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INTRODUCTION

Through the decades, various research projects have been conducted in the area of classification

in a wide range of sectors. Despite the innumerable classification methods that cover different

aspects of classification problems, empirical and theoretical results drove the researchers to

jointly agree that building a single robust classifier isn’t always the right fit to deal with all the

complex pattern recognition problems (Britto et al., 2014). Therefore, it took years to the com-

putational intelligence community to converge to a research trend that focuses on Ensembles

of classifiers (EoC) or commonly called Multiple Classifier Systems (MCS).

Multiple Classifier Systems tend to mimic the human nature that usually seeks for different

opinions before making a final decision (Rokach, 2010). Researchers from diverse disciplines

such as pattern recognition, statistics, and machine learning have explored the use of ensemble

methods since the late seventies (Rokach, 2010). They have been acknowledged for their con-

ceptual simplicity and the top-level performance in many classification tasks (Tamponi, 2015;

Friedman et al., 2001). The process of MCS is constituted of three major phases: generation,

selection and integration (Britto et al., 2014). As shown in Figure 0.1, during the first phase,

a pool of classifiers is generated; in the second step, one classifier or a non-empty subset of

these classifiers is selected, while in the last one, a final decision is made based on the predic-

tion(s)/opinion(s) of the selected classifier(s) (Britto et al., 2014).

Figure 0.1 The three phases of a MCS system: pool

generation, classifiers selection and integration adapted

from (Cruz et al., 2018)
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Among these phases, intensive work on the selection phase became a key cause for the evolu-

tion of MCS. Selection can be achieved in two ways, static and dynamic. In the Static Selection

approach, the subset of classifiers is determined during the training of MCS; therefore, the same

subset is applied for all test samples. On the contrary, Dynamic Selection (DS) considers dif-

ferent subsets of classifiers for individual test samples (Roy et al., 2016). Several techniques

have been developed through the years (Ko et al., 2008; Cruz, 2016) aiming to enhance the

strength of the recognition rates. However, there is no single algorithm that is better than any

other over all possible classes of problems as stated in the “No free lunch” theorem (Cruz,

2016; Cruz et al., 2018; Britto et al., 2014).

Problem statement

In the traditional process of Multiple Classifier Systems for DS, the phases consist on gener-

ating a diverse pool of classifiers with mass generation techniques such as Bagging, Boosting,

Random Subspace etc (Britto et al., 2014; Cruz et al., 2018). Then comes the step where

dynamic selection techniques select a classifier or a subset of classifiers, for each test sample.

The issue with these generation approaches is that they were designed for static combination

methods. In other words, they use a global approach in generating the base classifiers (Souza

et al., 2017; Cruz et al., 2018).

Although, the results of this process are efficient enough through the advancement of the field,

the performance in generalization for DS depends on the initial base classifiers of the pool. Fur-

thermore, the main philosophy of dynamic selection, is to select the most competent classifiers

locally.

However, with ensembles generated with the static combination methods, this condition is not

taken into consideration. It means that there is no guaranty for the the presence of local experts,
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which leads to the incapacity of the DS technique to always select local competent classifiers

(Cruz et al., 2018; Oliveira et al., 2017).

Previous work in the literature, focused on the elaboration of several new Dynamic Selection

methods, by creating new competence measures, and new frameworks to improve the perfor-

mances(Lustosa Filho et al., 2018; Oliveira, 2018). Recently, Cruz et al., (Cruz et al., 2018),

addressed the issue of rethinking the generation phase of these base classifiers, before applying

the DS techniques.

To the best of our knowledge, there exists no pool generation method that uses local infor-

mation to suit dynamic selection, in its classical scheme (Cruz et al., 2018; Oliveira, 2018),

apart from an online generation of classifiers conducted recently by souza et al in (Souza et al.,

2019).

Therefore, this work aims to provide an approach leading towards local classifier generation

for dynamic selection, by taking into consideration local criteria within the creation of the

classifiers. Which, we believe is a promising subject to explore.

How can we generate locally competent classifiers that are adapted to the Dynamic Selec-
tion scheme?

To achieve the creation of locally competent classifiers we believe that the following criteria

must be met:

- The presence of at least one classifier that crosses the Region of Competence of the patterns

located in indecision regions.

- The use of different guides borrowed from the Dynamic Selection scheme for pool genera-

tion.
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Research goals and Contributions

Therefore, our research question leads us to propose the following :

1. A novel procedure to generate local classifiers that cross the region of competence (RoC).

The method takes into account the different local information regarding the samples that

constitute RoC.

2. A heuristic to gather the previously generated classifiers given different types of guides

for the construction of the Dynamic Selection Local Pool (DSLP), that will be detailed in

chapter 2.

3. A classification system that takes in considerations the hardness of its test samples to

decide whether to use the KNN classifier and Dynamic Selection techniques based on the

recommendations provided in our previous work (Cruz et al., 2017).

Pursuing the research goal to rethink the usual pool generations methods by including infor-

mation, holds promise towards the generation of local classifiers for Dynamic Selection.
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Organization of the thesis

This document is organized as shows the figure 0.2: chapter one presents the related work

about Dynamic Selection and Ensemble generation methods. The second chapter describes the

proposed system heading towards local pool generation for Dynamic Selection, we presented in

the orange boxes the titles of the most important aspects of the chapters. We expose in chapter

three, the experimental protocol, as well as the results, the comparison to the state of the art

and their discussion. The related work and the other chapters are linked with a dashed line

to Appendix I, representing a conference paper that performs an analysis of the performances

of the Dynamic Selection scheme and the K-NN classifier. This is a complementary reading

that supports our research direction. Finally, we conclude by summarizing this study and give

recommendations for future work.

Figure 0.2 Thesis plan





CHAPTER 1

RELATED WORK

This chapter regroups the literature review concerning the Oracle as an important concept in

the Multiple Classifiers Systems. It then presents the Dynamic selection scheme and the En-

semble generation methods. It also contains complementary sections that narrows down the

understanding of the problem and introduces the motivations of the solutions proposed in the

next chapter.

1.1 The Oracle

In the process of the ideal selection of classifiers, the concept of the Oracle is defined as an ab-

stract function that always chooses the classifier that predicts the correct label for each instance

(Kuncheva, 2002, 2004b; Cruz et al., 2018), if there exists such a classifier. That is to say, it

represents the ideal classifier selection scheme. For a given dataset, the classifier ci gives an

output vector y j (Kuncheva, 2004b) so that :

yi, j =

⎧⎪⎨
⎪⎩

1

0

if classifier ci correctly classifies x j

otherwise

(1.1)

In the area of Multiple Classifiers Systems, the concept of the Oracle is exploited at different

stages. It is used to the construction of diverse pools (Kuncheva, 2004b). Diversity is agreed

that it measures how complementary the classifiers are in terms of making different mistakes

in the features space (Kuncheva, 2004b). Kuncheva (Kuncheva, 2004b) states the following

concerning the diversity concept: ’If we have a perfect classifier which makes no errors, then

we do not need an ensemble. However,if the classifier does make errors, then we seek to com-

plement it with another classifier which makes errors on different objects. The diversity of the

classifier outputs is therefore a vital requirement for the success of the ensemble’. Moreover,

empirical results showed that there exists a positive correlation between accuracy of the en-
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semble and diversity among the base classifiers, which leads to a high accuracy of the Oracle

when the diversity rate is high (Kuncheva, 2004b; Shipp & Kuncheva, 2002; Tang et al., 2006).

On the other hand, in the context of the Dynamic Selection literature, the Oracle is used to

determine whether the results obtained by dynamic selection techniques is close to the ideal

accuracy (Cruz et al., 2018; Souza et al., 2017; Giacinto & Roli, 2001). In other words, it

acts as an upper bound for DS techniques performances for a given pool of classifiers. It

also contributes in the elaboration of many ensemble generation methods (Souza et al., 2017;

Dos Santos et al., 2008; Santos & Sabourin, 2011; Kuncheva & Rodriguez, 2007) as well as

Dynamic selection techniques and frameworks (Cruz, 2016; Ko et al., 2008; Oliveira, 2018).

Given the quick introduction about the Oracle as an important element in the context of MCS,

the next sections present the Dynamic Selection concept followed by the Ensemble genera-

tion scheme as a solid background to support the research question concerning the creation of

locally competent classifiers for Dynamic Selection.

1.1.1 Dynamic Selection

In the context of MCS, the selection of classifiers can be either static or dynamic (Britto et al.,

2014; Cruz et al., 2018). The former considers a subset of base classifiers for all the test patterns

whereas the latter assumes that each classifier is an expert in a specific region of the features

space (Britto et al., 2014; Cruz et al., 2015b; Cruz, 2016; Cruz et al., 2018). Therefore, each

query instance is classified by a single classifier or an ensemble of classifiers. Empirical studies

showed that Dynamic Selection (DS) is well suited for ill defined problems, i.e., for small sized

datasets and when there is insufficient training data (Britto et al., 2014; Cruz et al., 2015b; Cruz,

2016; Cruz et al., 2018). Moreover, several research projects have been focusing on Dynamic

Selection, which can be applied in several domains such as : music genre classification, credit

scoring, face recognition, signature verification, bug predictions and many more (Cruz et al.,

2018).
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Based on a pool of supposedly diverse classifiers C = {c1, ...,cM}, dynamic selection consists

on finding the most competent classifier or ensemble of classifiers C ⊂ C to predict the class

label for each test sample xq (Kuncheva, 2004b). In Dynamic Selection, the classification of a

new test samples unfolds the following steps:

1. The definition of a local region in which the selection will operate called, Region of Com-

petence (RoC).

2. The selection criterion used to estimated the competence of the base classifiers.

3. The selection scheme. Dynamic selection techniques can be divided into two categories:

Dynamic Classifier Selection (DCS) or Dynamic Ensemble Selection (DES). In dynamic

classifier selection, a single classifier is selected for each test sample whereas in dynamic

ensemble selection, a subset of competent classifiers is selected for each test pattern.

Figure 1.1 shows a diagram of the Taxonomy of DS adapted from (Cruz et al., 2018). It

shows the different processes of Dynamic Selection, enumerating the region of competence

definition, the selection criteria (individual-based and group-based measures of competence)

and the Selection Approach.

Figure 1.1 Taxonomy of the Dynamic Selection Scheme

(Cruz et al., 2018)
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Figure 1.2 shows a basic dynamic classifier selection system differentiating between the Dy-

namic Classifiers Selection (DCS) and Dynamic Ensemble Selection (DES). Indeed, the prior

uses only one classifier defined as the most competent one to identify the test sample whereas

the latter uses an ensemble of competent classifier for the recognition task (Britto et al., 2014;

Cruz et al., 2018).

In this section, we address the different concepts used in the elaboration of the Dynamic Se-

lection systems, we will first give a definition of the local regions where the decisions of the

system occurs. Then, we expose the measures of competence evaluated for the DS techniques

and introduce them in the same subsection. Furthermore, we exhibit complementary informa-

tion about the behavior of the DS scheme in certain situations to provide a broad motivation to

our research question.

Figure 1.2 Classical Dynamic Selection System showing the

difference between the Dynamic Classifier Selection (DCS) and

Dynamic Ensemble Selection (DES) adapted from (Cruz et al.,
2018)
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1.1.2 Region of Competence definition

The Region of Competence in the Dynamic Selection scheme represents the local region of

the features space that encloses the query xq, it is also where the competence of the classifiers

is estimated to recognize xq. The DS techniques are very sensitive to the definition of the

Region of Competence that is composed of labeled samples usually from the validation set

that is called the Dynamic Selection Dataset (DSEL) (Cruz et al., 2018). The local region for

several DS techniques is defined using the K-Nearest Neighbors rule, a clustering technique,

a potential function, or a decision space scheme and strongly depends on the distribution of

DSEL (Cruz et al., 2018; Didaci & Giacinto, 2004; Cruz et al., 2015a).

Clustering

To set the region of competence, the clusters are defined in DSEL by one of the clustering

techniques such as the K-Means algorithm (Kaufman & Rousseeuw, 2009). Then, for all the

clusters, we estimate the local competence of each base classifier (Cruz et al., 2018). During

the testing phase, given a new query sample, xq, we calculate the distance between this example

and the centroid of each cluster. The competence of the classifiers is accessed according to the

examples that belong to the closest cluster (Cruz et al., 2018).

K-Nearest Neighbors

The K-Nearest Neighbor approach is conducted within DSEL for estimating the K nearest

neighbors for a test query xq. The region of competence θ is then defined and the decisions

taken by the DS corresponding DS techniques are based on the elements of θ (Cruz et al.,

2018).

Potential Function

The particularity of the methods based on the potential functions model resides in the use of

the whole DSEL for computing the region of competence instead of the neighborhood (Cruz
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et al., 2018). Each sample xi ∈ DSEL is weighted using its Euclidean distance (d) to the query

xq using usually, a Gaussian potential function model K (Equation 1.3) (Cruz et al., 2018). The

function gives the highest weights to samples nearest to the test sample, and lowest weights to

samples distant from the test sample. As a consequence, the data points that are the closest to

xq have a higher impact on the classifiers’ competence estimation(Cruz et al., 2018).

K(xi,xquery) = exp(−d(xi,xquery)
2) (1.2)

Decision Space

This category focuses on the behavior of the classifiers and the use of their predictions as in-

formation sources. The estimation of the region of competence is conducted using the de-

cision spaces instead of the features space inspired by Behavior Knowledge Space (BKS)

(Huang & Suen, 1995). This approach transforms the test sample xq and DSEL into output

profiles; which are vectors composed of predictions of the base classifiers in the pool either

using the hard decisions (Huang & Suen, 1995) or exploiting the estimated posterior proba-

bilities of the classifiers, as stated in (Cavalin et al., 2013, 2012; Batista et al., 2011; Oliveira,

2018; Cruz et al., 2018). The selection of the samples that compose the region of competence

is given by the points in DSEL with the most similar output profiles to the output profile of xq.

1.1.3 Measures of competence and Dynamic Selection techniques

Classifier competence defines how much we trust an expert given a classification task (Cruz

et al., 2018; Britto et al., 2014). The level of competence of each base classifier is measured

taking into account each new test instance, and only the classifiers that reach a certain level

of competence for the current test instance are selected to compose the ensemble (DES) or the

classifier (DCS). On the other hand, it is necessary to define the criterion to measure the level of

competence of each classifier. For dynamic selection techniques, the search criterion is locally

applied to fit each test pattern (Cruz et al., 2018).
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There are two types of dynamic selection criteria, individual-based level of competences known

as: Ranking, Local Accuracy, Oracle, Probabilistic, Behavior and group-based: Diversity, Am-

biguity and Data handling (Britto et al., 2014; Cruz et al., 2015b; Cruz, 2016; Cruz et al.,

2018).

For the definitions, θxq = {x1, ...,xk} represents patterns belonging to the region of competence

of the unseen sample xq, K is the size of the RoC, ci is the base classifier from the pool C, wk

is the class attribute of xk and δi,q is the level of competence of the classifier ci for classifying

the instance xq .

1.1.3.1 Individual-based measures of competence

Ranking

Several Dynamic Selection techniques have been developed according to this taxonomy. For

the individual-based measures, Classifier Rank (Sabourin et al., 1993; Cruz et al., 2018; Britto

et al., 2014) is considered as one of the first proposed approaches to estimate the base classi-

fiers’ competence level in DS. The ranking of a classifier ci is found by counting the number

of consecutive correctly classified samples (Cruz et al., 2018). The classifier that correctly

classifies the most consecutive samples coming from the region of competence is considered

to have the highest competence level (Cruz, 2016).

Accuracy

Overall local accuracy (OLA) estimates each individual classifier’s accuracy in local regions

of the feature space surrounding a test sample, and then uses the decision of the most locally

accurate classifier (Woods et al., 1997; Britto et al., 2014; Cruz et al., 2018). The level of

competence δi,q of a base classifier ci is computed as the percentage of samples in the region
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of competence that are correctly classified.

δi,q =
1

K

K

∑
k=1

P(wl |xk∈wl,ci) (1.3)

Local class accuracy (LCA) is similar to OLA, the only difference being that the local accu-

racy is estimated in respect of output classes wl (wl is the class assigned to the query by ci)

(Woods et al., 1997; Britto et al., 2014; Cruz et al., 2018) for the whole region of competence.

