{(
yq − rLd

)
· νLd

hLd

}b

ϕ(yq)

+ βw|L|
3∑

q=1

{(
ỹq − rLd

)
· νLd

hLd

}b

ϕ(ỹq). (D.292)

An equivalent formula is used when considering a function φ : K → C, given by

∫

K

(
sc
hKc

)a
φ(x) dK(x) ≈ αw|K|

3∑

p=1

{(
xp − rKc

)
· νKc

hKc

}a

φ(xp)

+ βw|K|
3∑

p=1

{(
x̃p − rKc

)
· νKc

hKc

}a

φ(x̃p). (D.293)

The Gauss-Lobatto quadrature formula can be extended straightforwardly to a function of

two variables, Φ : K × L→ C, using both formulas shown above. Therefore
∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
Φ(x,y) dL(y)dK(x)

≈ α2
w|K| |L|

3∑

p=1

3∑

q=1

{(
xp − rKc

)
· νKc

hKc

}a{(
yq − rLd

)
· νLd

hLd

}b

Φ(xp,yq)

+ β2
w|K| |L|

3∑

p=1

3∑

q=1

{(
x̃p − rKc

)
· νKc

hKc

}a{(
ỹq − rLd

)
· νLd

hLd

}b

Φ(x̃p, ỹq)

+ αwβw|K| |L|
3∑

p=1

3∑

q=1

{(
x̃p − rKc

)
· νKc

hKc

}a{(
yq − rLd

)
· νLd

hLd

}b

Φ(x̃p,yq)

+ αwβw|K| |L|
3∑

p=1

3∑

q=1

{(
xp − rKc

)
· νKc

hKc

}a{(
ỹq − rLd

)
· νLd

hLd

}b

Φ(xp, ỹq). (D.294)
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FIGURE D.13. Evaluation points for the six-point Gauss-Lobatto quadrature formulae.
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c) Overall numerical integration

For the overall numerical integration we consider two different cases to achieve enough

accuracy in the computations and to minimize the calculation time.

If the triangles K and L are not adjacent nor equal, then the integrals on K, (D.269)

and (D.271), and the integrals on L, (D.270) and (D.272), are computed respectively using

three-point Gauss-Lobatto quadrature formulae, i.e., (D.281) and (D.280), since in this

case they are non-singular. Thus, in the whole, the integrals ZAc,da,b and ZBc,d
a,b are calculated

employing (D.282).

On the other hand, if the triangles K and L have at least a common vertex, then the in-

tegrals on K are evaluated using the six-point Gauss-Lobatto quadrature formula (D.293),

while the integrals on L, which become singular, are evaluated using the analytical formu-

lae described next.

D.12.4 Analytical integration for the singular integrals

If the triangles K and L are close together, then the integrals (D.270) and (D.272) are

calculated analytically, treating x as a given parameter. They are specifically given by

ZF d
0 (x) = −

∫

L

1

4πR
dL(y), (D.295)

ZF d
1 (x) = −

∫

L

td
4πRhLd

dL(y), (D.296)

and

ZGd
0(x) =

∫

L

R · nL

4πR3
dL(y), (D.297)

ZGd
1(x) =

∫

L

td
R · nL

4πR3 hLd
dL(y). (D.298)

a) Computation of ZGd
0(x)

The integral (D.297) is closely related with Gauss’s divergence theorem. If we consider

an oriented surface differential element dγ = nLdL(y) seen from point x, then we can

express the solid angle differential element by (cf. Terrasse & Abboud 2006)

dΘ =
R

R3
· dγ =

R · nL

R3
dL(y) = 4π

∂G

∂ny

(x,y) dL(y). (D.299)

Integrating over triangle L yields the solid angle ΘL, as expressed in (D.245), namely

ΘL =

∫

L

dΘ (−2π ≤ ΘL ≤ 2π). (D.300)

The solid angle ΘL is positive when the vectors R and nL point towards the same side

of L. Thus integral (D.297) is obtained by integrating (D.299), which yields

ZGd
0(x) =

∫

L

R · nL

4πR3
dL(y) =

ΘL

4π
. (D.301)
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b) Computation of ZF d
0 (x)

For the integral (D.295) we consider before some vectorial identities and properties.