δi,q =
∑ xk ∈wl P(wl |xk,ci)

∑K
k=1 P(wl |xk,ci)

(1.4)

Modified local Accuracy (MLA) works similarly to the LCA technique, with the only differ-

ence being that each instance in the region of competence is weighted by its Euclidean distance

Wk to the query instance. That way, instances from the region of competence that are closer to

the test sample have a higher influence when computing the performance of the base classifier

(Smits, 2002; Britto et al., 2014; Cruz et al., 2018).

δi,q =
K

∑
k=1

P(wl |xk∈wl,ci)Wk (1.5)

Probabilistic

In the probabilistic measures, two methods: A priori and A posteriori are “evolved” versions

of OLA. The prior selects a single classifier from the pool based on a local region defined by

the K-nearest neighbors of the test pattern in the training set during the testing phase without

considering the class assigned to the unknown pattern (Britto et al., 2014; Giacinto & Roli,

1999; Cruz et al., 2018). This measure of classifier accuracy is calculated as the class posterior

probability of the classifier c j on the neighborhood of the unknown sample.

δi,q =
∑K

k=1 P(wl |xk∈wl, ci)Wk

∑K
k=1Wk

(1.6)
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Similarly, the latter estimates local accuracies using the class posterior probabilities and the

distances of the samples in the defined local region (Britto et al., 2014; Giacinto & Roli, 1999;

Cruz et al., 2018).

δi,q =
∑xk∈ωl

P(wl |xk∈wk, ci)Wk

∑K
k=1 P(wl |xk∈wk, ci)Wk

(1.7)

Behavior

Giancinto and Roli (Giacinto & Roli, 2001) proposed the Multiple Classifier Behavior (MCB)

algorithm that is a mixture of the Dynamic Classifier Selection Local Accuracy with the behavior-

knowledge space (BKS) (Huang & Suen, 1995). It is based on a similarity function that mea-

sures the proportion of similarities between all the output profiles of the classifiers (Huang & Suen,

1995; Cruz et al., 2018; Britto et al., 2014). The method defines the region of competence θxq

using the K-NN method. The similarity function acts as a behavioral similarity detector that

preselects from θxq from which the classifiers showed similar behavior to the one observed for

the unknown pattern xq (Britto et al., 2014).The rest of the instances are exploited to select

the most accurate classifier by using the OLA. At last, based on a predefined threshold, if the

selected classifier outperforms the others in the pool; it is used to classify the unknown sample,

if not, all the classifiers in the pool will perform the classification of xq (Oliveira, 2018; Cruz

et al., 2018; Britto et al., 2014).

The similarity function is built as follows:

similarity(A,B) =
1

M
× ∑

j=1

MT (A j, B j) (1.8)

where A and B are vectors, M is the size of the vectors A and B, and T is the XNOR function

(1 when A j = B j , otherwise 0).
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Oracle

Ko et al. (Ko et al., 2008) passed from Dynamic Classifier Selection (DCS) to Dynamic Ensem-

ble Selection (DES) by developing the concept of the K-nearest-Oracles (KNORA), which

is close to the concepts of OLA, LCA, the A Priori and A Posteriori methods in their consid-

eration of the neighborhood of test patterns, but it can be distinguished from the others by the

direct use of the oracle property of having training samples in the region of competence with

which to find the most suitable ensemble for a given query (Ko et al., 2008). For any test data

point, KNORA simply finds its nearest K neighbors in DSEL, assess which classifiers correctly

classify those neighbors and uses them as the ensemble for classifying the given pattern in that

test set(Ko et al., 2008). KNORA has different designs, we can state the following ones:

KNORA-ELIMINATE (KNORA-E) The KNORA-Eliminate approach exploits the con-

cept of the Oracle (Ko et al., 2008) which is the upper limit of a classifiers ensemble. For a

region of competence θq of a given query xq in DSEL, sole the classifiers that correctly classify

all the neighborhood samples (achieving a 100% accuracy, hence, operating as "local oracles")

are selected(Ko et al., 2008) to build the ensemble. The selected base classifiers’ decision is

combined using majority voting. In the case where, there exists no classifiers that perfectly

classify all the neighborhood samples, the method reduces the size of θq by eliminating the

samples that are most distant from the xq until at least one classifier is chosen.

KNORA-E has another alternative called "KNORA-E-W" which is a weighted version of the

original KNORA-E, according to the Euclidean distance between the samples in DSEL and the

test query (Ko et al., 2008).

KNORA-UNION (KNORA-U) In this scheme, KNORA-UNION operates by selecting all

the base classifiers that can correctly classify at least one sample from the neighborhood θq.



17

The method grants a vote to each classifier ci that correctly classifies one sample from the

neighborhood θq. This means that the base classifier ci could have more than one vote if it

correctly classifies more than one sample. Therefore, the votes gathered by all the classifiers

are aggregated using a majority voting rule to obtain the ensemble decision (Ko et al., 2008).

KNORA-U has another alternative called "KNORA-U-W" which is a weighted version of the

original KNORA-E, according to the Euclidean distance between the samples in DSEL and the

test query (Ko et al., 2008).

Note

Recently, Oliveira el al. (Oliveira et al., 2018) proposed two new variants of the KNORA-E

DES technique scheme. KNORA-B, B stands for borderline is a DES technique-based adapted

from KNORA-E. It actually diminishes from the the region of competence but keeps at least

one sample from each class that is in the original region of competence as opposed to the

Original KNORA-E. KNORA-BI is a spin off of KNORA-B where I stands for imbalance

datasets, which reduces the region of competence by only removing samples belonging to the

majority class, leaving the minority untouched.

Meta Learning

Last but not least, META-DES is a recent dynamic selection framework using meta-learning

(Cruz et al., 2015a). Cruz et al. proposed five sets of meta-features to measure the level of

competence of a classifier for the classification of input samples (Cruz et al., 2015a). The

meta-features are used to train a meta-classifier to predict whether or not a classifier is com-

petent enough to classify an input instance. On the other hand, Cruz et al., have proposed an

improvement variant to the META-DES framework called META-DES.Oracle, presented in

(Cruz et al., 2018; Cruz, 2016) which applies a meta-feature selection scheme using Binary

Particle Swarm Optimization (BPSO) to optimize the performance of the meta-classifier.
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1.1.3.2 Group-based measures of competence

Group-based methods work by estimating the competence level of a whole ensemble of clas-

sifiers rather than each classifier individually.

Diversity

Diversity in the context of dynamic selection has been used by some authors as a post-

processing means of improving classification performance after an ensemble is selected. Sev-

eral metrics for measuring diversity in an EoC have been proposed (Cruz, 2016). Of all diver-

sity measures, the Double-Fault (Shipp & Kuncheva, 2002) measure received a lot of interest

as it presents a higher correlation with the majority voting accuracy (Shipp & Kuncheva, 2002)

when compared to other diversity measures.

Ambiguity

The second group-based measure is Ambiguity in Dynamic Selection, there are several ways

of measuring the ambiguity. As for Ambiguity-guided dynamic selection (ADS), it is measured

by the number of classifiers that disagree with the result of the majority vote over the ensemble

(Cruz et al., 2018; Britto et al., 2014), the most competent ensemble is the one that produces

the lowest ambiguity value.

Data handling

Data handling is an interesting adaptive ensemble selection approach based on data handling

theory (GDMH, family of inductive algorithms for computer-based mathematical modeling of

multi-parametric datasets that features fully automatic structural and parametric optimization

of models (Ivakhnenko, 1970) ) and complexity models was proposed in (Xiao & He, 2009).

The system is based on a multivariate analysis theory for modeling complexity systems pre-

sented in (Ivakhnenko, 1970). Given a new test sample x j, several ensemble configurations are
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evaluated using the GMDH. Then, the ensemble with optimal complexity is selected (Cruz,

2016).

Summary of the previously presented DS techniques

Table 1.1 is a brief summary holding the Dynamic Selection techniques, the way the region of

competence is defined, their selection criteria and the authors who elaborated these methods

organized in a chronological order. The next subsections provide a complementary discussion

about some particularities of the DS scheme that are useful for the elaboration of our proposed

system.

Table 1.1 A summary of the the Dynamic Selection

techniques and their characteristics in a chronological order

inspired from (Cruz et al., 2018)

Technique RoC definition Selection criteria Selection approach Reference Year
Classifier Rank (DCS-Rank) K-NN Ranking DCS Sabourin et al. (Sabourin et al., 1993) 1993

Overall Local Accuracy (OLA) K-NN Accuracy DCS Woods et al. (Woods et al., 1997) 1997

Local class Accuracy (LCA) K-NN Accuracy DCS Woods et al. (Woods et al., 1997) 1997

Apriori K-NN Probabilistic DCS Giacinto et al. (Giacinto & Roli, 1999) 1999

Aposteriori K-NN Probabilistic DCS Giacinto et al.(Giacinto & Roli, 1999) 1999

Multiple Classifier Behavior (MCB) K-NN Behavior DCS Giacinto et al. (Giacinto & Roli, 2001) 2001

Modified Local Accuracy (MLA) K-NN Accuracy DCS P.C. Smits (Smits, 2002) 2002

K-Nearest Oracles Eliminate (KNORA-E) K-NN Oracle DES Ko et al. (Ko et al., 2008) 2008

K-Nearest Oracles Union (KNORA-U) K-NN Oracle DES Ko et al. (Ko et al., 2008) 2008

META-DES K-NN Meta-Learning DES Cruz et al. (Cruz et al., 2015a) 2015

META-DES.Oracle K-NN Meta-Learning DES Cruz et al. (Cruz, 2016) 2016

K-Nearest Oracles Borderline (KNORA-B) K-NN Oracle DES Oliveira et al. (Oliveira et al., 2018) 2018

K-Nearest Oracles Borderline Imbalance (KNORA-BI) K-NN Oracle DES Oliveira et al. (Oliveira et al., 2018) 2018
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1.1.4 Dynamic Selection Versus K-NN

For most DS techniques, the competence of the base classifiers are heavily dependent on the

K-Nearest Neighbors for the definition of the local regions (Cruz et al., 2017). Therefore,

one question arose: why do we use dynamic selection instead of simply applying the K-NN

classifier?

In order to answer that question, Cruz et al. performed an analysis comparing the classification

results of DS techniques and the K-NN classifier under different conditions (Appendix I). Ex-

periments were conducted on 18 state-of-the-art DS techniques over 30 classification datasets

and results showed that DS methods present a significant boost in classification accuracy even

though they use the same neighborhood as the K-NN (Cruz et al., 2017). The reasons behind

the out-performance of DS techniques over the K-NN classifier reside in the fact that DS tech-

niques can deal with samples with a high degree of instance hardness (samples that are located

close to the decision border) as opposed to the K-NN (Cruz et al., 2017).1

The conclusion of this work gave a new perspective to the dynamic selection scheme. Indeed,

for future work dealing with dynamic selection, they suggest a system that operates in two

phases: first, the hardness of a test instance is calculated, then based on the results, the system

could select whether using K-NN or applying a DS technique for classification (Cruz et al.,

2017). The reason behind such a choice is that, DS scheme would be only used to classify

samples associated with a high degree of instance hardness i.e. borderline samples, while

K−NN would be used for classifying samples with a low degree of instance hardness i.e. safe

samples (Cruz et al., 2017). Therefore, we take this suggestion into account while building our

pool generation method.

1 This work was presented in the International Conference on Image Processing Theory and Applica-

tions, 2017.
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1.1.5 Dynamic Selection in the indecision Regions

As stated above, Dynamic Selection techniques are sensitive to the definition of the region of

competence, as well as the measures of competence. In a recent paper, Oliveira et al. (Oliveira

et al., 2017) raised the following issue in this context: DS techniques have difficulties evalu-

ating the competence of classifiers when a test sample is located in an ’indecision region’, a

region composed of samples from different classes. DS techniques may select classifiers with

decision boundaries that do not cross the region of competence and thus, assign all the samples

to one class which does not reflect the representation of the RoC. Oliveira et al. (Oliveira et al.,

2017) advances that: "an ideal classifier would be the one that crosses the region of competence

and correctly distinguish between the samples from the different classes."

Therefore, they designed a framework called "Frienemy Indecision Region Dynamic Ensemble

Selection" for two-class problems (FIRE-DES). The method allows to detect if a test sample

is located in an indecision region and, if so, prunes the pool of classifiers, pre-selecting classi-

fiers with decision boundaries crossing the region of competence of the query sample (if such

classifiers exist). After that, uses a DS technique from the set of pre-selected classifiers.

The next section discusses the usual ensemble generations methods used for the Dynamic Se-

lection scheme. One method in particular is described in more detailed since a part of it is used

in the construction of our system. A general discussion of the chapter is provided in section

1.4 before heading to the proposed system.



22

1.2 Ensemble Generation methods

1.2.1 The wisdom of crowds

“Can a collection of weak classifiers create a single strong one?" is a frequently asked question

in Ensemble learning indeed. Surowiecki replies, that under certain controlled conditions, the

aggregation of information from several sources, results in decisions that are often superior to

those that could have been made by any single individual— (Rokach, 2010; Surowiecki et al.,

2007). According to Surowiecki, in order to be wise, the crowd should adhere to the following

criteria (Rokach, 2010; Surowiecki et al., 2007):

- Diversity of opinion: Each member should have private information even if it is just an

eccentric interpretation of the known facts.

- Independence: Members’ opinions are not determined by the opinions of those around

them.

- Decentralization: Members are able to specialize and draw conclusions based on local

knowledge.

- Aggregation: Some mechanism exists for turning private judgments into a collective deci-

sion.

Ensemble methods have proven their worth through the years, the generation of base classi-

fiers is the first step into building an ensemble. Therefore, this section explores the classical

techniques and the newest techniques of generation methods, then comes a discussion part

introducing our contribution in optimizing the pool generation.
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1.2.2 Bagging

Proposed by Breiman (Breiman, 1996), Bagging is an acronym for ’Bootstrap AGGregat-

ING’. It incorporates the advantages of Bootstrapping approaches (Efron & Tibshirani, 1993;

Skurichina & Duin, 2002) and aggregating concepts by generating multiple versions of a clas-

sifier and using these versions to get an aggregated predictor(Breiman, 1996). The idea of the

method is simple and builds n replicate training datasets by randomly sampling, with replace-

ment, from the original training dataset. Since the sampling is conducted with replacement,

some of the original instances appear more than once while some other original examples are

not in the sample (Zhou, 2012). Because of such a property, some samples are similar because

they are coming from the same original sample, but in the meantime, they are a bit different

due to chance (Kaufman & Rousseeuw, 2009; Alpaydin, 2014). Thus, each replicated dataset is

used to train one classifier member. The classifiers outputs are then combined via an appropri-

ate fusion function. It is expected that 63.2% of the original training samples will be included

in each replicate (Dos Santos et al., 2008). Hence, the classifiers make different mistakes in

the features space and then they are diverse.

Recently, (Walmsley et al., 2018) proposed a version of Bagging modifying its bootstrapping

process. It is in which the probability of an instance being selected during the re-sampling

process is inversely proportional to its instance hardness (Smith et al., 2014). The methods

joins several data complexity measures and ensemble methods to improve the accuracy rate

of the systems suffering from noisy data without sacrificing the samples located on the class

boundaries .

1.2.3 Random Subspaces Method

The Random Subspaces Method (RSM) (Barandiaran, 1998) is considered to be a feature sub-

set selection approach. It works by randomly choosing N different features from the training

dataset obtaining N-dimensional random subspaces (Skurichina & Duin, 2002) from the orig-

inal features space. Each random subspace is used to train one individual classifier. The N
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classifiers are usually combined by the majority voting rule. The advantages of using random

subspace in the generation and combination of the classifier is appreciated when the number of

training samples is small in comparison with the data dimensionality (Skurichina & Duin,

2002). The subspace dimensionality is smaller than the original features space while the

number of training samples remains intact. It is useful when there are several redundant fea-

tures, we may obtain better classifiers in random subspaces than in the original features space

(Skurichina & Duin, 2002) which would be reflected on the quality of the classification in favor

the random subspaces.

1.2.4 Boosting

There exists many variants of Boosting. We use AdaBoost (Adaptive Boosting) method in gen-

erating ensembles. Proposed by (Freund et al., 1996), Adaboost is an iterative algorithm that

combines classifiers having poor performance to get a better decision rule (Skurichina & Duin,

2002). The method assigns weights to each example contained in the training dataset and gen-

erates classifiers sequentially as opposed to Bagging which operates randomly and in a parallel

way when sampling its training sets and constructing its classifiers. At each iteration, Boost-

ing adjusts the weights of the miss-classified training samples by previous classifiers. Thus,

the samples considered by previous classifiers as difficult for classification, will have higher

chances to be put together, to form the training set for future classifiers (Freund et al., 1996;

Skurichina & Duin, 2002).

The final ensemble composed of all classifiers generated at each iteration is usually combined

by majority voting or weighted voting (Dos Santos et al., 2008; Skurichina & Duin, 2002;

Freund et al., 1996).

1.2.5 Oracle-based generation method

The consideration of the Oracle is a key issue in comparing between different techniques of

dynamic selection. The Oracle is defined as an abstract function that always selects the classi-
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fier that predicts the correct label, for each instance, if such a classifier exists. In other words,

it represents the ideal classifier selection scheme (Cruz, 2016). Its consideration is also present

for the elaboration of several methods in MCS. However, several dynamic selection techniques

produce a large difference of performances compared to the Oracle. This explains that, for

a certain number of instances, the DS techniques are not able to select a competent or a set

of competent classifiers despite the Oracles assurance of its presence in the pool. Therefore,

Souza et al. tried to investigate in (Souza et al., 2017) the reasons why the Oracle may not

always be the best indicator in the search for a promising pool of classifiers for DS techniques.

Souza et al. proposed a new method of generating a pool called "Self-generating Hyperplanes

(SGH)’ that guarantees an Oracle accuracy rate of 100% in the training set. It is an incremental

ensemble generation method which generates binary classifiers by placing hyperplanes in the

feature space until at least one classifier correctly classifies each training instance in the pool.

This method is faster than classical ensemble methods, since the classifiers are not trained, and

it can find the pool size automatically according to the training data (Souza et al., 2017).

We provide its pseudo-code due to the fact that we used certain parts of the method that we

modified in the creation of our classifiers, for instance the modified version will rely on lines

11, 12 and 13 from Algorithm 1.1.

The experiments of this work demonstrated that integrating Oracle information in the genera-

tion phase of an MCS has little impact on the gap between the accuracy rates of DS techniques

and the Oracle (Souza et al., 2017). Furthermore, for a theoretical limit of 100%, the DS tech-

niques were only able to select a competent classifier for at most 85% of the instances, on

average (Souza et al., 2017). DCS techniques show struggles in choosing the most “compe-

tent” classifier, despite the existence for at least one for sure in the pool (trivially, the one that

was created for that particular instance during the generation phase). The reason for this is

that, the Oracle model relies on the global information confirming the existence of an adequate

classifier for the task; whereas DCS techniques use only local data, as the local measures of

competence and the K nearest neighbors to select the best classifier.
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Algorithm 1.1 Self-generating Hyperplane Method (SGH), from (Souza et al., 2017)

1 Γ ←{z1, z2, ..., zN}{Training dataset}

2 C ←{c1, c2, ..., c|C|}{Problem classes}

3 Pool ←{}
4 while Γ �= {} do
5 for j ← 1, |C| do
6 R( j)← centroid (c j) {Centroid of class j}
7 end
8 d ← max(pairwiseDistance(R)) {Maximum distance between centroids}

9 a,b ← f indIndex(d)
10 midPoint ← (R(a)+R(b))/2

11 normal ← (R(a)−R(b))/d
12 wp ←{normal}{perceptron p weights}

13 θp ←−midPoint ·normal {perceptron p bias}

14 p ← perceptron(wp,θp)
15 for i ← 1, N do
16 if test(p, zi) = label(zi) then
17 then {Perceptron p classifies instance i correctly}

18 Γ ← Γ−{zi}{Excludes instance i from dataset}

19 end
20 end
21 Pool ← Pool ∪ { p}{Add Perceptron p to the Pool}

22 end while
23 return Pool

Therefore, (Souza et al., 2017) conclude that despite its use in the literature for such a task, the

Oracle model is not the best guide in the search for a promising pool for DCS techniques, for

the model is performed globally whilst DS techniques work with local data only (Souza et al.,

2017).

1.3 Summary, discussion and a brief introduction to the proposed system

The Oracle concept is an important element in the elaboration of Multiple Classifiers Systems.

It contributes to both Ensemble generation and the classifiers selection. For DCS, it is con-

sidered as an upper theoretical limit for classification and usually determines the efficiency

of the DCS techniques (Cruz et al., 2018; Kuncheva, 2004b; Souza et al., 2017). Moreover,
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the Oracle was used in the elaboration of several Dynamic Selection methods and was stud-

ied to investigate its characterization for DCS techniques (Souza et al., 2017). Although its

well reputation, it was found that its aspect of spotting the ideal classifier, operates on a global

level as opposed to the local treatment of instances provided the DS techniques. Therefore,

the Oracle was labeled as being not the best guide for generating a pool of classifiers for DCS

(Souza et al., 2017). This conclusion played an important role into bringing more motivational

elements to our research question that aims to generate classifiers adapted to the context of

dynamic selection focusing on the consideration of local information.

This being stated, the related work presented first, a general overview of the dynamic selection

scheme by presenting the DS techniques and auxiliary information that aligns with the prob-

lematic of this thesis. Moreover, we introduced the different pool generation methods that exist

and here we are narrowing down the research proposal.

The difference between the DS techniques reside in their definition of the Region of Com-

petence, their selection criteria and the selection approach. The Selection criteria in the DS

scheme is composed of two philosophies of considering the competence by different measures.

In these individual-based measures of competence, the reliability of each base classifier is mea-

sured independently from the performance of the rest of the classifiers in the pool (Cruz et al.,

2018). These methods are full dependent on the methods that defined the region of competence

such as the K-NN. Moreover, the distribution of DSEL has an important impact on the perfor-

mance of the system. Group-based measures of competence on the other hand, focus on how

the base classifier behaves along with the other classifiers in the pool (Cruz et al., 2018) and

therefore relate to the concept of relevance as opposed to the individual-based measures where

they rely on the competence of the individual classifiers (Cruz et al., 2018) .

Despite the variety of the DS techniques and the different components of this classification

scheme, no algorithm is better than any other over all possible classes of problems (the “No

Free Lunch” theorem (Corne & Knowles, 2003)). Thus, given the overview of the different

research works conducted in the area of MCS, and the recent findings on the question of the
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locality of the classifiers; we believe we have satisfying elements and motivations to focus to-

wards proposing a new pool of classifiers generation that is suitable for the Dynamic Selection

Scheme. The proposed framework is provided in the next chapter with all the basics concepts

that need to be known before a complete immersion into the method.



CHAPTER 2

TOWARDS LOCAL POOL GENERATION FOR DYNAMIC SELECTION

The present chapter exposes the proposed system. The first section introduces the concepts

needed in the elaboration of the method to generate locally competent classifiers. The rest of

the sections are divided between an overview of the method, the step by step description and

illustrative examples of the different strategies used to answer the research question. A case

study on a synthetic problem is also provided.

2.1 Basic concepts

To begin our discussion, we believe it is necessary to present the following illustrative basics

concepts that we would refer to throughout the chapter.

2.1.1 Region of Competence in the context of this study

The Region of Competence for several DS techniques is defined using the K−NN, and strongly

depends on the distribution of DSEL (Cruz et al., 2018; Didaci & Giacinto, 2004). For our

proposed system, the definition of the RoC is covered by the K −NN and the value of K = 7

since it presented the best results for several DS techniques according to (Cruz et al., 2011,

2018)

2.1.2 Indecision Region

As illustrated in Figure 2.1, a test sample is located in an indecision region when its region of

competence is crossed by one or more classes boundaries, that is, when its region of compe-

tence has borderline samples of different classes (Oliveira et al., 2017). Therefore, correctly

classifying test samples located in indecision regions is a difficult task because most miss-

classifications happen in areas near classes boundaries (Oliveira et al., 2017). In fact, the clas-
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sification performance of classifiers is strongly affected by the number of borderline samples

(Oliveira et al., 2017).

Figure 2.1 Three type of samples: safe samples (labeled as S),

borderline samples (labeled as B), and noisy samples (labeled as

N). The continuous line shows the indecision region(Adapted

from (Oliveira et al., 2017)).
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2.1.3 frienemies samples

The definition of the frienemies concept is essential to the understanding of the proposed

method. Indeed, according to (Oliveira et al., 2017), two samples xa and xb are considered

frienemies if : (1) they are located in the same region of competence of xquery (2) they are from

a different class. Therefore, one of our research aims is to create classifiers that distinguish be-

tween them. Figure 2.2 is a representation of a region of competence with its different samples

A, B, C, D, E, and F for the query xquery. The possible pairs of samples from different classes

are (A, B), (A, D), (B, C), (B, E), (B, F), (C, D), (D, E), (D, F). They are called "frenemy

samples" or "frienemies" given (Oliveira et al., 2017)).

Figure 2.2 Representation of pairs of frienemies (A,

B), (A, D), (B, C), (B, E), (B, F), (B,G) (C, D), (D, E),

(D, F), (B,G) in the region of competence of the query in

a black diamond shape (Adapted from (Oliveira et al.,
2017)).
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2.1.4 Instance Hardness

Instance hardness is a fundamental concept in the elaboration of our proposed system. A study

conducted by (Smith el al, 2014) states that the instances have a set of hardness properties that

reflects the likelihood that they will be misclassified. Instance hardness measures on the other

hand yield an indication on which of the samples in the datasets are hard to classify. In the

same work, (Smith et al., 2014) provides an instance level analysis of data complexity, giving

us more insights about the different measures of instance hardness.

2.1.4.1 k Disagreeing Neighbors (kDN), an instance hardness measure

Let Te = {x1, x2, ..., x j} be the test set composed of j elements. The strategy will operate as

follows:

- Compute the instance hardness (IH) of each sample xq using the kDisagreeing Neighbors

(kDN) measure. The choice of this measure is justified by the highest correlation it pre-

sented with the probability that a given instance is miss-classified by different classification

methods according to (Smith et al., 2014; Cruz et al., 2017). The kDN measure is the per-

centage of instances in an instance’neighborhood that do not share the same label as itself.

Equation 3.1.5 shows the measure.

kDN(xq) =
|xk : xk ∈ KNN(xq)∧ t(xk) �= t(xq)|

K
(2.1)

where KNN(xq) is the set of K nearest neighbors of xq, and xk represents an instance in

this neighborhood. t(xq) and t(xk) represent the target class of the instances xq and xk

respectively. In our method, we consider in the beginning a neighborhood size K = 7 for

the estimation of the kDN.

A basic example to illustrate the level of Hardness of the query (black diamond) in Figure 2.2

according to the k−DN measure is 2
7 if the query is red and 5

7 if the query is blue, it represents

the proportion of disagreement of the neighborhood with the label of the query.



33

2.2 The proposed Local Pool Generation for Dynamic Selection System

We propose in this section a way to create a pool of classifiers that is adapted to the scheme

of Dynamic Selection. The pool generation method is then called: Dynamic Selection Pool

Generation (DSPG). It is based on the following hypothesis:

- If we maximize the coverage of the features space in the indecision regions, considering

local information, the classifiers generated within the training set would be able to high

performances in generalization of DS techniques.

Therefore, we show in Figure 2.3 the general overview of the different stages of the method.

The main steps are explained in details hereafter.

The proposed method (DSPG) generates the Dynamic Selection Local Pool (DSLP) that is

adapted to the context of DS. Indeed, this method uses several strategies to guarantee the cre-

ation of locally competent classifiers. In our recent paper (Cruz et al., 2017) (Appendix I), a

deep analysis comparing the performances of Dynamic Selection and the plain K −NN classi-

fier was conducted where it was concluded that K−NN performs better and faster than DS for

samples with low instance hardness; whereas Dynamic Selection is more suitable for samples

with a higher degree of instance hardness.

Accordingly, for the generalization phase, we designed a system that operates in two steps:

1. First, an Instance hardness analysis (IH) is conducted on the test samples based on the k

Disagreeing Neighbors (kDN) measure. The samples that are located in homogeneous and

safe regions (IH = 0) will be classified by KNN.

2. For the other ones, the Dynamic Selection scheme is used.
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Figure 2.3 General overview of the proposed framework. In the

training phase, we use the proposed Dynamic Selection Pool

Generation method (DSPG) to create the Dynamic Selection

Local Pool (DSLP). Then, depending on the hardness of the test

query sample in generalization, the system uses either the K-NN
to take the decision or DS with the generated pool (DSLP) as

suggested in [71].

It is worth noting from a general view, that the DSPG method showed in Figure 2.4 is conducted

as follows: At first, from the training set Tr, separate easy samples from the hard ones according

to the IH measure explained above. A sample is considered "easy" if the value of the Instance

Hardness (IH) defined by the kDisagreeing Neighbors (kDN) measure is IH = 0 (i.e, located

in a homogeneous region). Then, for every Hard sample x j, we compute its RoC θ j in Va (used

as DSEL) with a K −NN rule.

The suggested method allows to create a Temporary Pool (TP) of classifiers dedicated to every

specific hard sample, such that each classifier from TP crosses the RoC by linearly separating

between the frienemies samples. Additionally, the method places the hyperplanes taking into

consideration the proportion of samples belonging to each class.
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Given the previous information regarding the frienemies separation and the creation of the

temporary pool (TP), several questions regarding the pool generation arise:

Which pair of frienemies is the most suitable to the elaboration of a locally competent

classifier(s)? How many classifiers should one generate? What are the criteria that are

relevant to locally select the classifiers for a better generalization?

These questions, lead us to introduce a "local selection" mechanism in the context of dynamic

selection. We conduct the local selection using different strategies to integrate the most adapted

local classifier(s) from TP, and constitute the Dynamic Selection Local Pool (DSLP), a pool

that covers the indecision regions in the features space.

The frienemies separation concept, the creation of the Temporary Pool as well as the local

selection strategies are explained in details in subsections (2.2.2) and (2.2.3) respectively.

Figure 2.4 Summary of the Dynamic Selection Pool Generation

(DSPG) part with the different selection strategies
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2.2.1 How does the proposed local pool generation work?

In Algorithm 2.1 is presented the pseudo-code of the Dynamic Selection Pool Generation

(DSPG) method that returns its Dynamic Selection Local Pool (DSLP), as explained in the

previous diagrams. The step by step explanation of the algorithm is provided. The pairwise

separation of the frienemies, the creation of the Temporary Pool (TP) and the different strate-

gies of local selection are presented in separated sections.

Algorithm 2.1 Pseudo code of the Dynamic Selection Pool Generation technique

1 Input: Tr; Va
2 Output: DSLP
3 DSpool ←{}
4 Separate easy samples from hard ones using the kDN measure (2.3.1)
5 for each hard samples x j ∈ Tr do
6 θ j ←get the neighborhood (x j,Va)

7 Create a Temporary Pool (T P) within θ j , separating the frienemies according to

(2.1)
8 Add the chosen classifier c∗ or the chosen ensemble of classifiers C∗ to DSLP

according to the corresponding strategy explained in (2.2.3)
9 end

10 Return (DSLP)

In this procedure, we expect to generate a pool of classifiers that is based on local information.

The strategy of the proposed method is given following the pseudo-code above. First, in line 1,

we omit all the samples that are located in safe regions (homogeneous) according to the kDN

measure of instance hardness explained in (Cruz et al., 2017) and given in more details in 2.3.1

to separate between the easy samples and hard ones.

For each sample x j from the Hard samples in the training set (line 2), we compute its Region of

Competence (RoC) θ j within the validation dataset (Va, DSEL) using the K-Nearest neighbor

method. In line 4, a Temporary Pool (TP) is created in the RoC; by doing a pairwise separation

between the frienemies samples within RoC (the details of the pairwise separation are given in

2.2.1.
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In line 5, we apply the local selection strategy on the temporary pool created earlier to find

the most competent classifier(s) according to one of the proposed strategies we explained in

(2.2.3.1), (2.2.3.2), (2.2.3.3), (2.2.3.4) and (2.2.3.5). The chosen classifier c∗ or the chosen

ensemble of classifiers C∗ is (are) then added to the Pool that is suggested to be adapted to

DSLP, the Dynamic Selection Local Pool.