We have that

∆R =
1

R2

∂

∂R

(
R2∂R

∂R

)
=

2

R
. (D.302)

On the other hand, by using the relation (A.590) with the vector RnL and performing

afterwards a dot product with nL yields

∆R =
∂2R

∂n2
− curl curl(RnL) · nL. (D.303)

Since

∇R =
R

R
and ∇∇R =

1 ⊗ 1

R
− R ⊗ R

R3
, (D.304)

therefore we obtain that

∂R

∂n
=

R · nL

R
and

∂2R

∂n2
=

1

R
− (R · nL)2

R3
. (D.305)

Hence, considering (D.302), (D.303), and (D.305), yields

1

R
= −(R · nL)2

R3
− curl curl(RnL) · nL. (D.306)

This way the integral (D.295) can be rewritten as

ZF d
0 (x) =

∫

L

(R · nL)2

4πR3
dL(y) +

1

4π

∫

L

curl curl(RnL) · nL dL(y). (D.307)

Considering (D.244) and (D.301) for the first integral, and applying to the second one the

curl theorem (A.617), yields

ZF d
0 (x) =

dLΘL

4π
+

1

4π

3∑

m=1

∫

CL
m

curl(RnL) · τLm dC(y). (D.308)

We have additionally, from (A.566), (A.589), and (D.234), that

curl(RnL) · τLm = (∇R× nL) · τLm = −R

R
· (τLm × nL) = −R · νLm

R
. (D.309)

Since R · νLm is constant on CL
m , we can compute it as

R · νLm = (RL
m + hLmνLm) · νLm. (D.310)

Hence (D.308) turns into

ZF d
0 (x) =

dLΘL

4π
− 1

4π

3∑

m=1

(RL
m + hLmνLm) · νLm

∫

CL
m

1

R
dC(y), (D.311)

where only the computation of the integral on CL
m remains to be done.
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c) Computation of ZF d
1 (x)

The integral (D.296) is somewhat simpler to treat. By replacing (D.241) inside this

integral we obtain

ZF d
1 (x) = − 1

4πhLd

∫

L

1

R

(
R − RL

d

)
· νLd dL(y)

= − 1

4πhLd

∫

L

R

R
· νLd dL(y) − RL

d · νLd
hLd

ZF d
0 (x). (D.312)

It holds now that
R

R
= ∇R =

∂R

∂n
nL + ∇LR, (D.313)

where ∇L denotes the surface gradient with respect to the parametrization of the plane of

the triangle L. From (D.312) we obtain therefore

ZF d
1 (x) = − νLd

4πhLd
·
(∫

L

∂R

∂n
nL dL(y) +

∫

L

∇LR dL(y)

)
− RL

d · νLd
hLd

ZF d
0 (x). (D.314)

For the first integral in (D.314) we consider (D.244) and (D.305), which yields
∫

L

∂R

∂n
nL dL(y) = dLnL

∫

L

1

R
dL(y) = −4πdLnLZF

d
0 (x). (D.315)

For the second integral in (D.314) we apply the Gauss-Green theorem (A.610) on the plane

of the triangle L, which implies that

∫

L

∇LR dL(y) =
3∑

m=1

νLm

∫

CL
m

R dC(y). (D.316)

Hence, by considering (D.315) and (D.316) in (D.314), we obtain

ZF d
1 (x) = − νLd

4πhLd
·

3∑

m=1

νLm

∫

CL
m

R dC(y) +
νLd
hLd

·
(
dLnL − RL

d

)
ZF d

0 (x), (D.317)

where only the computation of the integral on CL
m remains to be done.

d) Computation of ZGd
1(x)

By replacing (D.241) and (D.244) inside the integral (D.298), we obtain

ZGd
1(x) =

∫

L

R · nL

4πR3 hLd

(
R − RL

d

)
· νLd dL(y)

=
dLν

L
d

4πhLd
·
∫

L

R

R3
dL(y) − RL

d · νLd
hLd

ZGd
0(x). (D.318)

Similarly as before, it holds that

− R

R3
= ∇ 1

R
=

∂

∂n

1

R
nL + ∇L

1

R
, (D.319)
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where ∇L denotes again the surface gradient with respect to the parametrization of the

plane of the triangle L. From (D.318) we obtain therefore

ZGd
1(x) = −dLν

L
d

4πhLd
·
(∫

L

∂

∂n

1

R
nL dL(y) +

∫

L

∇L
1

R
dL(y)

)
−RL

d · νLd
hLd

ZGd
0(x). (D.320)

For the first integral in (D.320) we consider (D.301), which yields
∫

L

∂

∂n

1

R
nL dL(y) = −nL

∫

L

R · nL

R3
dL(y) = −4πnLZG

d
0(x). (D.321)

For the second integral in (D.320), as before, we apply the Gauss-Green theorem (A.610)

on the plane of the triangle L, which implies that

∫

L

∇L
1

R
dL(y) =

3∑

m=1

νLm

∫

CL
m

1

R
dC(y). (D.322)

Hence, by considering (D.321) and (D.322) in (D.320), we obtain

ZGd
1(x) = −dLν

L
d

4πhLd
·

3∑

m=1

νLm

∫

CL
m

1

R
dC(y) +

νLd
hLd

·
(
dLnL − RL

d

)
ZGd

0(x), (D.323)

where only the computation of the integral on CL
m remains to be done.

e) Computation of the integrals on each edge CL
m

The integrals on each edge CL
m that remain to be computed are

∫

CL
m

1

R
dC(y) and

∫

CL
m

R dC(y). (D.324)

To simplify the notation, we drop the indexes and denote the edge segment CL
m just as C.