The proposed 5 strategies are based on 3 guides to perform the local selection, they are briefly

described as follows and the details will be explored in subsection 2.2.3:

- DCS as a guide for pool creation: we use DCS techniques on the Temporary Pool within

the RoC for x j to find the most competent classifier c∗ according to DCS. Then, depending

whether it is strategy 1 or strategy 2 we choose to add c∗ or not.

- KNORA-E as a guide for pool creation: in this case, representing our strategy 3, we rely

on the decision of KNORA-E that acts as a local oracle regarding the ensemble of classifiers

that will be added to the pool for each x j.

- Maximum number of well classified frienemies as a guide for pool creation: for this

guide, we expect the most competent classifier to be the one that distinguishes between a

maximum pairs of frienemies and add the first one that meets this requirement to DSLP

(strategy 4). In strategy 5, all the classifiers that distinguish between a maximum number

of frienemies are kept and added the pool.

In all cases, after adding the classifier(s) to DSLP, the algorithm keeps treating all the hard

samples until its return the final Dynamic Selection Local Pool (line 7), that will be used in

generalization (the generalization pseudo code is provided in 2.3).
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2.2.2 A pairwise separation between frienemies

In this work, we suggest that the creation of local classifiers is conducted by the pairwise

separation between the frienemies (Oliveira et al., 2017) within the neighborhood θ j (RoC) of

a query x j. Furthermore, we present a method to generate a set of hyperplanes that cross the

RoC, inspired by the Oracle based generation method (Souza et al., 2017).

The purpose of practicing a pairwise separation between the samples from the local region is

motivated by the difficulties faced by the DS techniques selecting competent classifiers when

they do not cross the region of competence; according to the observations of (Oliveira et al.,

2017).

Figure 2.5 shows the region of competence for a given query represented by a black diamond.

Let X and Y be two points from class 1 (red circle) and class 2 (blue cross) respectively.

Figure 2.5 Region of competence for a given query represented

by a black diamond. Red circle represents class 1, and blue cross

represents class 2.
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The separation of the frienemies X and Y , can be simply conducted by creating a hyperplane

that crosses the segment [X , Y ]. Knowing that the equation of the segment [X , Y ] is:

λX +(1−λ )Y ,λ ∈ [0,1] (2.2)

The question that arises is: at which point should an hyperplane cross the segment [X , Y ], in

order to obtain a proper separation? In other words, What could be the value of λ to have an

adequate separation?

Note: According to the previous equation, for λ = 1, the hyperplane would cross the point X ,

and for λ = 0, the hyperplan would cross the point Y .

For this particular example, as there is only one sample from class 2, it would be more favorable

for the hyperplane to cross the segment [X , Y ] at a point closer to Y , preferably at a distance that

would be proportional to the ratio of sample of class 2 which is a minority over the total number

of neighbors K. This can be accomplished by simply setting λ = |minority|
K (minority= |class2|)

as |class2| is the number of samples represented in blue cross which symbolizes the cardinality

of the minority samples. This lead us to grant to λ the value that represents the proportion of

disagreement between the samples from different classes within the neighborhood.

Thus, the hyperplane generated in Figure 2.4 crosses [X ,Y ] at a point closer to Y for a value of

λ = 1
7 .
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Figure 2.6 The frienemies separation proposed that is

closer to the minority class (blue cross) with the pink

classifier for a λ = 1
7 .

To define the perceptron’s weights without explicitly training them, we have used a similar

heuristic as the one proposed by (Souza et al., 2017). However, we use a different way to

calculate the bias; taking into account the proportion of the disagreement between the frenemy

samples in the Region of Competence. In fact, the heuristic proposed by (Souza et al., 2017)

considers the scalar product between the midpoint and the normalized distance vector between

the centroids in the bias calculation. In our case, we modified the position of the hyperplane

according to the proportions of the samples of different classes in the RoC, taking into con-

sideration the minority class. A visual illustration is provided in Figure 2.7 challenging the

consideration of the midpoint in such cases.
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For all the pairs of frienemies X and Y (X of class (1) and Y of class (2)) from the neighborhood

θq, we calculate the weight w j and bias μ j as follows according to the equations (2.3) and (2.4):

w j =
X −Y

||X −Y || (2.3)

μ j =−w j.(λX +(1−λ )Y ) (2.4)

with λ = |minority|
K .

Observation

Regarding the value of λ , a trivial value is the midpoint (λ = 0.5). Through Figure 2.7, we

observe that the consideration of the midpoint as conducted by (Souza et al., 2017) is not

well representative to the reality of the region of competence, contrary to what have been

proposed. We can see that the gray classifier gets a mistake in classifying one member of the

neighborhood, as opposed to the blue one.

Figure 2.7 The difference between the frienemies

separation in the midpoint (in gray) and the proposed

separation (blue cross)
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2.2.3 Strategies for local selection of classifiers

In this part, we introduce five new ways that aim to locally select one classifier (or more) from

the Temporary Pool (TP) mentioned in the previous subsection. To do so, we created different

guides or criteria to follow, 3 of them are based on the Dynamic Selection scheme and the rest

rely on the frienemies concept as summarized in Table 2.1.

Table 2.1 A summary of the strategies used as guides

to locally select the classifier(s) from the Temporary

Pool TP and construct DSLP

Strategy Guide Local Classifier’s Selection Scheme

Strategy 1 DCS

Add the most competent classifier from TP to keep,

according to DCS measure of competence, only if it

classifies well the sample

Strategy 2 DCS
Add the most competent classifier from TP to keep,

according to DCS measure of competence

Strategy 3 KNORA-E
Let KNORA-E decide which subset of classifiers

from TP to keep

Strategy 4 frienemies
Consider one of the classifiers from TP that classi-

fies correctly the maximum number of frienemies

Strategy 5 frienemies
Consider all the classifers from TP that classify cor-

rectly the maximum number of frienemies

Indeed, we count five local selection strategies motivated by three different guides : DCS tech-

niques, KNORA-E and the frienemies concept. The detailed explanations of the five strategies,

their motivations, their advantages and disadvantages are given in the next subsections.
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2.2.3.1 Strategy 1: DCS as a guide for local selection, no errors allowed

In this first strategy, we use the DCS measures of competence themselves as guides, in order

to find the most competent classifier within the RoC for each hard sample.

The reason behind this choice is to mimic the behavior of the DCS technique given the local

region. In fact, it was an intuitive direction to follow, to replicate the mechanisms of DCS

within the temporary pool, so that it‘s assured not only to have a classifier that passes the

region of competence, but also a classifier that would be competent according to each DCS

competence rule.

This strategy comes with a local selection mechanism as shown in Figure 2.8. In fact, after

creating the Temporary Pool for a certain hard sample in RoC from the training set, we apply

DCS to find the most competent classifier locally c∗. However, c∗ is added to the Dynamic

Selection Local Pool (DSLP) only if it classifies well x j , if it doesn’t then, the method moves

to another sample to treat until no hard samples are left.

The advantage of the first local selection mechanism is that : (1) all the classifiers in the pool

cross the region of competence, (2) all the classifiers are defined as most competent by the

DCS technique and (3) all the classifiers classified well the query in training. However, as a

disadvantage, some regions in the features space may not be covered, for the cases where the

c∗ is not added to DSLP due to the constraint of well classifying the sample.

Figure 2.8 Local Selection Strategy 1
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2.2.3.2 Strategy 2 : DCS as a guide for local selection

The second strategy is similar to the first one. It complies to the DCS scheme by applying

the DCS techniques applied with the Temporary Pool to find the most competent classifier c∗

within RoC for every hard sample. However, its local selection mechanism differers from the

first strategy by keeping c∗ whether it classifies well x j or it doesn’t.

On the other hand, the second selection of this strategy provides the following advantages:

(1) all the classifiers in the pool cross the region of competence, (2) all the classifiers are

defined as most competent by the DCS technique and (3) in all times, the features space is

covered by these locally competent classifiers. However, due to the hardness of the samples,

the geometrical properties of the problem and the quality of the samples located in the Region

of Competence, some of the classifiers that are selected locally may fail in generalization.

Figure 2.9 Local Selection Strategy 2
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2.2.3.3 Strategy 3: KNORA-E as a guide for local selection

In this third strategy, we consider KNORA-E as a guide in the selection of the locally competent

classifiers. We chose KNORA-E in particular because it is known as one of the top Dynamic

Ensemble selection techniques according to (Cruz et al., 2017, 2018; Oliveira et al., 2017).

Moreover, its mechanism is based on the application of the Oracle property when selecting

the K-Nearest Oracles ensemble, composed of classifiers that correctly classify a given sample

from the Region of Competence (Cruz et al., 2017).

This selection mechanism, in the context of local pool generation works as follows: after

passing by the same process of separating easy from hard samples according to the instance

hardness measure, and generating the Temporary Pool (TP) for x j within the RoC; the K-

Nearest Oracles Eliminate (KNORA-E) is used to select a subset of competent classifiers from

TP to be added to the Dynamic Selection Local Pool as shown in Figure 2.9.

One of the main advantages of using KNORA-E is to have several classifiers that correctly

classify all the samples within the region of competence, as well as exploiting the concept of

local Oracle. However, since the neighborhood could be reduced if there is no classifier that

performs perfectly within the neighborhood according to KNORA-E properties; the reliability

of the decision regarding the most competent ensemble within the neighborhood would not

always be representative.

Figure 2.10 Local Selection Strategy 3
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2.2.3.4 Strategy 4 : frienemies distinction as a guide for local selection, one classifier
allowed

In this strategy, we test the ability of the classifiers to separate the maximum number of frenemy

samples. The first part of the method remains the same as the previous ones;it means that

we separate hard from easy samples according to their belonging to safe regions. The only

difference between this proposed strategy and the others, resides in the criteria of selection to

construct the pool of classifiers.

We evaluate the classifiers from TP according to how many frienemies they could correctly

classify. The first classifier that scores the maximum number of well classified frienemies, is

selected to be added to the Dynamic Selection Local Pool (DSLP).

The main idea behind this strategy is motivated by the FIRE-DES framework conducted by

(Oliveira et al., 2017), where in their online pruning, they kept temporarily classifiers that

could distinguish between at least one pair of frienemies to classify the specific test sample. In

our proposition, we used this property for locally creating these classifiers with an upgraded

feature: the classifiers kept should distinguish between the pairs of frienemies. Once this

condition is applied, one classifier is kept (strategy 4) or all those which satisfy this condition

will be part of DSLP (strategy 5).

Figure 2.11 Local Selection Strategy 4
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2.2.3.5 Strategy 5 : frienemies distinction as a guide for local selection, multiple classi-
fiers allowed

For this part, it works similarly as the previous strategy, the only difference is that we enlarge

the spectrum by keeping all the classifiers that achieve a maximum score in the distinction

between the frienemies. Thus, we would have more than one classifier that perfectly provides

a local linear separation between the classes in the local region of competence.

Given the motivations cited above, in a recent paper (Cruz et al., 2018) stated that "Ideally, a

local competent classifier would be able to distinguish between all the frienemies pairs in the

region of competence. Thus, being able to separate between the two classes locally ". In this

case, we aimed to maximize the presence of "ideal classifiers" as stated before.

Given the description of this strategy, its motivations and advantages, it is worth mentioning

that one of its possible drawbacks (selecting all the classifiers that perfectly distinguish between

all the frienemies in RoC) could lead to a DSLP of high cardinality, since the first purpose of

the pairwise frienemies separation detailed in 2.2.1 is to enforce the property of maximizing

the distinction of frienemies in an indecision region of competence.

Figure 2.12 Local Selection Strategy 5
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2.3 The generalization phase

After the pool generation, comes the part where we test its performance in generalization. As

explained in the beginning of this section, we choose to exploit the instance hardness metric

to define which samples will be classified by the KNN and which ones are going to be treated

by the DS technique. For an instance which its hardness level equals to IH = 0 will be treated

by KNN and the other samples belonging to indecision region will be assigned to the Dynamic

Selection and are treated by the previously generated pool of classifiers. Algorithm 2.2 presents

the pseudo code of this step. Va represents the Validation dataset that we use as DSEL.

Algorithm 2.2 The joint use of the K-NN rule and DS techniques in generalization

depending on the instance hardness level

1 Input: xquery,Va, DSLP
2 θ ← Compute the Region of Competence of xquery in Va
3 if IH(xquery = 0) then
4 Apply the K −NN rule

5 else
6 Apply DS technique over DSLP
7 end
8 Return label(xquery)

2.4 Case study:The P2 problem

This section includes a case study on a well known synthetic dataset named the "P2 problem".

P2 is a two-class problem, presented by Valentini (Cruz et al., 2015b; Valentini, 2005), in which

each class is defined in multiple decision regions delimited by polynomial and trigonometric

functions (Equation 6.1). As in (Cruz et al., 2015b; Henniges et al., 2005), E4 was modified

so that the area of each class was approximately equal.

The P2 problem is illustrated in Figure 2.13 with the decision boundaries. We acknowledge

that it is impossible to solve this problem using linear classifiers(Cruz et al., 2015b; Valentini,

2005). The performance of the best possible linear classifier is around 50% (static selection)
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(Cruz et al., 2015b). In this explanatory example in Figure 2.13 , the P2 problem is generated

as follows: 750 samples for training, 1250 for validation and 500 samples for testing.

(a) Training Set (b) Validation Set 

(c) Test Set 

Figure 2.13 The P2 Problem with decision boundaries, the red

circle refers to class 1

E1(x) = sin(x)+5 (2.5)

E2(x) = (x−2)2 +1 (2.6)

E3(x) =−0.1x2 +0.6sin(4x)+8 (2.7)

E4(x) =
(x−10)2

2
+7.902 (2.8)

2.4.1 Local Pool Generation for P2

The purpose of this work consists on generating locally competent classifiers that comply to

the Dynamic selection scheme. It is worth reminding that the competence in this contexts
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means that the generated classifiers have to pass and cross the region of competence; whereas

the compliance to the Dynamic Selection scheme means that we take local information and the

properties of the DS techniques to have the most suited classifier or ensemble of classifiers for

each region of competence. For a better understanding of the method, Figure 2.14 shows an

example of visual steps of the first DSPG method, for the synthetic P2 problem.

For this illustration, we showed the first strategy (DCS as a guide for local selection) with LCA

in wrapper. For generalization, we jointly used KNN classifier and LCA given the hardness of

the queries. The detailed explanation will follow.

At this stage, we assume that the separation between the easy and hard samples has already

been conducted. Figure 2.14 (a) reflects the features spaces, the gray samples represent DSEL,

the light pink circles and purple crosses represent our hard instances from class 1 and class 2

respectively. We can clearly see that they are located on the decision boundaries which means

that, they are located in indecision regions, according to (Oliveira et al., 2017).

In the first iteration:

The first step is to select a query to be treated, and its region of competence from DSEL, as

illustrated in figure 2.14(b).

For this query, we apply the frienemies separation method to create the Temporary Pool (TP)

(Figure 2.15(a)). The region of competence is encircled in blue and the classifiers generated

are in the same color. We can see that there are several potential competent classifiers that

distinguish perfectly between the samples of different classes. It optimistically means that,

all the components are ready for the DS technique to choose the best classifier within the

neighborhood.

We then apply the DS technique (LCA in our case) on TP according to strategy 1: DCS as a

guide for local selection of classifiers, no errors allowed. Only the selected classifier by LCA

https://www.clicours.com/
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will remain, as shown in Figure 2.15b), and is therefore, added to the Dynamic Selection Local

Pool (DSLP).

a) The features space b) The first region of competence

Figure 2.14 A Region of Competence in an indecision region

from the P2 problem

a) The construction of TP b) The remaining classifier after strategy application

Figure 2.15 First iteration: the generation of a Temporary Pool

(TP) for a hard sample in a Region of Competence and the local

selection of the most competent classifier to be added to DSLP
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In the second iteration:

In the same way then the first iteration, another query is selected, and we apply the frienemies

separation method to obtain the corresponding TP, as shown in Figure 2.16(a) (in brown).

After the application of DCS, only one classifier is added to DSLP as we can see in Figure

2.16(b). Again, the colors are meant to make the distinction between the regions of competence

and the classifiers generated for each specific query xq which are of the same color.

a) Iteration 2: TP construction b) Iteration 2: remaining classifiers

Figure 2.16 The second iteration: the generation of a Temporary

Pool (TP) for the second hard sample in a Region of Competence

followed by the chosen classifier to integrate DSLP

In the next iterations:

Figure 2.17(a) represents the subset of classifiers obtained after the first five (5) iterations. Once

all the hard samples are treated, we can see the final output in 2.17(b), as the feature space is

well covered for this specific scenario. The features space has been covered with exactly 84

locally competent classifiers. The accuracy rate in generalization for the following replication

was 94%. For the same replication, the accuracy rate using Bagging was 89.1% and 92.2%

for KNN (K=7).
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a) The chosen classifiers within their RoCs b) The final DSLP

Figure 2.17 A snapshot of the classifiers chosen applying the first local selection

strategy and a final coverage of the space (b) of that specific replication

2.4.2 Case study summary

This case study falls in the context of enhancing the capacity of ensembles to learn locally,

given a region of competence. It was motivated by the nonexistence of ensemble generation

methods that are meant for Dynamic Selection. Previous works (Cruz et al., 2018; Oliveira

et al., 2017; Cruz et al., 2017) have underlined this gap and we aimed to take into consideration

several of the previous works recommendations in order to create an informed classification

system that takes into consideration the composition of the region of competences to generate

classifiers that are contained within the indecision areas.

We provided an illustrative explanation to the frienemies pairwise separation given the region

of competence for a given hard sample xq. We also showed the final coverage of the features

space when using the LCA properties within the pool generation, chosen as a guide for local

selection of classifiers.

We can expect that separating the frienemies samples taking into account the minority class,

maximizes the abilities of the classifiers to make the distinction between the samples. It also

aligns with the DS technique that use the neighborhood for decision making. However, the dis-
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tribution of DSEL and the geometrical configuration of the problem have a high impact on the

definition of the neighborhood and therefore, affect directly the competence of the classifiers.

This case study explained step by step the evolution of the proposed method for the first strategy

on the synthetic problem P2. The next chapter will present the experimental protocol, the

different datasets used and the results of the strategies proposed. We also provide a comparative

study between the results of the local selection strategies proposed and the results of state of

the art pool generation methods.
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2.5 Discussion

The proposed method consists in generating a pool of local classifiers, by taking into account

local information. We expect the proposed system to have the following advantages:

1. The presence of local competent classifiers; the locality is justified by the generation

of hyperplanes within the Region of Competence (RoC) of each query sample x j, that is

treated. The classifier(s) that has (have) the highest performance by any of the previous

strategies is (are) considered as c∗ or C∗, and is (are) included to the the Dynamic Selection

Local Pool (DSLP).

2. The proposed techniques take into consideration several guides for local selection pre-

sented by the DCS techniques (strategy 1 and 2), KNORA-E (strategy 3) or the friene-

mies distinction (strategy 4 and 5).

3. The method is iterative and needs no training, since the parameters of the perceptrons are

determined by the proposed heuristic inspired by the Oracle based ensemble generation

method in (Souza et al., 2017) with a modification of the position of the hyperplane, as

we take into consideration the proportion of samples of different classes within the local

region.

4. The proposed method in this work provides a local coverage of the features space, and

focuses on creating hyperplanes for indecision regions; knowing that the safe regions (ho-

mogeneous) will be treated in generalization directly by the K −NN. This falls in the

recommendation presented by (Cruz el al., 2017) regarding the joint use of K −NN and

DS, given the hardness of the samples.

These are the direct advantages of generating locally competent classifiers; the experimental

results will provide us insights about the behavior of DSLPin generalization compared to the

baseline techniques. Moreover, we will see if the DS techniques are able to identify these

locally competent classifiers and use them for hard instances predictions.





CHAPTER 3

EXPERIMENTS AND RESULTS

3.1 Experimental protocol

In the pursuit of elaborating a pool generation method based on local information in the con-

text of Dynamic Selection, the study was performed using a test bed composed of 17, 2-

class problems public datasets. Ten of them are from the UCI machine learning repository

(Bache & Lichman, 2013), two from the Ludmila Kuncheva Collection (LCK) (Kuncheva,

2004a) of real medical data, two from the STATLOG project (KING et al., 1995), one from

PRTOOLS and two from the Knowledge Extraction based on Evolutionary Learning (KEEL)

repository (Alcalá-Fdez et al., 2011). The key features of the datasets are presented in Table

3.1. 20 replications were conducted on each dataset. For each replication, the datasets were

randomly divided as follows: 50% for training, 25% for the dynamic selection dataset (DSEL)

and 25% for the test set for the local pool generation method. The mention (IR) represents the

Imbalance ratio for each dataset.

The results were obtained using seven state-of-the-art DCS methods for all the strategies pre-

sented in 2.2.3: Overall Local Accuracy (OLA) (Woods et al., 1997), Local Class Accuracy

(LCA)(Woods et al., 1997), Multiple Classifier Behavior (MCB) (Huang & Suen, 1995), Apri-

ori (Giacinto & Roli, 1999), Aposteriori (Giacinto & Roli, 1999), Modified Local Accuracy

(MLA) (Smits, 2002) and DCS-Rank (Woods et al., 1997; Smits, 2002). We also used the

following DES techniques: The K-Nearest Oracles Eliminate (KNORA-E) (Ko et al., 2008)

and The K-Nearest Oracles Union (KNORA-U) (Ko et al., 2008). The neighborhood size K

for each of the DCS and DES techniques is fixed to 7, since they performed the best with this

setting as reported according to the survey (Cruz et al., 2015a, 2018; Cruz, 2016).
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Table 3.1 Key features of the 17 datasets used for the

experiments, IR represents the Imabalance Ratio.

Database No. of Instances Dimensionality Source IR
Adult 48842 14 UCI 1.25

Blood transfusion 748 4 UCI 3.17

Breast (WDBC) 568 30 UCI 1.67

German credit 1000 20 STATLOG 2.33

Haberman’s Survival 306 3 UCI 2.8

Heart 270 13 STATLOG 1.26

ILPD 583 10 UCI 2.48

Ionosphere 315 34 UCI 1.75

Laryngeal1 213 16 LKC 1.65

Lithuanian 1000 2 PRTOOLS 1

Liver Disorders 345 6 UCI 1.39

Mammographic 961 5 KEEL 1.06

Monk2 4322 6 KEEL 1.11

Pima 768 8 UCI 1.87

Sonar 208 60 UCI 1.16

Vertebral Column 310 6 UCI 2.12

Weaning 302 17 LKC 1

To compare the different solutions provided for a defined problem, we need to properly define

a quantitative way to evaluate the systems. We will base our comparison on Demšar’s paper

on Statistical Comparisons of Classifiers over Multiple Data Sets (Demšar, 2006) using the

sign rank test, and the Bonferoni-Dunn post-hoc treatment, as well as wins, ties and losses

comparisons.

The proposed system depends on the following parameters: The dynamic selection method,

and the region of competence of the size (K). Moreover, it was given the same value for the

purpose of later comparison.
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3.2 Results analyses and discussions

In this section, we study the results of the combination of the K −NN classifier and the dy-

namic selection algorithms under the different pool generations strategies. Indeed, following

the recommendations of (Cruz et al., 2017), we created a system that either uses the K −NN

classifier or DS, according to the level of hardness of the samples. The instance hardness is de-

fined in the experiments as IH = 0 (safe region). The reason behind this strategy is to push the

system to use K −NN in homogeneous regions and therefore accelerate the processing time.

Figure 3.1 illustrates the range of the IH measure into deciding whether we use K −NN or

DS techniques, for this experiments we decide to use K −NN over DS only in safe regions

(IH = 0).

Figure 3.1 Instance Hardness measure for the joint use of K −NN and DS in

generalization.



60

Our research question concerns the local pool generation of classifiers for Dynamic Selection.

We proposed a system composed of several phases in order to solve the problem. We take into

consideration local information within the Region of competence of each sample located in an

indecision region for two class problems to:

- Create a Temporary Pool (TP) to separate between the frienemies in a pairwise scheme.

For a neighborhood size equals to 7, the number of local temporary classifiers generated is

either 6, 10 or 12 classifiers corresponding to the number of samples from each class (1,6),

(2,5) and (3,4) respectively.

- Adopt 5 local selection strategies in order to choose either one classifier or an ensemble of

classifiers that are competent within TP.

3.2.1 Comparison between the proposed local pool generation strategies and the state
of the art generation methods

In this part, we conduct different statistical tests in order to have a wide understanding of the

results provided by the experiments.

As a robust multi-comparison global approach, the Friedman test was conducted as well as the

Bonferoni-Dunn post hoc test (Demšar, 2006) to illustrate the differences between the strate-

gies and the two state of the art pool generation methods (Bagging and SGH) for DS techniques.

The results of this test are shown in Figure 3.2.

The aim is to find which of the proposed strategies suits best the Local Pool Generation and

which is comparable to the state of the art methods. The baseline pool generation methods are

Bagging in which we generate 100 perceptrons and SGH where it generates in average less

than 5 classifiers whereas in our proposed method, the number of classifiers is proportional to

the number of hard samples (the details of the number of classifiers is in Appendix II). This

statistical test helps to find the strategy that will be studied in details in order to proceed with a

fine analysis.
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An additional step in our analysis concerns, the search for the most competent Dynamic Selec-

tion techniques related to the chosen pool generation strategy in the first test. Indeed, another

Friedman and Bonferoni-Dunn post hoc tests are administered to show the average ranks be-

tween the techniques and therefore pick the relevant ones, ideally from both DES and DCS

approaches.

The last step of our approach consists in narrowing down the analysis. To do so, a pairwise

sign test (Demšar, 2006) is used, based on the number of wins, ties and losses, of the chosen

DS techniques for the proposed pool generation method, compared with the performances of

the same DS techniques using SGH and Bagging as ensemble generation techniques. The goal

of this analysis is to see which DS techniques are more suitable for the proposed generation

techniques and on which kinds of classification problems.

Global comparison: Most suitable strategy

Figure 3.2 shows the critical difference diagram; the techniques in which the difference in

average rank is lower than the critical difference are considered as statistically equivalent and

hence, they are connected by a bar.

In fact, we can see from Figure 3.2 (a), for a critical value of α = 0.05, the proposed strat-

egy 4 and the two baselines are connected with a bar, which means that they are statistically

equivalent. On the other hand, Figure 3.2(b) shows the global critical difference for a value of

α = 0.01 which adds strategy 5 to the most performing methods of this batch of comparison.

From this first round of visual comparison, we observe that strategy 4 is the most promising,

as it presents a global equivalence in terms of performance for DS techniques compared to the

DS techniques results, under the two state of the art ensemble methods.

Now, when does our method outperform the state of the art? The next subsections, provide

narrow statistical comparisons attempting to answer the question.
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a) Bonferoni Post-hoc test for α = 0.05

b) Bonferoni Post-hoc test for α = 0.01

Figure 3.2 Bonferroni-Dunn post hoc test for a critical value of

α = 0.05 (on top) and α = 0.01 (on the bottom). The strategies in

which the difference in average rank is lower than the critical

value are connected with a bar.
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Strategy 4: The most relevant DS techniques

To provide a finer analysis, we conducted again the Friedman average rank test and the Bonferoni-

Dunn post hoc test on the pool generation method provided by strategy 4, comparing between

the different DS techniques.

The Friedman test provides the average rank between the methods given a critical difference

according to the critical values of α so we can proceed with Bonferoni-Dunn post hoc test. The

technique providing the lowest average rank is the one presenting the highest results. Besides,

the Dynamic Selection techniques in which the difference in average rank is lower than the

critical difference are considered as statistically equivalent and hence are illustrated by being

connected by a bar.

For α = 0.05 represented by Figure 3.3 (a), the critical difference CD = 2.547. We see that for

strategy 4, the DES method KNORA-U provides the best results for all the datasets. It is sta-

tistically equivalent to the DES method KNORA-E and the DCS techniques LCA, Aposteriori

(APOS) and OLA. Followed on the other side by the other DS techniques ranking as follows

Apriori (APRI), MCB, Rank and Lastly MLA.

For the other critical value of α = 0.01, the rank in terms of the best performances remains

the same as previously (KNORA-U is ranked first, followed by KNORA-E, LCA, Aposteriori,

Apriori, MCB, Rank and MLA). Except that the value of the critical difference is different

(CD = 3.3121); this includes the DCS techniques Apriori (APRI) and MCB in the category

of equally performing DS techniques. We observe in the overall that both the DES techniques

perform better than the rest of the DCS techniques for this strategy.

This being exposed, we choose the first ranking four Dynamic Selection techniques to pursue

the analyses for our proposed generation method conducted using strategy 4. It means that the

DES techniques KNORAU and KNORAE, as well as the DCS techniques LCA and Aposteriori

(APOS) will be called for further analyses in comparison with the results of the same DS
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techniques under the two baseline pool generation techniques (Bagging and SGH). We didn’t

include OLA to have 2 DS techniques from each category.

a) Bonferoni Post-hoc test for α = 0.05

b) Bonferoni Post-hoc test for α = 0.01

Figure 3.3 Bonferroni-Dunn post hoc test for a critical value of

α = 0.05 (a) and α = 0.01 (b). The DS techniques in which the

the difference in average rank is lower than the critical value are

connected with a bar.
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When does strategy 4 outperform the baselines in terms of DS results?

From the previous statistical Bonferoni Post-hoc test, we saw that globally, compared to the

chosen baselines Bagging and the (SGH), the local selection mechanism that is well suited for

our research question (generating classifiers that are locally competent, that pass by the local

region and are adapted to DS) is strategy 4. This strategy generates at least one classifier per

indecision region that can identify a maximum number of pairs of samples from different

classes (frienemies).

The reason behind this choice resides in the multiple tests conducted above, while following

the recommendation of Cruz el al. (Cruz et al., 2019), where they define the ideal classifier,

as "a classifier that could perfectly distinguish between the pairs of frienemies". Therefore,

our heuristic that presents the local selection strategy tightens its choice to the classifier that

maximizes the recognition of the samples in the neighborhood belonging to different classes,

is the most suited to the research question.

Given this information, how well did the DS techniques perform with the different pool gener-

ation schemes?.

To answer this question, we conducted a pairwise analysis based on the Sign-rank test from

(Demšar, 2006) that computes the number of wins, ties and losses obtained by each of the four

DS techniques with a pool generated by strategy 4 compared to the same DS methods with a

pool generated by Bagging and SGH.

The null hypothesis, H0, meant that both pool generation approaches obtained (Strategy 4

Vs SGH and Strategy 4 Vs Bagging, respectively) obtained statistically equivalent results. A

rejection to H0 means that the classification performance obtained by the DS technique in the

proposed scheme was significantly better at a significance level defined by α .
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For this test, the null hypothesis, H0, is rejected when the number of wins is greater than

or equal to a critical value nc. This value is calculated in equation (3.1), where nexp is the

number of experiences conducted (17 in our cases). We considered three levels of significance:

α = {0.10,0.05,0.01}.

nc =
nexp

2
+ zα

√nexp

2
(3.1)

Figure 3.4 shows a pairwise comparison between the performances of DS techniques using

Strategy 4 and the for the same methods, achieved by calculating the numbers of wins, ties and

losses.
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Figure 3.4 Strategy 4 compared with SGH using the different

DS techniques. The colored lines (left to right) illustrate the

critical values nc considering significance levels of

α = {0.10,0.05,0.01}, respectively

Compared to SGH for the different DS techniques, we can see that Strategy 4 outperforms

the for KNORA-E at all the significance levels (ie, for α = {0.10,0.05,0.01}. It presents as

well, a significant number of wins at all the values of α . For Aposteriori (APOS), the same
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conclusion is being drawn in terms of the number of wins of our generation strategy compared

to the baseline. Only LCA did not present a significant number of wins, nevertheless, it remains

statistically equivalent to the baseline for this case.

Figure 3.4 shows that overall, our proposed strategy 4 statistically outperforms the baseline for

KNORA-E, KNORA-U and Aposteriori(APOS) and this for all the levels of significance.