Similarly, and as depicted in Figure D.14, we use also the notation:

• |C| denotes the length of segment C.

• R0,R1 denote the endpoints of segment C, belonging to {RL
1 ,R

L
2 ,R

L
3 }.

• τ denotes the unit tangent of segment C, coinciding with τLm.

• σ denotes the unit vector orthogonal to C that lies in the same plane as x and C.

R0

R1

R

x

C
y

ℓ

τ

σ

FIGURE D.14. Geometric characteristics for the calculation of the integrals on the edges.
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We consider that the segment C is parametrically described by

R = R0 + ℓτ , 0 ≤ ℓ ≤ |C|, (D.325)

and thus the parameter ℓ can be expressed as

ℓ = (R − R0) · τ = |R − R0|. (D.326)

We have furthermore that

|C| = |R1 − R0| and R1 = R0 + |C|τ . (D.327)

The unit vector σ that is orthogonal to C is given by

σ = (R0 × τ ) × τ . (D.328)

Since we parametrized by ℓ, therefore all derivatives are taken with respect to this variable.

It holds in particular that

RR′ = R · ∂R
∂ℓ

= R · τ , (D.329)

and hence

R(R + R · τ )′ = R · τ +R. (D.330)

Consequently, by rearranging (D.330) we obtain

(R + R · τ )′

R + R · τ =
1

R
. (D.331)

Thus the first of the desired integrals in (D.324) is given by
∫

C

1

R
dℓ = ln

(
R1 + R1 · τ
R0 + R0 · τ

)
. (D.332)

We have also, from (D.329), that

ℓR′ =
R

R
· (ℓτ ) = R− R0 ·

R

R
. (D.333)

Expressing R0,R in terms of σ and τ yields

R0 = (R0 · σ)σ + (R0 · τ )τ , (D.334)

R = (R0 · σ)σ + (R · τ )τ , (D.335)

R0 · R = (R0 · σ)2 + (R0 · τ )(R · τ ), (D.336)

and therefore, considering also (D.329), we obtain

ℓR′ = R− R0 ·
R

R
= R− 1

R
(R0 · σ)2 − (R0 · τ )R′. (D.337)

By integrating we have that
∫ |C|

0

ℓR′ dℓ =

∫

C

R dℓ− (R0 · σ)2

∫

C

1

R
dℓ− (R0 · τ )(R1 −R0). (D.338)

An integration by parts on the left-hand side of (D.338) and a rearrangement of the terms

yields finally the second of the desired integrals in (D.324), which is given by
∫

C

R dℓ =
1

2

(
|C|R1 + (R0 · σ)2

∫

C

1

R
dℓ+ (R0 · τ )(R1 −R0)

)
. (D.339)
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We remark that from (D.336) we can express

(R0 · σ)2 = R0 · R0 − (R0 · τ )2. (D.340)

f) Final computation of the singular integrals

In conclusion, the singular integrals (D.270) and (D.272) are computed using the for-

mulae (D.301), (D.311), (D.317), and (D.323), where the integrals on the edges are calcu-

lated using (D.332) and (D.339).

It should be observed that ZBc,d
a,b = 0 when the triangles coincide, i.e., when K = L,

since in this case dL = 0, and thus (D.301) and (D.323) become zero.

D.13 Benchmark problem

As benchmark problem we consider the exterior sphere problem (D.140), whose do-

main is shown in Figure D.4. The exact solution of this problem is stated in (D.161), and

the idea is to retrieve it numerically with the integral equation techniques and the boundary

element method described throughout this chapter.

For the computational implementation and the numerical resolution of the benchmark

problem, we consider only the first integral equation of the extension-by-zero alterna-

tive (D.103), which is given in terms of boundary layer potentials by (D.176). The lin-

ear system (D.198) resulting from the discretization (D.196) of its variational formula-

tion (D.183) is solved computationally with finite boundary elements of type P1 by using

subroutines programmed in Fortran 90, by generating the mesh Γh of the boundary with the

free software Gmsh 2.4, and by representing graphically the results in Matlab 7.5 (R2007b).