On the other hand, Figure 3.5 shows a pairwise comparison between the performances of DS

techniques using Strategy 4 and Bagging for the same methods, achieved by calculating the

numbers of wins, ties and losses.
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Figure 3.5 Strategy 4 compared with Bagging using the different

DS techniques. The colored lines (left to right) illustrate the

critical values nc considering significance levels of

α = {0.10,0.05,0.01}, respectively
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We see that for our proposed strategy 4, according to Figure 3.5, Aposteriori (APOS) out-

performed the Aposteriori results given by a pool generated by the baseline Bagging at a sig-

nificance level of α = 0.1. It also presented a tie with the baseline for α = 0.05.

In the overall, our proposed strategy 4 statistically outperforms significantly the baseline with

Bagging for Aposteriori (APOS) for a level of significance α = 0.1 and a tie with Bagging

for α = 0.05. It did not statistically present a significant number of wins for the rest of the

methods. However, they remain statistically equivalent for a certain significant level.

The statistical analysis showed us somehow, the behavior of our most performing Pool genera-

tion strategy in terms of DS results, compared to the DS results given by the two different pool

generation techniques that constitute our baseline methods.

The baseline ensemble generation methods are characterized as follows: (1) Bagging is the

usual Ensemble generation approach for the DS technique (Cruz et al., 2018) that covers the

features space. However, It remains a non-informed method based on resampling with replace-

ment (Breiman, 1996) that guarantees a certain diversity. On the other hand, SGH (2) is a

method that guarantees a value of the oracle of 100%, it is intuitive and provides a small size

pool of classifiers. However, none of these methods take into account the aspect of locality

when creating the predictors and our proposed methods focuses on this, to create the pool of

classifiers.

Compared to SGH, our method performed very well by presenting significantly better results

on almost all the DS techniques studied and when it did not, it showed equivalence. Whereas in

comparison with Bagging, the statistical outperformance of our approach was only significant

for Aposteriori. This, dragged our attention on what could be the possible explanations for

such results.

Given that our system fully depends on the local information in the Region of Competence

and this local information relies on the number of examples in DSEL for each sample that we
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treat; an interesting path was to compute the Ratio of the number of Samples on the number of

Features as SFR = number o f samples
number o f f eatures .

Table 3.2 represents this ratio for each dataset ranked from the lowest to the highest. On the

columns is represented the average result of APOS for Bagging, SGH and DSPG for Strategy

4. We can see directly from the table that for the Dataset "Sonar" Bagging and SGH win

against DSPG for value of SFR = 3.47.

On the contrary, for a value of SFR ≥ 3.47, the proposed method either dominates or is statis-

tically equivalent to the state of the art’s method. It is expected, as our technique focus solely

on local information gathered in DSEL, where for these kinds of datasets, we don’t neces-

sarily dispose of enough information to create locally competent classifiers visible by the DS

techniques.

Table 3.2 Mean of the accuracy of APOS for Bagging,

SGH and DSPG (Strategy 4) given the number of

example on the number of features ratio (SFR)

Dataset SFR Bagging SGH DSPG
Sonar 3.47 70.87 69.23 66.92

Ionosphere 9.26 80 77.27 82.39
Laryngeal1 13.31 82.26 80.38 82.26

Weaning 17.76 73.95 72.37 74.47
Breast 18.93 95.35 95.14 95.70
Heart 20.77 85.88 84.85 86.62

German 50 69.08 69.28 71.00
Vertebral 51.67 82.95 80.77 81.92

Liver 57.5 64.07 62.09 63.49

ILPD 58.3 67.19 66.85 68.29
Pima 96 72.92 72.03 75.1

Haberman 102 70.13 69.41 72.63
Blood 187 70.61 71.78 71.25

Mammographic 192.2 79.11 79.45 78.8

Lithuanian 500 96.03 96.13 96.87
Monk2 720 83.89 81.67 83.43

Adult 3488.71 85.09 85.55 87.17
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3.3 General discussion

In this chapter, we presented an overview of the DS results of the proposed strategies, as well

as the results of some baselines from the literature (Bagging, and ).

Compared to SGH, our strategy 4 presents higher performances in most of the DS techniques

chosen to address the analysis. Whereas for Bagging, our method presented a significant num-

ber of wins for one DS technique and slightly inferior number of loss for the other ones. This

lead us to, further investigate the reasons behind this difference in the performances by calcu-

lating the ratio of the number of samples on the number of features.

The trend shows promise in terms of pursuing this research direction of creating locally com-

petent classifiers for the context of Dynamic Selection. Below, are some relevant points we

could observe:

The most suitable guide for local selection of classifiers

As one of our objectives was to create a pool of locally competent classifiers adapted to the

context of DS, we generate several strategies to guide the creation of the pool. The most suit-

able strategy appeared to be the one exploiting the maximization of the well classification of

the frienemies within RoC, when compared to the other strategies and the ones in the literature.

Indeed, each strategy had its motivations, but the chosen one had not only covered the inde-

cision region, but also maximized the local performance by maximizing the number of well

classified frienemies.

The impact of the locality on the number of classifiers

In this work, we assumed that a local classifier is a hyperplane that crosses the region of com-

petence.

As one of our research questions concerns the creation of a pool of locally competent clas-

sifiers, a classifier has been created for every hard sample of the dataset to ensure the local
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competency and the locality in the indecision region. Therefore, the number of classifiers ob-

tained is proportional to the number of hard samples within the datasets. Appendix II shows the

average number of classifiers generated for Aposteriori for the different strategies suggested in

this research study (169 classifiers in average for strategy 4), compared to the number of clas-

sifiers generated in SGH (usually less than 5 perceptrons)

How does the proposed methodology stand out from the literature?

Our proposed method stands out from the literature by exploiting the concept of locality to

generate a pool of classifiers in the context of DS, as opposed to the baseline methods, which

use global information to cover the features space.

In terms of results, Maximizing the frienemies recognition while generating a pool of classifiers

had a positive impact on the results of the DS techniques in comparison with the baselines. It

presented a significant number of wins against the baseline that uses SGH for almost all the DS

techniques. The reason behind this result is that the pool generated by SGH covers the features

space globally as opposed to the proposed method. Moreover, it generates a few number of

classifiers (less than 5 in average, Appendix II) which makes it challenging to achieve excellent

performances when dealing with hard samples found in indecision regions, compared to DSPG.

As for the DS results with Bagging, our methods outperformed on the Aposteriori DS tech-

niques and had equivalent and slightly inferior results on the rest of the techniques given the 17

datasets. In terms of features space coverage, Bagging meets the requirements because it gen-

erates classifiers for different areas of the features space. However, it remains a non-informed

global generation technique that does not take into account local information as opposed to

DSPG.

On the other hand, given the poor information brought by DSEL in the cases where there is a

low ratio of SFR = number o f samples
number o f f eatures , added to the full dependency of the proposed system on

the local information in the Region of Competence; the DS techniques struggle to localize the

most competent classifiers in generalization, even if we believe the truest ones were created.
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The reason behind this struggle resides in the fact that, there is no link between the classifiers

generated locally during training with the samples located in similar areas in generalization.

This phenomenon lead again to a global use of the classifiers generated locally by our method.

This chapter was very insightful in terms of the efficiency of the proposed system when com-

pared to the baselines. It highlighted and confirmed its pros and brought up some issues that

need to be taken into consideration for a further pursue of the research question on the locality

for Dynamic Selection.

Further investigations need to be lead. The recommendations given the announced drawbacks

of the system, will be discussed in the next chapter.



CONCLUSION AND RECOMMENDATIONS

In this work, the problem statement expressed the need of creating an ensemble generation

method that is adapted to the Dynamic Selection context. Therefore, we had to study many as-

pects of the dynamic selection scheme through the related work (chapter 1), and explore many

ensemble generation methods. Throughout the process, we conducted an analysis (conference

paper (Cruz et al., 2017)) (Appendix I) that showed us the areas of the efficiency of Dynamic

Selection technique regarding the complexity of the data.

Throughout this thesis, we attempted to answer the following research questions:

- Can we create locally competent classifiers that are adapted to the DS requirements in

terms of local information?

Over the proposed methodologies presented in chapter 2, we created classifiers that separate the

frienemies (samples located in the same region of competence, from different classes) within

the regions of competence; taking into consideration the proportion of the samples in the inde-

cision regions. We remind that a locally competent classifier is assumed to be a hyperplane that

crosses the region of competence for a specific query, and is competent in the classification of

the samples within the neighborhood.

- What are the possible guides to lead to the creation of a pool of locally competent

classifiers?

For this case, we presented a novel classifier generation method based on several strategies

that generates local classifiers and takes into consideration local criteria in chapter 2. The

main characteristics of these strategies are the creation of several hyperplanes that separate the

frienemies (TP), within the region of competence, and use (1) DCS techniques to choose the
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most suitable classifier within that RoC, (2) KNORA-E as a local oracle to find the set of the

most competent classifiers or (3) maximizing the distinction between the frienemies in RoC.

The DSPG strategy focuses on the local coverage of the indecision regions of competence.

This means that, for every sample belonging to a certain neighborhood, there is at least one

classifier that is competent enough to join the DSLP. By the end of the pool generation, the

features space is covered in indecision regions. A detailed case study on a synthetic dataset was

provided to understand the method. The results showed that the most suitable guide to lead the

creation of a pool of locally competent classifier is maximizing the frienemies distinction.

- How can we jointly use K −NN and DS in generalization based on the instance hard-

ness measure?

Following the recommendations in (Cruz et al., 2017) (Appendix I), the joint use of the K−NN

and DS depending on the level of hardness of the instance is promising as a classification

system, exploits the advantages of the two strategies. As it allows the K −NN to operate fast

on the samples judged to be easy to classify and leaves the DS techniques to focus on the rest

of the samples. For our case, we considered an instance to be easy if its region of competence

is homogeneous.

The results of this study in chapter 3, were comparable to the results of the baseline methods.

Compared to SGH in DS results, our methods presented a significant boost in terms of perfor-

mances in generalization for most of the DS techniques. As for Bagging, our methods provided

a statistical improvement on one of the DS techniques and presented situations of equivalence

and slight inferiority. This lead us to observe that for some high dimension and small size

datasets the results were the poorest compared to ones in the literature, given the poor infor-

mation brought by DSEL. This situation lead to a clear struggle of some DS techniques to find

the most competent classifiers due to the insufficient representation of the data; added to the
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fact that the use of these locally generated competent classifiers is used globally by the DS

techniques; as there is no link between the classifiers generated and their use in generalization.

This work provided us with several interesting insights concerning the integration of local

information in constructing an ensemble of classifiers. The trend shows promise in terms

of pursuing this research direction. Naturally, there is still room for improvement for such

approaches.

Future work

In this part, we present the recommendations that we suggest for this research problem, towards

local classifier generation for dynamic selection.

- Conduct a deep investigation of the correlation between the ratio of the number of samples

and the number of features (SFR) to improve the local pool generation.

- Use prototype generation techniques in DSEL for datasets with high dimensionality and

small amount of data, given that that the generation method is fully dependent on the infor-

mation provided in DSEL.

- Create a heuristic that forces the DS technique to choose the classifier(s) that has (have)

been generated for that specific Region of Competence .

- Enlarge the definition of easy samples by including the ones having lower instance hardness

rate IH < 0.42 as suggested in (Cruz et al., 2017) to be treated by the K-NN classifier.

- Construct a new online classifier generation/selection system that operates in the indecision

regions as follows: for each hard test sample, create a Temporary Pool (TP) within the RoC.

Then rely on the decision of the classifier that separates between the maximum of frienemies

(as in strategy 4) or more than 1 classifiers (as in strategy 5) and conduct a majority voting

amongst them for predicting the label of the query.

- Extend and enlarge the work to multi-class datasets.





APPENDIX I

COMMUNICATION PRESENTED IN IPTA 2017

This appendix contains complementary information to this research. The communication was

presented in International Conference on Image Processing Theory, Tools and Applications

(IPTA 2017). In this paper, we state why and when Dynamic Selection obtains higher classifi-

cation performance than the K-NN classifier.
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Abstract— Multiple classifier systems focus on the combination
of classifiers to obtain better performance than a single robust
one. These systems unfold three major phases: pool generation,
selection and integration. One of the most promising MCS
approaches is Dynamic Selection (DS), which relies on finding
the most competent classifier or ensemble of classifiers to predict
each test sample. The majority of the DS techniques are based
on the K-Nearest Neighbors (K-NN) definition, and the quality of
the neighborhood has a huge impact on the performance of DS
methods. In this paper, we perform an analysis comparing the
classification results of DS techniques and the K-NN classifier
under different conditions. Experiments are performed on 18
state-of-the-art DS techniques over 30 classification datasets and
results show that DS methods present a significant boost in clas-
sification accuracy even though they use the same neighborhood
as the K-NN. The reasons behind the outperformance of DS
techniques over the K-NN classifier reside in the fact that DS
techniques can deal with samples with a high degree of instance
hardness (samples that are located close to the decision border)
as opposed to the K-NN. In this paper, not only we explain why
DS techniques achieve higher classification performance than the
K-NN but also when DS should be used.

Keywords— Ensemble of classifiers, Dynamic ensemble selec-
tion, K-nearest neighbors, Instance hardness.

I. INTRODUCTION

One of the most promising MCS approaches is Dynamic

Selection (DS), in which the base classifiers1 are selected on

the fly, according to each new sample to be classified. DS

has become an active research topic in the multiple classifier

systems literature in the past years. This is due to the fact that

more and more works are reporting the superior performance

of such techniques over traditional combination methods, such

as Majority Voting and Boosting [1], [2], [3], [4], [5]. DS

techniques work by estimating the competence level of each

classifier from a pool of classifiers. Only the most competent,

or an ensemble containing the most competent classifiers, is

selected to predict the label of a specific test sample. The

rationale for such techniques is that not every classifier in the

pool is an expert in classifying all unknown samples; rather,

1The term base classifier refers to a single classifier belonging to an
ensemble or a pool of classifiers.

each base classifier is an expert in a different local region of

the feature space [6].

In dynamic selection, the key is how to select the most com-

petent classifiers for any given query sample. The competence

of the classifiers is estimated based on a local region of the

feature space where the query sample is located, called region

of competence. This region is usually defined by applying the

K-Nearest Neighbors technique to find the neighborhood of

this query sample. Then, the competence level of the base

classifiers is estimated, considering only the samples belonging

to the region of competence according to any selection criteria;

these include the accuracy of the base classifiers in this local

region [7], [8], [9] or ranking [10] and probabilistic models [3],

[11]. The classifier(s) that attained a certain competence level

is(are) selected.

Several works pointed out that the performance of DS

techniques is very sensitive to the definition of the region

of competence [12], [13], [14]. If there is a noise in the

defined neighborhood of the query sample, the DS systems

are more likely to fail. Moreover, the use of different K-NN

approaches for the definition of the regions of competences

can significantly change the performance of DS methods [15].

As the competence of the base classifiers are heavily depen-

dent on the K-Nearest Neighbors for the definition of the local

regions, one question arises: Why do we use dynamic selection

instead of simply applying the K-NN classifier? Moreover, in

which scenario the use of DS brings benefits over the K-NN?

To the best of our knowledge, there is no comparison between

both classification approaches in the DS literature. Hence, the

objective of this paper is to perform an analysis comparing the

classification results of DS techniques and the K-NN classifier.

In particular, the following points are investigated:

1) Do DS techniques achieve higher classification perfor-

mance than the K-NN?

2) Why does DS present better classification accuracy than

K-NN even though the same neighborhood is considered

for both techniques?

3) When should DS be used for classification instead of

K-NN?

Experiments are carried out using 18 state-of-the-art DS

technique over 30 classification datasets. We demonstrate that978-1-5386-1842-4/17/$31.00 c© 2017 IEEE



not only DS techniques achieves significantly better results,

but we also demonstrate in which scenarios DS techniques

can improve the generalization performance over the K-NN

classifier.

This paper is organized as follows: Section II presents the

related works on dynamic selection. Section III addresses

the experiments conducted on state-of-the-art DS techniques.

Conclusion and future works are presented in the last section.

II. DYNAMIC SELECTION

Dynamic selection techniques consist, based on a pool of

classifiers C, in finding a single classifier ci, or an ensemble

of classifiers C ′ ⊂ C, that has (or have) the most competent

classifiers to predict the label for a specific test sample, xq .

The most important component of DES techniques is how

the competence level of the base classifier is measured, given

a specific test sample xq . This is a different concept from

static selection methods [16], [17], in which the Ensemble of

Classifiers (EoC), C
′
, is selected during the training phase,

according to a selection criterion estimated in the validation

dataset, and is used to predict the label of all test samples in

the generalization phase.

In dynamic selection, the classification of a new query

sample normally involves three phases:

1) The definition of the region of competence; that is, how

to define the local region surrounding the query, xq , in

which the competence level of the base classifiers is

estimated

2) The selection criteria used to estimate the competence

level of the base classifiers, e.g., Accuracy, Probabilistic,

and Ranking

3) The selection mechanism that chooses a single classifier

(DCS) or an ensemble of classifiers (DES) based on their

estimated competence level

The most common method to define the regions of compe-

tence is by using the K-NN technique, to get the neighborhood

of the test sample [7], [4], [8], [18], [19], [20], [21], [5], [11],

[9], [10], [22]. The set with the K-Nearest Neighbors of a

given test sample xq is called region of competence, and is

denoted by θq = {x1, . . . ,xK}. Many works pointed out that

the definition of this region of competence is of fundamental

importance to DS methods, as the performance of all DS tech-

niques is very sensitive to the distribution of this region [15],

[23]. The samples belonging to θq are used to estimate the

competence of the base classifiers, for the classification of xq ,

based on various criteria, such as the overall accuracy of the

base classifier in this region [7], ranking [10], ambiguity [24],

oracle [4] and probabilistic models [11]. In any case, a set of

labeled samples, which can be either the training or validation

set, is required for the definition of the local regions. This set

is called the dynamic selection dataset (DSEL) [25].

After the competence level of the base classifiers are esti-

mated, the most competent one or an ensemble containing the

most competent classifiers, to predict the label of xq is(are)

selected. For instance the Overall-Local-Accuracy (OLA) [7]

and Multiple Classifier Behavior (MCB) [20] techniques se-

lect only the classifier that achieved the highest competence

level in the neighborhood, while the K-Nearest Oracles tech-

niques (KNORA) [4] and the Dynamic Ensemble Selection-

Performance (DES-P) [11], and META-DES [5] select an EoC

containing the most competent classifiers.

As the neighborhood of the query sample is not used directly

to predict its label, but rather to estimate the competence level

of the base classifiers. This brings benefits when dealing with

samples located in an indecision region, i.e., which are located

in areas surrounding classes boundaries [26]. When the query

is located in such a region, the majority of its K-Nearest

Neighbors may belong to a different class, which can lead

to bad predictions. Moreover, samples located in indecision

regions are often misclassified by other pattern recognition

techniques since they are usually associated with a high degree

of instance hardness [27].

However, DS techniques can still predict the correct label

for such samples as long as there exists at least one base

classifier that is competent locally. In other words, a classifier

that can correctly classify samples belonging to different

classes in the indecision regions. For example, Figure 1 shows

an example of an indecision region. The query sample xquery ,

belongs to the class 1 (red square). Since the majority of

its neighbors comes from the class 2 (blue circle), a K-

NN classifier, considering this whole neighborhood, would

misclassify the query sample.

Using dynamic selection it is possible to predict the correct

label of such sample as long as there are base classifiers that

cross this indecision region. For instance, consider the system

consisting of four base classifiers as shown in Figure 1 (b).

If we apply the Overall-Local-Accuracy (OLA) technique [7],

the classifier c3 would be selected, since it obtained a 100%

accuracy for the local region. The other base classifier that

predicted the correct label is c1 yet, it does not cross the region

of competence, knowing that it achieves a level of competence

of 0.33 which is lower than classifiers c2 and c4 with 0.85

and 0.57 respectively. Consequently, using dynamic selection

it is possible to give the correct prediction for this sample as

long as there is at least one base classifier that obtains a high

competence level in the local region.

Thus, our hypothesis is that DS techniques outperform the

K-NN classifier since it can better deal with samples that are

located in indecision regions. This hypothesis is evaluated in

the next section.

III. EXPERIMENTS

The comparative study was performed using a test bed

composed of 30 classification problems proposed in [5]. The

key features of the datasets are presented in Table 1. For each

dataset, the experiments were carried out using 20 replications.

For each replication, the datasets were randomly divided on

the basis of 25% for training, T , 50% for the dynamic

selection dataset, DSEL, and 25% for the generalization set,

G. The divisions were performed while maintaining the prior

probabilities of each class. For the K-NN classifier, DSEL



Fig. 1. Example of a query sample located in an indecision region. (a) The
estimated region of competence with K = 7. (b) Decision border of different
base classifiers with the arrows pointing to the regions of both classes. As
the majority of its neighbors belong to a different class, the K-NN classifier
would make the wrong prediction. However, DS techniques can still make the
right decision if the DS method selects the base classifier that is competent
locally (c3).

Table 1. Summary of the 30 datasets used in the experiments [Adapted

from [5]].

Database No. of Instances Dimensionality No. of Classes Source
Adult 48842 14 2 UCI

Banana 1000 2 2 PRTOOLS

Blood transfusion 748 4 2 UCI

Breast (WDBC) 568 30 2 UCI

Cardiotocography (CTG) 2126 21 3 UCI

Ecoli 336 7 8 UCI

Steel Plate Faults 1941 27 7 UCI

Glass 214 9 6 UCI

German credit 1000 20 2 STATLOG

Haberman’s Survival 306 3 2 UCI

Heart 270 13 2 STATLOG

ILPD 583 10 2 UCI

Ionosphere 315 34 2 UCI

Laryngeal1 213 16 2 LKC

Laryngeal3 353 16 3 LKC

Lithuanian 1000 2 2 PRTOOLS

Liver Disorders 345 6 2 UCI

MAGIC Gamma Telescope 19020 10 2 KEEL

Mammographic 961 5 2 KEEL

Monk2 4322 6 2 KEEL

Phoneme 5404 6 2 ELENA

Pima 768 8 2 UCI

Satimage 6435 19 7 STATLOG

Sonar 208 60 2 UCI

Thyroid 215 5 3 LKC

Vehicle 846 18 4 STATLOG

Vertebral Column 310 6 2 UCI

WDG V1 5000 21 3 UCI

Weaning 302 17 2 LKC

Wine 178 13 3 UCI

was merged with the training data. As a result, all methods

were trained using the same amount of data available, while

the distribution of the test set remained the same. The pool

of classifiers C was composed of 100 Perceptrons generated

using the Bagging technique. The same pool of classifiers

was used for all DS techniques. Moreover, the size of the

region of competence (neighborhood size) K was equally set

at 7 for all techniques since it presented the best classification

performance according to [4], [5].

The analysis is conducted using 18 state-of-the-art DS

techniques, eight DCS and ten DES techniques. For DCS,

the following techniques were evaluated: Local Class Ac-

curacy (LCA) [7], Overall Local Accuracy (OLA) [7],

Modified Local Accuracy (MLA) [8], Modified Classifier

Ranking (RANK) [10], [7], Multiple Classifier Behavior

(MCB) [20], A Priori [18], [19], A Posteriori [18], [19]

and the Dynamic Selection on Complexity (DSOC). For

dynamic ensemble selection, the following techniques were

considered: K-Nearest Oracles Eliminate (KNORA-E) [4], K-

Nearest Oracles Union (KNORA-U) [25], Randomized Ref-

erence Classifier (DES-RRC) [28], K-Nearest Output Profiles

(KNOP) [25], [29], Dynamic Ensemble Selection Performance

(DES-P) [11], Dynamic Ensemble Selection Kullback-Leibler

(DES-KL) [11], DES Clustering [9], DES-KNN [9], Meta

Learning for Dynamic Selection (META-DES) [5] and META-

DES.Oracle [30].

Pseudo-code for the implementation of each method is given

in [2], [1]. It is important to point out that 15 out of the 18 DS

techniques use the K-NN to define the region of competence,

the only exceptions being the DES-RRC, DES-KL and the

DES-KMEANS. However, they still use local information in

order to estimate the competence level of the base classifiers.

A. Comparison DS vs K-NN

The first analysis conducted in this paper is a comparison

between the accuracy obtained by DS techniques and the

K-NN classifier. The objective of this analysis is to know

whether the use of DS leads to a significant improvement in

classification accuracy. For the K-NN classifier, we consider

a K = 7 (i.e., the same neighborhood size used by the DS

techniques) as well as the K = 1 which is used as a baseline

comparison.

Table 2 shows the average ranking and mean accuracy

of each technique considering the 30 classification problems

studied. The average ranks were obtained using the Friedman

test [31] as follows: For each dataset, the method that achieved

the best performance received rank 1, the second best rank 2,

and so forth. In case of a tie, i.e., two methods presented

the same classification accuracy for the dataset, their average

ranks were summed and divided by two. The average rank was

then obtained, considering all datasets. The best performing

algorithm, considering the 30 classification datasets, was the

one presenting the lowest average rank.

All DS techniques presented a better ranking and average

accuracy when compared to the 1-NN, and only the MLA

technique presented a lower classification accuracy and lower

rank than the K-NN using the same neighborhood size (K=7).

This is an interesting finding, since the majority of the DS

techniques in this study (14 methods) use the K-NN method

in the process of estimating the local competence of the base

classifiers.

Furthermore, a pairwise analysis was conducted based on

the Sign test [32], computed on the number of wins, ties

and losses obtained by each DS, compared to the 7-NN (i.e.,

same neighborhood size). The null hypothesis, H0, meant

that both techniques obtained statistically equivalent results.

A rejection in H0 meant that the classification performance

obtained by a corresponding DS technique was significantly

better at a predefined significance level α. In this case, the

null hypothesis, H0, is rejected when the number of wins is



Table 2. Overall results

Algorithm Avg. Rank Algorithm Avg. Accuracy

META-DES.O 4.07(3.67) META-DES.O 83.92(9.13)

META-DES 4.40(3.23) META-DES 83.24(8.94)

DES-RRC 6.40(5.30) DES-P 82.26(9.26)

KNORA-U 7.33(4.65) DES-RRC 82.11(8.76)

DES-P 7.57(4.06) KNORA-U 81.69(9.82)

DES-KL 8.20(5.43) DES-KL 81.52(8.77)

KNOP 10.27(4.19) KNOP 80.81(8.92)

KNORA-E 10.40(4.21) KNORA-E 80.36(10.75)

LCA 10.80(4.91) OLA 79.87(10.67)

OLA 11.07(5.23) DCS Rank 79.69(10.38)

DSOC 11.63(6.17) DSOC 79.68(9.44)

MCB 11.93(5.39) LCA 79.57(9.84)

DES-KNN 12.00(4.72) MCB 79.56(9.70)

A Posteriori 12.17(5.68) DES-KNN 79.29(10.23)

DCS Rank 12.53(4.53) A Priori 78.57(11.18)

7NN 12.97(6.32) DES-KMEANS 78.49(10.40)

DES-KMEANS 13.57(4.26) A Posteriori 78.14(11.53)

MLA 13.63(5.12) 7NN 77.42(13.06)

A Priori 13.77(4.67) MLA 77.34(9.78)

1NN 15.30(5.95) 1NN 76.64(11.98)

greater than or equal to a critical value, denoted by nc. The

critical value is computed using Equation 1

nc =
nexp

2
+ zα

√
nexp

2
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Fig. 2. Pairwise comparison between the results achieved using the different
DS techniques and the 1-NN. The analysis is based on wins, ties and losses.
The vertical lines illustrate the critical values considering a confidence level
α = {0.10, 0.05, 0.01}.

where nexp is the total number of experiments. We ran

the test considering three levels of significance: α =
{0.10, 0.05, 0.01}. Figures 2 and 3 show the results of the

Sign test comparing the performance of DS techniques and

the 1-NN and 7-NN respectively. The different bars represent

the critical values for each significance level.

Compared to the 1-NN, we can see that all DS methods

presented a significant number of wins even when the level of

significance is reduced to α = 0.01. Compared to the 7-NN

(i.e., the same neighborhood size as the DS techniques) we can

see that at a 0.1 significance level, all DS techniques obtained

a significant number of wins. Using an α = 0.05, only two
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Fig. 3. Pairwise comparison between the results achieved using the different
DS techniques and the 7-NN. The analysis is based on wins, ties and losses.
The vertical lines illustrate the critical values considering a confidence level
α = {0.10, 0.05, 0.01}.

DS methods (DS-KMEANS and MLA) did not present a

significant number of wins. Moreover, even restricting the

test to a significance level of 0.01, we could see that the

majority of the DS techniques obtained a significant number

of wins. Therefore DS methods present a significant boost

in classification accuracy even though they use the same

neighborhood as the K-NN.

B. Instance hardness analysis

Instance hardness (IH) measure provides a framework for

identifying which instances are hard to classify and also,

understand why they are hard to classify [27]. The objective of

this experiment is to analyze the performance of DS techniques

and the K-NN classifier for dealing with samples with different

degrees of instance hardness. Thus, we want to test our

hypothesis that DS techniques can better handle samples that

are located in indecision regions, and are associated with a

higher degree of instance hardness.

The kDisagreeing Neighbors (kDN) is considered, since

it presented the highest correlation with the probability that

a given instance is misclassified by different classification

methods according to [27]. The kDN measure is the percentage

of instances in an instance’s neighborhood that do not share

the same label as itself. Equation 2 shows the kDN measure.

kDN(xq) =
| xk : xk ∈ KNN(xq) ∧ t(xk) �= t(xq) |

K
(2)

where KNN(xq) is the set of K nearest neighbors of xq ,

and xk represents an instance in this neighborhood. t(xq) and

t(xk) represents the target class of the instances xq and xk

respectively.

In this work, we considered a neighborhood size K = 7 for

the estimation of the kDN, which is the same neighborhood

sized used for the DS techniques as well as the K-NN

classifier.

We rank the testing instances of all datasets according to

their level of IH. Then, the samples were divided into 8 groups



(given that K = 7) with the possible configurations of IH

(starting from IH = 0, when the whole neighborhood agrees

with the class of the test sample, up to IH = 1, when the whole

neighborhood disagrees with the label of the test sample).

Then, the classification accuracy of each DS technique and

the K-NN are evaluated for each specific group of instances.

The results of the DS techniques and K-NN according to the

hardness level of the instance are presented in Figure 4. For

the sake of simplicity, we considered only the top six DS

algorithms. Moreover, only the 7-NN was considered since it

outperformed the 1-NN. Based on this analysis, we can see

that DS methods achieve higher performance for samples with

a high degree of instance hardness. When the IH level is low

(IH < 0.4), the K-NN method presents the best result. However,

we can see a huge drop in classification accuracy when the

IH level increases.

The accuracy of the K-NN for the samples with IH =

0.7 is around 5%, while the best DS techniques obtain an

accuracy higher than 50% for such instances (META-DES,

META-DES.O and KNORA-U). Moreover, for an IH higher

than 0.71 the classification accuracy of the K-NN is equal to

zero, while the best DS technique obtained a much higher

classification accuracy for such samples. Hence, the reasons

behind the outperformance of DS techniques over the K-NN

method can be explained by the fact that DS techniques can

better deal with samples that are associated with a high degree

of instance hardness.

We can clearly see that DS methods outperform the K-

NN for the classification of samples associated with a high

degree of instance hardness. This is due to the fact that a

high IH value means that the majority of the samples in the

neighborhood of the query instance come from a different

class. Therefore, the K-NN classifier cannot predict the correct

label. However, when using DS techniques, it is possible to

achieve the correct prediction for such instances as long as

there is at least one base classifier or a few that crosses the

neighborhood of the query sample (as shown in Figure 1).

This result explains why DS techniques often outperform the

K-NN classifier, even though the same neighborhood size is

considered by both techniques.

Hence, we are able to answer two questions posed in

the paper: The reasons why DS techniques present a better

performance than the K-NN is due to the fact that DS

techniques can deal with samples with a high degree of

instance hardness. Moreover, DS techniques should be used

for the classification of instances that are associated with a

high degree of instance hardness (samples that are located

close to the decision border), while the K-NN should be used

for the classification instances associated with a low degree of

instance hardness (e.g., IH < 0.4). Moreover, for all sample

associated with a high degree of IH (IH > 0.4), that were

correctly classified by a DS algorithm, there was at least one

base classifier in the pool crossing the region of competence

(i.e., which could predict the correct label for samples of

different classes).