We consider a radius R = 1 and a constant impedance Z = 0.8. The discretized

boundary surface Γh has I = 702 nodes, T = 1400 triangles, and a step h = 0.2136, being

h = max
1≤j≤T

diam(Tj). (D.341)

As the known field without obstacle we take

uW (r, θ, ϕ) =
sin θ eiϕ + cos θ

r2
=

x1 + ix2 + x3

(x2
1 + x2

2 + x2
3)

3/2
, (D.342)

which implies that the impedance data function is given by

fz(θ, ϕ) = −∂uW
∂r

(R, θ, ϕ) − ZuW (R, θ, ϕ) = −ZR− 2

R3
(sin θ eiϕ + cos θ). (D.343)

The exact solution of the problem and its trace on the boundary are thus given by

u(x) = −uW (r, θ, ϕ) = −sin θ eiϕ + cos θ

r2
, (D.344)

µ(θ, ϕ) = −uW (R, θ, ϕ) = −sin θ eiϕ + cos θ

R2
. (D.345)

The numerically calculated trace of the solution µh of the benchmark problem, which

was computed by using the boundary element method, is depicted in Figure D.15. In the

512



0
1

2
3

−2
0

2

−1 

−0.5 

0

0.5

1

θϕ

ℜe
{µ

h
}

(a) Real part

0
1

2
3

−2
0

2

−0.5 

0

0.5

θ
ϕ

ℑm
{µ

h
}

(b) Imaginary part

FIGURE D.15. Numerically computed trace of the solution µh.
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FIGURE D.16. Contour plot of the numerically computed solution uh for θ = π/2.
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FIGURE D.17. Oblique view of the numerically computed solution uh for θ = π/2.
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same manner, the numerical solution uh is illustrated in Figures D.16 and D.17 for an

angle θ = π/2. It can be observed that the numerical solution is close to the exact one.

We define the relative error of the trace of the solution as

E2(h,Γ
h) =

‖Πhµ− µh‖L2(Γh)

‖Πhµ‖L2(Γh)

, (D.346)

where Πhµ denotes the Lagrange interpolating function of the exact solution’s trace µ, i.e.,

Πhµ(x) =
I∑

j=1

µ(rj)χj(x) and µh(x) =
I∑

j=1

µj χj(x) for x ∈ Γh. (D.347)

It holds therefore that

‖Πhµ− µh‖2
L2(Γh) = (µ̃ − µ)∗A (µ̃ − µ) and ‖Πhµ‖2

L2(Γh) = µ̃∗A µ̃, (D.348)

where µ(rj) and µj are respectively the elements of vectors µ̃ and µ, for 1 ≤ j ≤ I , and

where the elements aij of the matrix A are specified in (D.256) and given by

aij = 〈χj, χi〉 for 1 ≤ i, j ≤ I. (D.349)

In our case, for a step h = 0.2136, we obtained a relative error of E2(h,Γ
h) = 0.01302.

Similarly as for the trace, we define the relative error of the solution as

E∞(h,ΩL) =
‖u− uh‖L∞(ΩL)

‖u‖L∞(ΩL)

, (D.350)

being ΩL = {x ∈ Ωe : ‖x‖∞ < L} for L > 0, and where

‖u− uh‖L∞(ΩL) = max
x∈ΩL

|u(x) − uh(x)| and ‖u‖L∞(ΩL) = max
x∈ΩL

|u(x)|. (D.351)

We consider L = 3 and approximate ΩL by a triangular finite element mesh of refinement h

near the boundary. For h = 0.2136, the relative error that we obtained for the solution

was E∞(h,ΩL) = 0.02142.

The results for different mesh refinements, i.e., for different numbers of triangles T ,

nodes I , and discretization steps h for Γh, are listed in Table D.1. These results are illus-

trated graphically in Figure D.18. It can be observed that the relative errors are approxi-

mately of order h2.

TABLE D.1. Relative errors for different mesh refinements.

T I h E2(h,Γ
h) E∞(h,ΩL)

32 18 1.0000 5.112 · 10−1 5.162 · 10−1

90 47 0.7071 2.163 · 10−1 2.277 · 10−1

336 170 0.4334 5.664 · 10−2 7.218 · 10−2

930 467 0.2419 1.965 · 10−2 2.653 · 10−2

1400 702 0.2136 1.302 · 10−2 2.142 · 10−2

2448 1226 0.1676 6.995 · 10−3 1.086 · 10−2
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