Thus, DS techniques are able to correctly classify instances
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Fig. 4. Performance of DS techniques and K-NN according to the hardness
level of an instance considering all 30 classification datasets.

that are associated with a high degree of instance hardness as

long as they can select the base classifiers that are competent

locally. For such a condition to be satisfied, it is required that

there is at least one base classifier crossing the decision border

in the local region of the query sample (as shown in Figure 1).

The classifier should also obtain a high local performance in

order to be selected by the corresponding dynamic selection

technique. Moreover, it would be preferable to guarantee

the presence of multiple locally competent classifiers rather

than just one. As the number of competent base classifiers

increases, the probability of selecting only the competent ones

should also increase.

IV. CONCLUSION

In this work, we perform an analysis comparing dynamic

selection techniques with the K-NN classifier in order to

better understand why and when dynamic selection techniques

outperform the K-NN classifier. The analysis is motivated by

the fact that the majority of the DS techniques are based on

the K-NN definition, and the quality of its neighborhood has

a huge impact on the performance of DS methods.

Experimental results demonstrate that the majority of DS

techniques obtain a significant improvement in classification

performance. Moreover, an analysis conducted using instance

hardness shows that the reasons in which DS presents better

classification performance is due to the fact that DS techniques

are better able to deal with samples with a high degree of

instance hardness, while the K-NN classifier works well for

samples with a low degree of instance hardness, but fails to

predict the correct label for samples with a high degree of IH

(the accuracy of the K-NN classifier is close to 0 for samples

with an IH of 0.7).

Future work would involve the definition of a system in

two steps: first the hardness of a test instance is calculated

(based on its neighborhood defined over the training and

validation data), and based on its hardness the system could

select whether using the K-NN or applying a DS technique



for classification. In this case, the DS scheme is only used

to classify samples associated with a high degree of instance

hardness i.e. borderline samples, while K-NN should be used

for classifying samples with a low degree of instance hard-

ness. Such approach would not only improve generalization

performance, but also reduce the computational complexity

involved, since the DS techniques would only be used for the

classification of a few test samples.
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APPENDIX II

THE NUMERICAL RESULTS

This appendix contains complementary information to this research. We present three ta-

bles providing the numerical results of the 4 DS techniques (Aposteriori, LCA, KNORA-E,

KNORA-U) by the different Pool generation approaches, Bagging, SGH and Strategy 4 re-

spectively.

Therefore, the Tables A II-1, A II-2, A II-3 and A II-4 below represent the numerical results

of the DS techniques for the different pool generation methods; the mentions B, G and L

represent Bagging, SGH and DSLP respectively. The results are given by their mean and

standard deviation for the 20 replications. The best results performed by the DS techniques are

in bold.

Table A II-5 represents the number of classifiers generated using the (SGH) and the proposed

Dynamic Selection Local Pool (DSLP). The number of classifiers generated in DSLP is pro-

portional to the number of hard samples provided by the instance hardness measure.
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Classification results with Aposteriori

Table-A II-1 Mean and standard deviation of the

generalization accuracy rate of Aposteriori with several

pools, one of 100 Perceptrons generated using Bagging,

the and the proposed pool strategy 4. Best results are in

bold.

Datasets APOS-B APOS-G APOS-L
Adult 85.09(0.02) 85.55(0.02) 87.17(1.71)
Blood 70.61(0.03) 71.78(0.02) 71.25(2.64)

Breast 95.35(0.02) 95.14(0.02) 95.7(1.46)
German 69.08(0.01) 69.28(0.01) 71(1.55)

Haberman 70.13(0.03) 69.41(0.05) 72.63(3.64)
Heart 85.88(0.02) 84.85(0.03) 86.62(1.84)
ILPD 67.19(0.01) 66.85(0.01) 68.29(1.34)

Ionosphere 80(0.03) 77.27(0.04) 82.39(3.95)
Laryngeal1 82.26(0.04) 80.38(0.03) 82.26(3.02)
Lithuanian 96.03(0.03) 96.13(0.03) 96.87(2.37)

Liver 64.07(0.05) 62.09(0.05) 63.49(5.04)

Mammographic 79.11(0.05) 79.45(0.04) 78.8(3.71)

Monk2 83.89(0.06) 81.67(0.06) 83.43(5.92)

Pima 72.92(0.02) 72.03(0.03) 75.1(1.97)
Sonar 70.87(0.04) 69.23(0.03) 66.92(3.28)

Vertebral 82.95(0.04) 80.77(0.04) 81.92(5.44)

Weaning 73.95(0.04) 72.37(0.03) 74.47(3.97)
Average 78.20 77.31 78.72
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Classification results with LCA

Table-A II-2 Mean and standard deviation of the generalization accuracy rate of LCA
with several pools, one of 100 Perceptrons generated using Bagging, the and the proposed

pool strategy 4. Best results are in bold.

Datasets LCA-B LCA-G LCA-L
Adult 86.21(0.02) 87.51(0.02) 85.55(2.56)

Blood 77.79(0.02) 78.24(0.02) 76.22(1.67)

Breast 96.58(0.01) 95.42(0.02) 96.13(1.95)

German 72.58(0.01) 70.4(0.01) 68.8(1.83)

Haberman 70.79(0.04) 72.5(0.04) 69.61(4.5)

Heart 81.18(0.04) 87.06(0.03) 79.71(2.51)

ILPD 67.98(0.03) 69.25(0.02) 67.88(2.58)

Ionosphere 87.9(0.03) 82.27(0.05) 83.3(2.28)

Laryngeal1 79.62(0.03) 80(0.03) 79.43(2.8)

Lithuanian 95.73(0.02) 96.6(0.03) 96.33(2.21)

Liver 66.57(0.06) 61.86(0.04) 64.53(4.57)

Mammographic 82.79(0.02) 82.21(0.03) 81.15(1.49)

Monk2 88.06(0.05) 84.44(0.08) 92.5(4.58)
Pima 73.05(0.02) 75.1(0.03) 72.92(3.37)

Sonar 78.27(0.04) 67.12(0.02) 70.96(4.54)

Vertebral 84.81(0.06) 80.51(0.05) 83.21(5.24)

Weaning 76.97(0.04) 77.11(0.04) 81.32(5.12)
Average 80.40 79.27 79.38
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Classification results with KNORA-E

Table-A II-3 Mean and standard deviation of the

generalization accuracy rate of KNORA-E with several

pools, one of 100 Perceptrons generated using Bagging,

the and the proposed pool strategy 4. Best results are in

bold.

Datasets KNORAE-B KNORAE-G KNORAE-L
Adult 87.89(0.02) 86.01(0.03) 86.47(1.92)

Blood 73.14(0.02) 72.13(0.03) 72.29(2.13)

Breast 97.75(0.01) 94.37(0.01) 96.76(1.03)

German 73.16(0.02) 70.52(0.01) 71.44(1.18)

Haberman 73.55(0.03) 60.13(0.04) 67.63(6.19)

Heart 83.68(0.03) 83.38(0.03) 83.68(4.45)
ILPD 69.14(0.02) 66.58(0.04) 67.95(2.22)

Ionosphere 89.49(0.02) 88.52(0.02) 89.09(2.16)

Laryngeal1 81.23(0.04) 78.49(0.02) 79.81(4.16)

Lithuanian 95.77(0.02) 95.8(0.03) 96.73(2.59)
Liver 64.19(0.06) 57.44(0.05) 56.86(5.27)

Mammographic 82.14(0.03) 78.89(0.03) 80.58(2.77)

Monk2 87.87(0.06) 76.76(0.1) 93.89(6.14)
Pima 76.04(0.02) 67.92(0.03) 75.83(3.8)

Sonar 84.71(0.04) 64.81(0.07) 75.38(1.48)

Vertebral 83.4(0.03) 79.1(0.04) 81.41(3.01)

Weaning 81.64(0.02) 77.63(0.04) 79.08(3.79)

Average 81.46 76.38 79.70
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Classification results with KNORA-U

Table-A II-4 Mean and standard deviation of the

generalization accuracy rate of KNORA-U with several

pools, one of 100 Perceptrons generated using Bagging,

the and the proposed pool strategy 4. Best results are in

bold.

Datasets KNORAU-B KNORAU-G KNORAU-L
Adult 88.7(0.02) 89.19(0.03) 88.5(2.27)

Blood 78.4(0.01) 74.63(0.02) 78.62(1.24)
Breast 97.36(0.01) 95.99(0.01) 97.11(1.63)

German 76.4(0.02) 70.72(0.02) 71.68(0.86)

Haberman 76.12(0.02) 67.5(0.04) 70.92(4.5)

Heart 86.62(0.03) 86.18(0.03) 85.59(3.43)

ILPD 69.11(0.03) 66.71(0.04) 71.58(1.67)
Ionosphere 88.69(0.01) 88.18(0.02) 84.66(1.9)

Laryngeal1 84.72(0.04) 80.19(0.02) 80.75(3.85)

Lithuanian 93.63(0.02) 95.53(0.02) 96.07(2.51)
Liver 68.43(0.04) 56.98(0.04) 62.09(5.58)

Mammographic 84.93(0.03) 80.72(0.02) 82.16(2.94)

Monk2 83.56(0.06) 80.37(0.07) 86.57(4.77)
Pima 77.19(0.02) 72.45(0.02) 77.81(3.07)
Sonar 83.27(0.04) 67.12(0.04) 68.85(6.29)

Vertebral 85.32(0.04) 82.31(0.03) 82.56(4.08)

Weaning 82.57(0.05) 78.95(0.03) 74.61(6.67)

Average 82.65 78.45 80.01
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Number of classifiers generated

In this part, we present the number of classifiers generated by SGH and the proposed system

for several strategies. As strategy 1 relies on the DCS techniques to create DSLP, we kept only

the table of APOS. Strategy 2 and strategy 4 have present the same number of classifiers in

average for all the DS techniques, since they only keep 1 competent classifier per hard sample.

This means that for strategy 2 and 4, the number of classifiers is equal to the number of hard

samples. As for strategy 3, it uses KNORA-E to decide which classifiers are kept and added to

DSLP, this leads to more than one classifier per hard sample in average. The same conclusion is

drawn for strategy 5, since it keeps all the classifiers presenting the highest score of distinction

between the pairs of frienemies.

Table A II-5 represents the number of classifiers generated by SGH and the number of classi-

fiers created by the proposed method for strategies 2 and 4. On the other hand, Table A II-6

represents the number of classifiers generated by SGH and the number of classifiers created by

the proposed method for strategy 1 for APOS. Moreover, Table A II-7 represents the number

of classifiers generated by SGH and the number of classifiers created by the proposed method

for strategy 3. Finally, Table A II-8 represents the number of classifiers generated by SGH and

the number of classifiers created by the proposed method for strategy 5.
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Number of classifiers generated : SGH and strategy 2 and 4

For Table A II-5 represents the number of classifiers generated by SGH and the number of

classifiers created by the proposed method for strategies 2 and 4 . The number of classifiers

presented by the proposed method is proportional to the number of hard samples found in each

dataset, according to the measure of hardness.

Table-A II-5 Mean and standard deviation of the

number of classifier provided by the (SGH) and the

Dynamic Selection Local Pool (DSLP)

Dataset SGH DSLP
Adult 3.1(0.31) 124.20(8.13)

Blood 3.0(0.0) 193.10(11.89)

Breast 3.0(0.0) 43.70(3.47)

German 3.1(0.31) 304.30(8.52)

Haberman 3.8(0.41) 100.00(3.61)

Heart 3.2(0.41) 64.40(8.13)

ILPD 3.8(0.41) 177.80(5.44)

Ionosphere 3.7(0.47) 46.70(7.69)

Laryngeal1 2.4(0.68) 53.30(6.24)

Lithuanian 3.6(0.5) 48.50(7.63)

Liver 3.2(0.41) 126.20(1.58)

Mammographic 2.9(0.31) 194.60(15.87)

Monk2 2.5(0.51) 126.70(3.76)

Pima 3.5(0.51) 999.80(32.43)

Sonar 3.3(0.66) 220.40(6.07)

Vertebral 2.5(0.69) 72.60(2.11)

Weaning 3.0(0.0) 88.60(7.23)

Average 3.15 169.94
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Number of classifiers generated : SGH and strategy 1

Table A II-6 represents the number of classifiers generated by SGH and the number of classi-

fiers created by the proposed method for strategy 1 for APOS.

Table-A II-6 Mean and standard deviation of the

number of classifier provided by the (SGH) and the

Dynamic Selection Local Pool (DSLP)

Dataset SGH DSPG
Adult 3.1(0.31) 66.8(7.01)

Blood 3.0(0.0) 99.1(9.84)

Breast 3.0(0.0) 22.2(6.15)

German 3.1(0.31) 143.2(6.15)

Haberman 3.8(0.41) 53.65(5.65)

Heart 3.2(0.41) 27(9.44)

ILPD 3.8(0.41) 84.1(8.77)

Ionosphere 3.7(0.47) 17.6(5.84)

Laryngeal1 2.4(0.68) 28.4(5.03)

Lithuanian 3.6(0.5) 21.9(7.29)

Liver 3.2(0.41) 61.25(9.59)

Mammographic 2.9(0.31) 84.05(9.56)

Monk2 2.5(0.51) 78.9(3.56)

Pima 3.5(0.51) 113.7(9.52)

Sonar 3.3(0.66) 38.1(10.56)

Vertebral 2.5(0.69) 39(9.26)

Weaning 3.0(0.0) 52(9.51)

Avergae 3.15 132.8
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Number of classifiers generated : SGH and strategy 3

Table A II-7 represents the number of classifiers generated by SGH and the number of classi-

fiers created by the proposed method for strategy 3.

Table-A II-7 Mean and standard deviation of the

number of classifier provided by the (SGH) and the

Dynamic Selection Local Pool (DSLP)

Dataset SGH DSPG
Adult 3.1(0.31) 129.10(17.60)

Blood 3.0(0.0) 305.70(28.89)

Breast 3.0(0.0) 56.20(21.10)

German 3.1(0.31) 238.40(25.02)

Haberman 3.8(0.41) 148.20(20.15)

Heart 3.2(0.41) 60.40(14.18)

ILPD 3.8(0.41) 270.10(45.28)

Ionosphere 3.7(0.47) 63.20(11.34)

Laryngeal1 2.4(0.68) 69.80(13.99)

Lithuanian 3.6(0.5) 135.70(36.73)

Liver 3.2(0.41) 141.80(12.20)

Mammographic 2.9(0.31) 403.80(47.75)

Monk2 2.5(0.51) 251.90(35.41)

Pima 3.5(0.51) 226.60(38.70)

Sonar 3.3(0.66) 59.00(15.98)

Vertebral 2.5(0.69) 109.10(25.82)

Weaning 3.0(0.0) 43.00(8.38)

Avergae 3.15 159.52
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Number of classifiers generated : SGH and strategy 5

Table A II-8 represents the number of classifiers generated by SGH and the number of classi-

fiers created by the proposed method for strategy 5.

Table-A II-8 Mean and standard deviation of the

number of classifier provided by the (SGH) and the

Dynamic Selection Local Pool (DSLP)

Dataset SGH DSPG
Adult 3.1(0.31) 454.30(35.65)

Blood 3.0(0.0) 661.20(118.03)

Breast 3.0(0.0) 191.70(13.97)

German 3.1(0.31) 1073.20(20.8)

Haberman 3.8(0.41) 287.70(27.26)

Heart 3.2(0.41) 262.00(16.37)

ILPD 3.8(0.41) 470.90(37.51)

Ionosphere 3.7(0.47) 181.20(33.61)

Laryngeal1 2.4(0.68) 149.00(12.92)

Lithuanian 3.6(0.5) 213.50(39.35)

Liver 3.2(0.41) 343.20(22.04)

Mammographic 2.9(0.31) 726.20(90.14)

Monk2 2.5(0.51) 456.30(23.25)

Pima 3.5(0.51) 648.90(54.20)

Sonar 3.3(0.66) 306.40(49.29)

Vertebral 2.5(0.69) 238.60(27.86)

Weaning 3.0(0.0) 350.20(28.38)

Avergae 3.15 412.61
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